VT YT ER 3T 5

TurSIVUEE 21-5
(1990. 12. 13)

Z4BT % ¥ Prolog I B 3 BIRE O HEIL
B ER
BLE () EREHLSRIEDET

HoEL: ZHEI LD Prolog it Prolog WZAERIY R 7 A%k O MA A ZETH 5, COUIER, Prolog
¥ LVEFIcI e, HEEELLCENARDD LT E0C, EAPFRINTVE, LAELZDZHEML X7 4
BT —ABEFTINIE, HTHO—BHERELATLE A LA WD Toverhead BKEWE W HERD
5, TET. COMBEARTEMRT 3 72 well-typing & » 5 Bi&ic S BRE RO FHELABE%E & 1L7c s,
BELTE 2 RERELATT b, EXCOHENEREIND 70 /7 6035 kv, BRI, ThET
DFHEX D X bicFH» well-typing DS RET 3. chick->T, RWFfFD 7 v 77 A CEREENRER
FEENB XS5 CHosTe MAT, AR E— VERCHEOD 2RBELFELRRBI &, L dE— Fif
22 hbEmBElbBREINZ C L ERT,)

An Optimal Type Checking for Polymorphic Typed Prolog!
Dongwook SHIN

International Institute for Advanced Study of Social Ihiormation Science,
FUJITSU LIMITED

17-25, SHINKAMATA, I—CHOME,OTA-i(U, TOKYO 144, JAPAN

Abstract: Polymorphic typed Prolog is a language which offers polymorphic type system in Prolog
framework. This type extension of Prolog has received widespread attraction, because it is believed to
make Prolog clearer and more suitable for specification. However, it may raise inefficiency in resolution
procedure in that unification should always deal with the type consistency of terms. To improve the inef-
ficiency, some optimization techniques based on the notion of well-typing have been developed. However
these require too strong conditions, so that they can be utilized only in a limited number of programs.
This paper attempts to establish another weaker notion of well-typing than theirs, sd that the resolution
procedure could be optimized in a wider range of programs. Furthermore, it develops an optimization
technique associated with mode information and shows that optimization can be promoted if modes are

available.

1The full version of this paper is " Toward Optimal Type Checking for The Polymorphic Type System of Prolog” [Shix:- 90]. All

proofs omitted here are found in the paper.

1 Introduction

From the last decade, type systems for Prolog have
received widespread attention, mainly because they
are believed to make Prolog clearer and more suit-
able for specification, and help programmers to write
correct programs. The type systems of Prolog can be
categorized in two approaches: descriptive and pre-
scriptive one [Jacobs 90]. The descriptive approach
[Kanamori 84, Mishra 84, Zobel 87, and Yardeni 87]
attempts to infer the type information from the given
Prolog programs. The goal here is to find an approx-
imation of the success set of each predicate, which
is given as the notion of type, for compile-time type
prediction, or program optimization.

On the other hand, the prescriptive approach does
not infer the type information. Rather, it aims to in-
vestigate if the type is used consistently or not, when
the types of each predicate and function are declared.
To do this, unification should treat the type consis-
tency of terms in resolution procedure, which causes
inefficiency. Mycroft and O’Keefe [Mycroft 84] pro-
posed a polymorphic type system of Prolog in the
prescriptive way and suggested a criterion to find out
the programs which do not raise type errors at run
time. This criterion, called well-typing, is effective
because if a program is proved well-typed and free
from type errors, the type consistency checking in the
resolution procedure can be omitted. Hence, the sim-
ple unification in Prolog is enough to prove the goals
associated with this program. Dietrich and Hagl [Di-
etrich 88] added subtype relation into this framework
and showed that the notion of well-typing still holds
if the mode information is available.

Hanus [Hanus 89a] also developed an optimiza-
tion technique which sorts out the programs free from
type errors at run time. It turned out that his notion
of optimization technique, called type general is the
same as the well-typing of Mycroft and O’Keefe’s.

