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It is vital importance to take a first step towards the development of a the-
oretical basis dealing with not only concurrent logic programming but also the
meta and reflective issues, especially in some important formal representation
and semantic aspects.

Based on the work on operational semantlcs for full GHC, this paper pro-
poses an operational semantics for meta and reflective GHC. After giving a for-
mal representation framework, we define a general unification algorithm which
copes with meta and reflective representation and GHC head unification in a
uniform way. By using the algorithm, we propose an operational semantics
based on labeled transition relation of states for meta and reflective GHC.
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1 Introduction

Meta and reflective concurrent logic program-
ming is of vital importance and usefulness. A meta
program is a program which uses another program
(lower level program) as data. Meta-programming
techniques underlie many of the applications of
logic programming. Reflective predicates imple-
mented using meta-programming facilities have the
capabilities of catching the current state of a sys-
tem and modifying it dynamically.

As pointed out in [Hill 88): “In spite of the
fact that meta-programming techniques are widely
and successfully used, the foundations of meta-
programming and meta-programming facilities
provided by currently available Prolog systems are
by no means satisfactory.” For sequential logic pro-
gramming, a few researches have been done on the
theoretical foundations of meta and reflective logic
programming so far (investigating the semantics
of the extensions to classical logic programming
languages)[Hill 88]{Subrahmanian 88][Lloyd 88]
[Suga 90]. As for the semantics of concurrent logic
programming languages, several approaches have
been proposed [Ueda 90] [Levi 87] [Murakami 90a]
[Gerth 88] [Murakami 90b]{Maher 87], but the
meta and reflective issues have not been addressed.
On the other hand, though [Tanaka 88][Tanaka 90]
have shown the relations of meta-interpreters and
reflective operations for GHC, the main concern
was only in implementation and application as-
pects. Therefore, it is extremely important to take
a first step towards the development of a theoret-
ical basis dealing with not only concurrent logic
programming but also the meta and reflective is-
sues, especially in some important formal represen-
tation and semantic aspects.

Based on the work on operational semantics for
full GHC[Shen 90], the current paper proposes an
operational semantics for meta and reflective GHC.
In the following section, we give a formal repre-
sentation framework for meta and reflective GHC,
which is critical for defining satisfactory semantics.
Then we describe a general unification algorithm
which can deal with meta, reflective representa-
tion and GHC head unification constraint in a uni-
form way in section 3. In section 4, we propose
an operational semantics based on labeled transi-
tion relation of states for meta and reflective GHC.

The paper assumes a basic knowledge of concur-
rent logic programming language GHC[Ueda 85]

and some semantics aspects of Prolog[Lloyd 87].

2 A Formal Representation Frame-
work for Meta and Reflective
GHC

" In this section, we give a uniform representa-
tion framework for meta and reflective GHC for-
mally. One important design philosophy of our
representation framework is to introduce meta level
information into variables, predicates and program
clauses so that they can be dealt with in a uniform
way. :

Let L be an object language whose syntax is the
same as that of GHC[Ueda 85]. Let L’ be a meta
and reflective language which contains all the sym-
bols in L, together with additional symbols such as
“PL«r, 47, 40, “)” used for meta representa-
tions of variables, clauses, and primitive term-pair
sets (they are called special constants which will
be elaborated on in this section).

In order to distinguish with special conslants
such as variable representations, clause constants
and primitive term-pair set constants (in language
L'), constants which can not be treated furtherly
are called primitive constanis.

We use VARS to denote all the variables origi-
nally appearing in a system.

In addition to the variables belonging to VARS,
we also need the notion of wvariant form wari-
ables for defining operational semantics (refer to
[Shen 90]). Intuitively, a variant form variable is
a kind of ‘locked’ variable which is constituted by
marking a variable in VARS with one or several
“+”, and the variable in VARS is called the orig-
inal form variable. For example, let = € VARS,
z*, z**, z***,... are the variant form variables of
z, and their original form variable is z. A set of all
the variant form variables with their original form
variables in VARS is denoted by VARS*.