However the condition for well-typing and type
general is too strong, so that only a limited number
of type correct programs are optimized by this tech-
nique. For instance, the following append program is
well-typed by Mycroft and O’Keefe’s notion:

Example 1.

func [|: — list(e)

func . : olist(a) — list(c)

pred append: list(e),list(a),list(c)
append([],X,X) «

append([H|T],X,[H|T1]) + append(T,X,T1)

However, if the following clause is added to this
program:

append([1],(2],[1,2)) «

it becomes ill-typed. This kind of specific clause is
often added to prove some queries immediately. How-
ever, the optimization technique can not be applied

to the expanded program, any more. Worse, a pro-
grammer may doubt if this program has serious type
errors, even though it is type correct in itself and has
the same semantics as the original one.

Hence, we need some way to further the optimiza-
tion in a wider range of programs and at the same
time, assure that the type correct clauses in them-
selves do not raise serious type errors. To do this,
this paper, first, introduces the notion of weakly well-
typing which is weaker than the original notion of
well-typing in Mycroft and O’Keefe’s [Mycroft 84],
and shows that the new notion helps to optimize the
various kinds of programs. In contrast to the strongly
well-typing which assures that a program is type cor-
rect with respect to well-typed queries, the weakly
well-typing only guarantees that a program is type
correct for permissible queries which is a class of well-
typed queries. Secondly, this paper extends the no-
tion of well-typing to the one associated with modes.
This notion is useful for programs which are not type
correct in general, but do not raise any type error if
some of arguments of predicates are assumed to be
ground terms. This paper also presents a criterion
which finds out the type correct programs with re-
spect to given modes and proves its soundness. This
paper is organized as follows. Section 2 presents the
basic preliminaries used in this paper. Section 3 de-
scribes polymorphic typed Prolog, its syntax and the
notion of well-typing. Section 4 presents the notion
of weakly well-typing and proves the soundness of
the extension. Section 5 introduces the notion of
modes and an optimization technique associated with
it. Section 6 states concluding remarks and discusses
further studies. :

2 Preliminaries

This section reviews some notions often used in logic
programming and type theory. We assume that the
reader is familier with Prolog and recall only the im-
portant notions associated with logic programming
and type theory. A more detailed definition or expla-
nation is referred to [Lloyd 84] and [Hanus 89a).
This paper assumes several disjoint name sets with
respect to polymorphic typed Prolog programs. These
sets are a set of variable names, function names, and
predicate names, which are denoted by Var, Fun,
and Pred, respectively. Variable names are denoted
by z, y, 2,... and often by the names beginning with
capital letters like H, T', and so forth. Constants are
considered as functions with arity zero. We also as-
sume another disjoint name sets for types, namely,
sets of type variable names, Twar and type construc-
tor names, T'cons. Tvar contains type variables used
for polymorphic types, whereas T'cons has the names
representing specific types. For instance, T'cons may
include a type constructor int which represents the
set of integers. To avoid the confusion with the term

names, types defined below are denoted by the greek
letters a, G, 7,-.-

Based on this assumption, the syntax of type is
defined as follows:

1. a type variable o € Twar is a type,

2. if T is a type constructor and o; is a type for
1 <4 < m, then 7(oy,---,0m) is also a type.

For instance, int is a type, if int € Tcons, and
list(a) is also a type, if & € Twar and list € Tcons.
Now, let us define the notion of substitution, renam-
ing, and unification.

Definition: 1. A substitution is a finite set of
variable replacements 8 = {z1 « %1, ++,Zn — ta},
where each z; is a variable and ¢; is a term. The
set of variables affected by @ is defined as Dom(6) =
{z | 0(z) # =} and the set of variables introduced
by @ as Ran(8). A term ¢ is said to be subsumed by
(or an instance of) s, if there is a substitution 8 such
that t = s6. In this case, we denote the relation by
t <s. Ifbotht < s and s < t hold, we say t is
a renaming of s (or s is a renaming of t) and write
t 2 5. Furthermore, t and s are said to be unifiable if
there exist a substitution 8 such that t§ = sf. These
relations also hold between two predicates p and q.