Furtherly, the predicate symbols occurring in a
system are partitioned into three sets:

Ps, which contains all the system-defined
predicate symbols; :
Pg, which contains all the reflective pred
icate symbols;

Pg:, which contains all the check-only re-



flective predicate symbols Pgr/ C Pg !
Py, which contains all the ordinary pred-
icate symbols.

We stipulate PRED =4 PsUPRU Po, which
contains all the predicate symbols appearing in a
system, and PRED =4 Ps'U PR: U Py, whichis a
subset of PRED.

Now, we define variable representations at meta
levels:

Definition 1 (Variable Representation)
1X is said to be the variable representation of X
at one level higher, where

" (1) X is a variable at one level lower or;

(2) X is the variable representation of a variable
at lower level. W

Next, we define terms in L’ inductively:

Definition 2 (Term in Language L)
A term in language L' is defined as follows:

(1) a is @ term, where a is a primitive constant;

(2) a variable representation is a term;

(3) | p(t1..ts), @1 (uar...v1g,), oo gm (Um1 .- Ump,, ),
[, Pi(vit--Vihy)s ooy Tn(Vn1.. Vnn, )] is a term,
where p € (Po U PR), ¢qi € PRED', r; €
PRED and ti,uij,viw are lerms contain-
ing no variables in (VARS UV ARS*)? (i=
0,1,...m, k=0,1,..,n, I =1,...,8, 7 =

I P fia w= 071)"'ihk);

(4) r[tl:Xlly ver )[tmaXm]] isa term, Wher.e X;
are variable representations and t; are terms
containing no variables in (VARS U VARS")
(i=0,1,..,m);

(5) z is a term, where z € (VARSUVARS*);
(6) f(ts ...

tion symbol and t; are terms (i =1, ...,

t,) is a term, where f is an n-ary func-

n). B

In the above definition, (1) says that a term of
primitive constant is still a term in language L'. (2)
says that a variable representation, i.e., a variable
preceded by several ! is a term. A term constructed
by (3) corresponds to a GHC clause at lower level,

1check-only reflective predicates are those only check cur-
rent program environment and do not modify it

2 Actually, these terms are constructed from primitive
constants, special constants and functors

-and the case of ¢ = 0,7 = 0,k = 0,w = 0 in-

tends to express a unit clause. A clause at lower
level is represented by a special constant indicated
by | ... |, which is allowed further treatment. A
term corresponds to (4) is the meta representation
for a primitive term-pair set at lower level. Dif-
fering from primitive constants, it is quite natural
to view the terms resulting from (2), (3), (4) as

" special constants which can be dealt with at higher

meta levels. Actually, there are two types of con-
stants in our representation framework. One is
the type of primitive constants, which can net be
treated furtherly. Another is the type of special
constants which are higher level meta representa-
tions for variables, clauses, and primitive term-pair
sets of lower levels. Furtherly, (5), (6) just mean
that a term can be constructed in the same way as
in pure logic programming.

The terms constructed in the above way are clas-
sified into a set TERM S* which consists of terms
containing £ € VARS*, and a set TERMS which
consists of terms containing no z € VARS*.

For convenience, we use t to stand for an n-ary
term-tuple 21, ..., 1, and p(t) to stand for an n-ary
literal, here t; (i = 1,..,n) are terms and p is a
predicate symbol. A set consisting of all the liter-
als is denoted by LI. Moreover, t = s means that
term t is syntactically equal to term s.

Definition 3 (Clause)

Let ¢; € PRED', r; € PRED, i, 1,5 rep-
resent term-tuples (i = 1,..,m, j = 1,..,n),
Env,Nenv represent current and new environ-
ments respectively.® A clause C in L' has either
the form:

p(1) = a1(h), . tm ()71 (1), -

, which is called an ordinary clause, where p € Po;
or the following form:

rn(én)

reflect(p({) Env Nenv) «— ¢;(8)), ...
1'1(§1),

1'7'15(571)

, which is called a reflective clause, where p € Pg.
Here p(f) is called the head of C, the conjunc- .
tion of the literals q1(%1), ..., gm(%m) is called the
guard goals of C, and the conjunction of the liter-
als 71(51), ..., 7 (8,) is calléd the body goals of C.
The operator “|” is called the commit operator. W

3for details, see section 4



This paper assumes that variable sets occurring
in different clauses are disjoint.

A meta and reflective GHC program is defined
as follows:

Definition 4 (Program)

A finite set of ordinary and reflective clauses is
referred to be as a meta and reflective GHC pro-
gram. Il

Finally, a goal in L’ is defined as follows:
Definition 5 (Goal)

— pl({]_), ...,pm({m)

, where p; € PRED, #; are term-tuples
(i=1,..,m). 1

The abové notions are different from the corre-
sponding ones{Ueda 85] in the following aspects:

(l)vour notions extend the concept of variables
"into a generalized one involving both variables
and variant form variables;

(2) instead of only one type of primitive con-
stants, our term definition also allows special
constants which are higher level meta repre-
sentations for variables, clauses, and primitive
term-pair sets of lower levels.

Now, we define a lift function ¥, which trans-
forms program clauses (including unit clauses) into
meta-level representations at higher levels.

Definition 6 (Lift Function V)
(1) ¥(c) =45 ¢, where c is a primitive constant;

(2) ¥(X) =q4!X, where X is a variable z ¢
(VARSUVARS*) or variable representation
at meta level;

(3) ‘I’(f(tl . tn)) =df f(‘I’(tl) e \I’(tn)), where
f is an n-ary function symbol and t; €
(TERMSUTERMS*) (i = 1,...,n);

(4) ¥(p(t1 ... t3)) =g p(¥(t1) ... ¥(t,)), where
p € PRED and t; € TERMSUTERMS")
(E=1,..,n);

(5) ¥(Ly,...,Ly) =g ¥(Ly),...,¥(L,), where
L;e LI (i=1,..,n);

I
]

(6) Y(H «— G4, ...,Gn|B, ..., Bm) =q5 -
LY (H),¥(G1), ..., ¥(Gn), |, ¥(B1), .., ¥(Bpm)],
where H, G;,B; € LI (i = 0,1,..,n, j =
0,1,...,m) 4;

(7) ¥(|H,Gh,...;Gn,|, B1, -y Bm])

=4 | Y(H),¥(G1), ..., ¥(Gn), |, ¥(B1), ..., ¥(Bn)],

where H, Gi,B; € LI (i = 0,1,...,n, j =
0,1,..m). M

(1) says we need not to mark a primitive con-
stant at higer level. (2)(3)(4)(5) say that the func-
tion ¥ transforms variables, variable representa-
tions, functors, literals, and conjunctions of liter-
als into corresponding meta representations at one
level higer. In (6), a clause at one level lower is
indicated by | ... |, which is a special constant to
be allowed further treatment. (7) just says that it
has the property of idempotent.

By using the function ¥, we can easily define a
lift function ® which transforms term-pair sets into
meta representations at higher levels:

Definition 7 (Lift Function &)

(1) q)({< t1,71 > <tm,Tm >}) =df
[[¥(t1), ¥(z1)], - ,[‘Il(tm),\Il(zm)]], where
z; € (VARSUVARS*), t; € (TERMS U
TERMS*) (i=1,...,m);

(2) ®([[tr, X1], . ,[tm, Xm]1) =4
wr[‘I’(t1)1“I_’()(l):|’ ’[\I’(tm):\ll(xm)ﬂy where
X are variable representations and t; are
terms containing no wvariables in VARS U
VARS* (i=1,..,m). R

We also assume an inverse function ¥—* which
transforms meta representations into the corre-
sponding clauses or goals at lower levels, and an
inverse function ®~! which transforms meta rep-
resentations into the corresponding primitive term-
pair sets at lower levels. Their definitions are omit-
ted in the paper. '

Now, we state a little more about our represen-
tation framework: )

Our representation framework distinguishes
primitive constants from those special constants
(in language L’) which are meta representations
for variables, clauses, and primitive term-pair sets
of lower levels.