The notion of substitution and unification are eas-
ily applied to types if we replace variables by type
variables and terms by types.)

Definition: 2. A type substitution is a finite set of
type variable replacements £ = {a; « 71, -+, p —
T}, Where each a; is a type variable and 7; is a
type. The notion of subsumption, renaming, and uni-
fication also hold between types in the same way as
terms.

This paper also uses a notation ¢:7, where t is a
term and 7 is a type. This notation means that ¢ is
typed by 7. Once again, the notion of substitution
can be extended to these forms, in such a way that
variables are replaced by terms and type variables are
replaced by types at the same time.

Definition 8. A typed substitution is a pair of a
finite set of variable replacements and a set of type
variable replacements, (6,&) = ({x1 « 1, +,Tp
t.}, {o1 « T1,°++,an — T,}), where each x; is a
variable, t; is a term, o; is a type variable, and 7; is
a type. A form t:7 is said to be subsumed by (or an
instance of) s:o, if there is a typed substitution (9,£)
such that t:7 = 5:0(8,€). In this case, we also denote
the relation by #:7 < s:0. The renaming relation and
unification also hold between these forms in the same
way.

3 Polymorphic Typed Prolog

Polymorphic typed Prolog presented in this paper
supports parametric polymorphism which is attained
by allowing type variables in the type declaration.
Similar systems are Mycroft and O’Keefe’s system
[Myecroft 84] and Hanus’s [Hanus 89a]. Mycroft and
O’Keefe’s system offers not only parametric polymor-
phism, but also overloading, however the semantics of
overloading is unclear. On the other hand, Hanus’s
type system provides only parametric polymorphism
and is exactly the same as ours. As Hanus’s has its
own denotational semantics [Hanus 89a], we can give
the same semantics to polymorphic typed Prolog.

3.1 Type Declaration

Polymorphic typed Prolog is a prescriptive type sys-
tem [Jacob 90], in that the types of all functions and
predicates occurring in a program should be declared.
Once these types are declared, a programmer need
not annotate the types of variables in clauses, be-
cause the type inference rule in Section 3.2 (also ap-
peared in [Hanus 89b)) infers the type annotations of
the variables. i
The type of a function is declared as:

func f:71, -, Tu— T,

where 7, + -, T, are arbitrary types and 7 is the result
type. If n = 0, f is called a constant function. Note
that a function need not be type preserving which
requires that the result type 7 should contain every
type variable appearing in 7;. In the similar way, the
type of a predicate is declared as:

pred p: 1y, -, Tn,

where 7, -, 7, are arbitrary types. The func and
pred are reserved words which denote the declara-
tions of a function and a predicate, respectively.

The type variables in a type declaration are uni-
versally quantified over all types. And a type of a
function or a predicate is called a generic instance of
a type declaration if it can be obtained from the dec-
laration by replacing each occurrence of one or more
type variables by other types [Damas 82].

3.2 Well-typing of Prolog

A typing for a predicate or a clause associates a type
with every variable, functor, and predicate. The type
annotations need not be provided by the users be-
cause most general type annotations can be computed
by the typing rule in Table 1 [Hanus 89b]. A typed
variable has the form z:7 where x € Var and 7
is an arbitrary type. Vis called an allowed set of
typed variables if V contains only typed variables and
z:r,@r’ € V implies 7 = 7. H « B (p, respectively)
is called a typed clause (typed predicate, respectively)

Variable : Va=r (zreV)
Term : VEten, -, VEtum (f:m,--,7s — T is a generic instance
: VF fltum, - taTa)T of a function declaration,n > 1)
. C VEtm, - VEtn (p: 7, ++,7a is a generic instance
Predicate : VFplrm, -, tniTa) of a predicate declaration,n > 1)
Clause : Vk Ly, VL, (each L; has the form p(: - -),

V"L04—L1,~--,L”

i=0,,n)

Table 1. Typing rule for polymorphic typed Prolog clauses

if there is an allowed set of typed variables V and
V + H « B (V I p, respectively) is derivable by
the typing rule in Table 1. A typed clause (typed
predicate, respectively) of a clause C (a predicate p,
respectively) is denoted by C (P, respectively).

For instance, applying the typing rule for the first
append clause in Example 1, we get a typed clause:

append([|list(a), Xilist(a), Xlist(a)).

Note that the variable X can not be annotated by a
type variable 3, because 3 is not a generic instance of
list(c) which is the declared argument type of append
predicate.

Now let us define the notion of well-typing of a
predicate, strongly well-typing of a clause and a pro-
gram. The notion of strongly well-typing of a clause
corresponds to that of well-typing in [Mycroft 84]. In
this paper, we change the original terminology in or-
der to introduce another weaker notion of well-typing
in Section 4.

Definition 4. A predicate p is defined well-typed
if there is a typed predicate P for p.

Definition'5. A clause p(t1,:--,ts) < By, +, B
is defined strongly well-typed if there is a typed clause
p(t1:71,"+ ,taiTn) < Bi,++-, B, such that the type
of the predicate p/n is declared as p(p1,: - -,pn) and
(71, ++,7n) 2 (p1,++,Pa). A polymorphic typed Pro-
log program is defined strongly well-typed if every
clause in the program is strongly well-typed.

Theorem 1. (Soundness of strongly well-
typing) If a polymorphic typed Prolog program is
strongly well-typed and every function is type pre-
serving, then an ill-typed resolvent never takes place
in the refutation procedure, if the first query is well-
typed [Mycroft 84].

The same proof is found in [Hanus 89a). This
property is often rephrased as ”if a program is well-
typed, it never invokes any run-time type error for
well-typed queries”.

However, as mentioned in Section 1, the condition
of strongly well-typing is too severe so that it often
tells that a program is not well-typed, even though
it is type correct in itself. For instance, the following
append clause,

append([1],[2],[1,2])

is not well-typed because its most general typed clause
is,

append([Lint]dist(int), [2:int]dist(int), [Lint, 2:
int}dist(int)),
but append(list(int), list(int), list(int)) is not a re-

naming of the type declaration append(list(a), list(a),
list(a)).

4 The Extended Notion of Well-
typing

This section presents the notion of weakly well-typing
and shows that it helps to promote the optimization
in a wider range of programs. At first, let us intro-
duce the notion of most general typing of a predicate
p/n, which is the most general one among the typed
predicates of p/n.

Definition: 6. The most general typing(MGT)
of a predicate p(t1,- - +,ta), is a typed predicate p(t;:

T, *++ , tn:T,) such that if there is another typed
predicate p(t1:7'y, -+ , ta:7'n), then (7'1, ---, 7'5)
= (71, -+, T) holds. The MGT of a predicate p is

denoted by [P] and the type of a term ¢ with respect
to the MGT of p is denoted by [Pt

For example, the M GT of the predicate append(]],
X, X) is:

append([|list(e), X:list(a), X:list(a)),
and [append([], X, X)]|X is list(a).

Using the definition of the MGT, we can extend
the notion of well-typing as follows.

Definition: 7. Suppose that the type of the pred-

icate p/n is declared as p(p1,---,pa). A clause p(ty,

-+, tn) « By,- -+, By, is defined strongly well-typed if
there is a typed clause p(t,:71,+ ++ , tniTa) <= B1,**+, B
such that (1,--+,7a) & (p1,---,pa) and every B;is a
strongly well-typed predicate. A predicate p/n is de-
fined strongly well-typed if each clause whose head is
p/n is strongly well-typed. Furthermore, a polymor-
phic typed Prolog program P is defined strongly well-
typed if every predicate in P is strongly well-typed.

— 38—

The notion of strongly well-typing in Definition
7 exactly corresponds to that in Definition 5, if a
program is strongly well-typed. Now, let us present
another weaker notion of well-typing.