4i=0, j =0is used to express the case of unit clause



A variable (in VARSUV ARS*) at lower level is
marked by the symbol !. Number of ! which occurs
ahead of it represents what meta level it is cur-
rently ‘lifted’ to. Such a variable representation is
just viewed as a special constant by current pro-
gram. It is not a variable in current program any
more. For example, !!'z means that the variable
z is now ‘lifted’ into the meta level 3 since there
exists three ! ahead of z. It is a special constant at
current meta level 3. Furthermore, the level of a
variable occurring in current program is the same
as that of the term bound to it. Therefore, our
variable representation is a kind of ground repre-
sentation [Hill 88] since it represents a variable at
lower level (may be a meta level variable) by a spe-
cial constant (preceded by one or several ‘" ) at
higher meta level.

In our representation framework, every predicate
is assumed to have corresponding levels. Differing
from only two levels of one object level and one
meta level in [Hill 88], our framework has multi-
level meta representation capability. A current
(meta-level) program views lower level variables,
program clauses, and primitive term-pair sets as
special constants with their level information in-
dicated by number of ! and the special sym-
bols like |, |, [, ]. Our representation framework
can be viewed as a generalized ground represen-
tation, rather than pure typed representation or
ground representation which deal with only two
levels{Hill 88]. It is a kind of ground representa-
tion because it represents a variable by a special
constant at higher levél. And it not merely rep-
resents lower level variables by special constants,
but also represents lower level clauses and goals by
special constants with meta level information as
well. In fact, it can represent multi meta-level in-
formation (theoretically, infinite reflective tower),
which is impossible in pure typed representation or
ground representation with only two types of “o0”
and “y” [Hill 88]. Furthermore, our representation
framework allows special constants to be treated in
a uniform way (such as in the general unification
algorithm) without extra type information.

3 A General Unification Algorithm
For Meta and Reflective GHC

Based on our meta representation framework,
this section generalizes the extended unification al-
gorithm for full GHC[Shen 90] into a general uni-
fication algorithm which can deal with meta, re-

Il
Il

flective representation and GHC head unification
constraint in a uniform way.

The notions of pair set, primitive term-pair set,
solved substitution, suspended substitution, and the
operations of plus-opération and minus-operation
defined in [Shen 90] can be easily extended into
the corresponding ones by using the generalized
version of term definition in which involves both
primitive constants and special constants and al-
lowing predicates to include reflective ones. The
revised versions are omitted in this paper.

Other concepts such as most general unifier
(mgu), renaming equivalence and answer substitu-
tion are quite similar to those in logic programming
[Lass 88], we also omit their definitions in this pa-
per.

Now, we give a general unification algorithm for
the computation of a most general unifier of a given
pair set. It is a generalized version of the extended
unification algorithm for full GHC[Shen 90]. Here
we use § to denote a solved substitution and 6(*)
to annotate a suspended substitution.

General Unification Algorithm

Let S be a pair set. Repeatedly choose a pair
in S of the following form and perform the corre-
sponding action until it terminates with failure or
nothing can be done for S furtherly.

(1) < z,2 > (or < ¢,c >), where z € (VARS U
VARS*) (or ¢ is a constant):
delete the pair from S;

(2) < c1,e2 >, where at least one of c¢i,c2 is a
primitive constant and ¢; # ca:
terminate with failure;

(3) < e1,z >, where ¢ € VARS* and ¢ is a
constant (primitive or special constant):
if there exists another pair < ¢3,z > in S (cz is
a constant) and ¢; = ¢ then delete < ca,z >
from S;

(4) < f(u1 ... um), g(v1 ... va) >, where f, g are
function symbols and u;,v; € (TERMS* U
TERMS).(i=1,..,m, j=1,..,n): \
if f = g and m = n then replace it by the

pairs: < u3,v1 > ..., < Um,Um > else termi-
nate with failure;
(5) < p(ur - um), q(v1 ... va) >, where p,q €

(PoUPg) and u;,v; € (TERMS*UTERMS)



(i=1,.,m, j= 1,..,n): ‘

if p = ¢ and m = n then replace it by the pairs
< UL, V1 >, ey < Um, Uy, > else terminate
with failure;

(6) < z, t >, where z € (VARS* UV ARS),
t € (TERMS* UTERMS) At ¢ VARS,
z ¢ VARS*Vt ¢ VARS™*:
substitute the pair by < ¢,z >;

(7) < t, ¢ >, where ¢ € VARS and z occurs
in the other pairs of S, t € (TERMS* U
TERMS):
if z € ¢ then terminate with failure else replace
z in the other pairs of S by t;