Definition: 8. A clause C = p(t1,+«,tn) —
By, ---, By, is defined weakly well-typed, if it belongs
to one of the following types, where p(p1,---,pn) is
the type declaration of p/n;

type (1): m =0, p(t1,---,ts) is ground, and its MGT

pt1:71,+ -+ taiTy) satisfies (7, --+, 7a) < (o1,

) Pn)v
type (2): m = 0, and the MGT of the head predi-
cate, p(t1:71,- -+, ta:1Ty) satisfies (73, -,) <

(p1,"*,pn), furthermore, if 7; < p;, the type
variables in p; do not appear in p;, where 1 <
i#£j<m,

type (3): m > 0 and there is a typed clause for C,
p(tym, -+, taTa) + By, -, B satisfying (n,

<o, Ta) < {p1, "+, pn). Furthermore, if 7z < pi,

the type variables in p; do not appear in pj,
where 1 < i # j < n, and for each variable in

C, rp(tlv" : 1tn)]|m = rB_{”x ... [B:“IL‘,
type (4): m > 0 and there is a typed clause for

C, plty: 71, + yta:Ta) «— By, -+, Bp satisfy-
ing (71, -+, 7a) = (p1, -+ , pn) and at least one
of B; is not strongly well-typed. Furthermore,
for each variable z in C, [p(f1,-,tn)] |2z &

[Bille -2 [Bylle.

Definition: 9. A predicate p/n is defined weakly
well-typed, if at least one of the clauses whose heads
are p/n is weakly well-typed and other clauses are
strongly well-typed. A polymorphic typed Prolog pro-
gram P is defined weakly well typed, if each predicate
in P is weakly well-typed or strongly well-typed.

By the Definition 9, a weakly well-typed program
P is also strongly well-typed, if it has only strongly
well-typed predicates. Now let us explain the weakly
well-typed clauses taking examples. First, for in-
stance, the unit clause append([1],[2],[1,2]) is weakly
well-typed because its MGT is:

append([Lint]list(int), [2:4nt]dist(int), [Lint, 2:
int]dist(int)),

and append(list(int), list(int), list(int)) is an instance
of the declaratrion append(list(c), list(a), list(a)). The
append program becomes weakly well-typed after the
ground unit clause is added, while the original pro-
gram is strongly well-typed.

For explaining the second and third cases, let us
take an example of "likes” relation [Clocksin 84].

Example 2.
func john: — man

func alfred: — man

func edward: — man

func wine: — alcohol

func beef: — food

pred likes: o, 8

likes(john, X) « likes(X,wine),
likes(X,beef)

likes(john, wine) «

likes(alfred, wine) <

likes(alfred, beef) «—

likes(edward, X) «

likes(cat, mouse) «—

The unit clause likes(edward, X) belongs to the
second type, because a typed clause likes(edward:
man,X :7) satisfies the relation (man,7) = (o, p)
and there is no type variable which appears both in
o and (. The clause,

likes(john, X) « likes(X,wine), likes(X,beef).

belongs the the third type. Hence, this program is
weakly well-typed and we can omit the type consis-
tency checking in proving permissible queries defined
below. A clause of the final case is defined weakly
well-typed because even though it is very much sim-
ilar to a strongly well-typed clause, it loses the prop-
erty of the strongly well-typing owing to the weakly
well-typed predicates in the body part.

Definition: 10. A conjunction of predicates A,
-+, A is defined permissible if it is well-typed and for
a variable x appearing in a weakly well-typed pred-
icate A;, it holds that [A; 1|z < [4; 1|=, for
1<i#j<k.

For instance, a conjunction of predicate,
append(X,Y,Z), member(U,Z)

is permissible, because [append(X,Y,Z) 11Z = [
member(U, Z) || Z, with respect to the following
member program.

Example 3.

pred member: 7,list(y)
member(X,[X|Y}).
member(X,[Y]|Z]) < member(X,Z)

Note that a well-typed query with respect to a
strongly well-typed program is also permissible be-
cause there is no weakly well-typed predicate. Before
proving the soundness of weakly well-typing, we need
a definition and some lemmas.

Definition: 11. A typed term #:7 is said to have
the most general type with respect to (w.r.t.) pif 7 < p
and for another typed term :7/ such that 7’ < p, then
LT

Lemma 1. Let p(p1,---,ps) be the type decla-
ration of p/n and p(ty:71,- -, taiTe) be the MGT of

p(t1, -+, ta) satisfying (7, 7a) = (p1,-++, pu)- I
there is ¢ such that 7; < p; and the type variables in
p;i do not appear in p; for i # j, then t;:7; has the
most general type w.r.t. p;.

Lemma 2. If a typed term ¢:7 has the most
general type with respect to p, then for a typed term
s:0 satisfying o < p, t is unifiable with s iff £:7 is
unifiable with s:o.

Theorem 2. Suppose that a well-typed query
A1 = p(s1,--+,8n) is unified with a strongly well-
typed clause C = A « By,---, By with the mgu 8
= mgu(4;, A). Then for each variable x € Dom(6),
[41)|z = [A10]|z0 if every function is type-preserving.

Lemma 3. Suppose that the type of the predicate
p/n is declared as p(p1,- -+, pn). If p(m1, -+,) and
p(o1,--+,0,) are generic instances of the type decla-
ration, then the following property holds: m,--+, 7,
are unifiable with oy, - - -, 0, respectively iff p(71, - - -,
7,) is unifiable with p(oy, -+, on).

In the following lemma, t[y] denotes that a term
t contains a variable y.

Lemma 4. Suppose that every function is type
preserving. Let Aj,---, Ay be well-typed and « be a
variable appearing in it. Supposing that [4;]|z =X
[4;]|z, for a substitution 8 = {x « t[y]}, it holds
that [A;0)|y < [A;0]|y, if (A1, - -, Ax)0 is well-typed.

Now, let us prove the soundness of the extended
notion of well-typing, so called, permissible queries do
" not go wrong for a weakly well-typed program.

Theorem 3. (Soundness of weakly well-typing)

If a program is weakly well-typed and every func-
tion is type preserving, a permissible query does not
spawn an ill-typed resolvent in the refutation proce-
dure.

5 Well-typing with Mode In-
formation

This section presents a method which furthers op-
timization if mode information is available in poly-
morphic typed Prolog. Section 4 develops an op-
timization technique based on the notion of weakly
well-typing. However, there are still some programs
which can not be optimized by this method because
they are not always type correct for every permissi-
ble query. This section attempts to optimize the pro-
grams which are partially type correct on the assump-
tion that some arguments of predicates are ground
terms. For instance, let us consider the following pro-
gram.

Example 4.

func [|: — list(a)

func . : a,list(a) — list(e)

pred flatten: o,list(8)

pred atom: o

flatten([],[]) « .

flatten([H|T},0) « flatten(H,Y),
flatten(T,Z),
append(Y,Z,0)

flatten(X,[X]) « atom(X)

Example 1 is appended here.

This program is not strongly well-typed, nor weakly
well-typed, owing to the second flatten/2 clause. That
is, the clause is not strongly well-typedsince the M GT
of the first argument is lis¢(y) which is less than the
type declaration a. Moreover, it is not weakly well-
typed because [flatten([H | T],0)] | T = list(a) is
not a renaming of [flatten(T,0)]|T = a. A type er-
ror ocurrs if the first argument of flatten/2 is given
as a variable X, unified with the second flatten/2
clause, and the variable T in the second predicate
flatten(T, Z) of the body part is instantiated to an
element which is not of list type.

However, if the first argument of flatten/2 pred-
icate is always given as a ground term, this type er-
ror can be avoided and the program does not invoke
any run-time type error. The following definition and
theorem prove this property. Before proving it, let us
define the modes of a program.

Definition: 12. A set of modes for a program
P is a set of functions M = { myy | p € P} such
that mym : {1,---,n} — {I,0} for every predicate
p/n € P. A query A,--+,An is said to be mode
consistent with respect to M if for each predicate A; =
p(t1,- - ,ta), the following condition holds:

if mypa(é) =1, then t; is ground.

For simplicity, a mode of a predicate is often de-
noted in the argument positions of the predicate. For
instance, if a mode of the append is defined as:

mappend/3(1) =1, mappend/3(2) =1, mappend/3(3)

it is also represented as append(I,I,0).

Definitionr 18. Suppose that the type of the
predicate p/n is declared as p(p1,- -+, pn). A clause
p(t1,-++,tn) «— By, -+, By is defined strongly well-
typed with respect to (w.r.t.) a set of modes M if there
is a typed clause p(t1:71, -+, taiTs) « B1, "+, B such
that (11,+++,) = (p1,, pu) and the following con-
ditions are satisfied:

1. if there is B; such that mp,(l) = I, then for
each variable z € Var(the I-th argument of
B;), there exists ¢ such that € Var(ty) and
mP/"(k) =1,

2. at least one of the following conditions should
be satisfied:)

() (1173 7a) = (p1,e -5 pu)s

(b) my(i) =1, and p; contains all type vari-
ables occurring in the declared type py, - - -
s Prs

(c) for each 7 satisfying 7 < pi, Mp/m(é) = I.

Condition 1 assures that the body predicates are
mode consistent if the head predicate is mode con-
sistent. Condition 2 includes the cases that the type
information can be omitted in the unification of a sub-
goal and the head part. Condition 2-(b) was already
found out in [Hanus 89b] and proved to be useful for
higher-order programming.

Definition 14. A predicate p/n is defined strongly
well-typed w.r.t. a set of modes M, if each clause
whose head is p/n is strongly well-typed w.r.t. M.
Furthermore, a polymorphic typed Prolog program
P is defined strongly well-typed w.r.t. a set of modes
M if every predicate in P is strongly well-typed w.r.t.
M.

For instance, the predicate flatten/2 is strongly
well-typed w.r.t. the mode

{flatten(I,0), append(0, 0, 0), atom(0O)}.

Theorem 4. (Soundness of strongly well-
typing w.r.t. modes) If a program is strongly well-
typed w.r.t. a set of modes M, and every function
is type preserving, then any mode consistent query
w.r.t. M does not spawn an ill-typed query in the
refutation procedure.

The notion of well-typing associated with modes is
useful for programs which are partially type correct.
If modes are given in these programs, the criterion in
Definition 13 is able to judge if they are type correct
w.r.t. the modes or not. Even though modes are
not specified in these programs, we can find out the
modes which guarantee the well-typedness of them.

However, one problem here is that the condition 1
in Definition 13 is rather strong, because the ground-
ness conditions of the predicates in the body part
should always be satisfied by the unification of the
head predicate. Some of these conditions may be sat-
isfied in the resolution steps of the former predicates
in the body part. Hence, if this criterion is mixed
with a method which could predict if the result of
the refutation of a goal is ground or not, we are able
to make this condition weaker.

6 Conclusions

Polymorphic typed Prolog is a language which of-
fers polymorphic type system in Prolog framework.

This type extension could make Prolog as a specifica-
tion language suitable for programming in-the-large,
whereas it may raise inefficiency problem associated
with type consistency checking in unification. This
inefficiency can be reduced by optimizing the cases
that the type checking is redundant. Mycroft and
O’Keefe developed a criterion, called well-typing, to
detect the programs in which the type checking is re-
dundant in the whole refutation procedure of a well-
typed query. Hanus also presented an optimization
technique which avoids the run-time type checking if
a program satisfies his type general condition. How-
ever these conditions are too strong, so that only
a limited number of programs can be optimized by
these techniques.)

This paper, first, attempts to introduce another
weaker notion of well-typing, called weakly well-typing,
and show that the new notion promotes the optimiza-
tion in a wider range of programs. Strongly well-
typing assures that a program is type correct with re-
spect to any well-typed queries, whereas weakly well-
typing only guarantees that a program is type correct
for permissible queries. Secondly, this paper extends
the notion of well-typing to the one associated with
modes. This notion is useful for programs which are
not type correct, but are free from type errors if some
arguments of predicates are given as ground terms.
Hence,. optimization is possible for these programs
on the mode assumption of some predicates. This
paper also develops a criterion which finds out the
type correct programs with respect to given modes.

Further works remain to be done. As mentioned
in Section 5, the condition 1 of Definition 13 is rather
strong. One of the further works is to study an ab-
stract interpretation method which is able to predict
if the result of the refutation of a goal is ground or
not, for relieving this condition.

This paper is only concerned with the prescriptive
approach. Sometimes, users may want to omit some
type declarations which are, they feel, unnecessary.
In this sense, the prescriptive system is too restrictive
to satisfy this kind of user’s desire. To meet this
requirement, this paper may be extended to include
a type inference system to find out the undeclared
types.

Acknowledgements

We are indebted to ITAS-SIS, Fujitsu for supporting
us to do this work. We are also grateful to Dr. Jiro
Tanaka for many useful discussions.

References
[Clocksin 84] W.F. Clocksin and C.S. Mellish, Pro-

gramming in Prolog, Second Edition,
Springer-Verlag, 1984.

[Damas 82]

[Dietrich 88]

[Hanus 89a]

[Hanus 89b]

[Jacobs 90]

[Kanamori 84]

[Lloyd 84]

[Milner 78]

[Mishra 84]

[Shin 90]

[Myecroft 84]

[Yardeni 87]

L. Damas and R. Milner, Princi-
ple type-schemes for functional pro-
grams, Proceedings of the 9th POPL,
1982, pp. 207-212.

R. Dietrich and F. Hagl, A Poly-
morphic Type System with Subtypes
for Prolog, Proceedings of the Second
European Symposium on Program-
ming, 1988, pp. 79-93.

M. Hanus, Horn Clause Programs
with Polymorphic Types: Semantics
and Resolution, Proceedings of TAP-
SOFT’89, Lecture Note in Computer
Science 352, pp. 225-240.

M. Hanus, Polymorphic Higher-Order
Programming in Prolog, Proceedings
of the Sixth International Conference,
1989, pp. 382-397.

D. Jacobs, Type Declarations as Sub-
type Constraint in Logic Program-
ming, Proceedings of the ACM SIG-
PLAN’90 Conference on Program-
ming Language Design and Imple-
mentation, 1990, pp. 165-173.

T. Kanamori and K. Horiuchi, Type
Inference in Prolog and Its Applica-
tions, ICOT TR-095, 1984.

J.W. Lloyd, Foundation of Logic Pro-
gramming, Springer-Verlag, 1984.

R. Milner, A Theory of Type Poly-
morphism in Programming, in: Jour-
nal of Computer and System Science,
Vol. 17, 1978, pp. 348-375.

P. Mishra, Toward a Theory of Types
in Prolog in: Proceedings of IEEE In-
ternational Symposium on Logic Pro-
gramming, 1984, pp. 289-298.

D.W. Shin, Toward Optimal Type
Checking for The Polymorphic Type
System of Prolog, submitted for pu-
bilcation.

A. Mycroft and R.A. O’Keefe, A
Polymorphic Type System for Pro-
log, in:Artificial Intelligence, Vol. 23,
1984, pp. 295-307.

E. Yardeni and E. Shapiro, A Type
System for Logic Programs, Concur-
rent Prolog: collected papers, 1987,
pp. 211-244.

[Zobel 87]

J. Zobel, Derivation of Polymorphic
Types for Prolog Programs, Proc. of
Fourth International Conference on
Logic Programming, 1987, pp. 817-
838.