“(8) < X, t > (or < t, X >), where X is a
variable representation and t € (TERMS* U
TERMS) At & (VARS* UV ARS):
replace it by the pair < ¢, X > and replace
all the X in the other pairs of S by ¢;

(9) <t, l_H,Gl, vty G, |, By, ...,B”J >,
(or < |H,Gi,..,Gm,|,B1,.,Bn], t >),
where H,G;,B; (i=0,1..,m, j=0,1,..,n)
are literals, and ¢ is a list or the meta repre-
sentation of a clause at lower level®:
replace it by the pair:
<t, [H,G1,...,Gm,|, B, .., Bn] >;

(10) < t, [[t1, X1]y-es [tms Xl >,
(or < r[tl,XI], ooy [tm,Xm]], t >), where t;
are terms containing no variables in VARS U
VARS* and X; are variable representations
(i=1,...,m), and ? is a list or the meta repre-
sentation of a primitive term-pair set at lower
level®:
replace it by the pair:
<t, [[tl, X]], ceny [tm, Xm]] >.

Finally, if there exists < ¢,z >€ 6, where z €
VARS*,t € (TERMS*UTERMS); then rename
S by 8(*) (suspended substitution) else rename S
by 6.1

Notice that terms appearing in the above algo-
rithm can contain meta level information.

Compared with the extended unification algo-
rithm [Shen 90}, this algorithm deliberately treats
constants involving primitive constants and special
constants. In the action(7), variable ¢ (may be a
meta level variable) never occurs in a form of meta
representation in the pairs of S, due to our as-
sumption that variables in different clauses should

5i.e., t has the form of [...] or [,...,]
Si.e., t has the form of [...] or [,...,]

be disjoint, in other words, there should be no x’s
meta representation in S. So it causes no problem
in meta GHC. Furtherly, the action (8) is added
to cope with the unification for meta representa~
tions of lower level variables. Variables at lower
level (i.e., variable representations at current level)
are allowed to be changed at current level in order
to implement reflective capability. The action (9)
deals with the unification with special constants
of meta representations for clauses at lower levels.
The meta representation of a clause at lower level
is revised as a list if the other side () of a pairis a
list or the meta representation of a clause at lower
level so that the action (4) can be applied for fur-
ther unification. Similarly, the action (10) applies
to the case of meta representations for primitive
term-pair sets at lower levels.

The following procedure shows how the above
general unification algorithm is used in our com-
puting procedure of operational semantics:

Main Procedure of Unification

e For a goal of the form: Gi = Ga:
create a pair set .S = {< Gy, Gz >}, and then
apply the general unification algorithm to it;

o For a system-defined computing goal G:
firstly compute G, and then create a prim-
itive term-pair set whose elements have the
form of < ¢,z >, where z is a variable in G,
z € (VARS UV ARS*) and ¢ is a primitive
constant which is the result of £ by comput-
ing G;

o For an ordinary or reflective goal G:

firstly apply the plus-operation on G, then
make a pair set S: {<t (G), H >}, here H
is the head of a clause C which is tried to be
unified with G (in the case of a reflective goal,
C has the form: reflect(H Env Nenv) —
Guard |Body ). Furtherly, apply the general
unification algorithm to the pair set S. W

It holds clearly that:

Proposition 1

For a given pair set S, the general unification al-
gorithm can obtain a solved substitution which is
the mgu of S, or a suspended substitution towards
the mgu of S, or terminates with failure in a finite
time. H



We also need a concatenation rule (6, 003) which
is used to concatenate two primitive term-pair sets
01, 02 (exactly, 6; is a solved substitution and 6
is a primitive term-pair set) in the computing pro-
cess of our operational semantics. It is a little dif-
ferent from the one for full GHC[Shen 90] in that-a
binding (a primitive term-pair) in 6, may replace
the old one in 6, just because a reflective goal cor-
responding to #; can change a binding generated
before (in 6,). \

4 An Operational Semantics For
Meta and Reflective GHC

By using the general unification algorithm de-
fined in the previous section, we propose an op-
erational semantics for meta and reflective GHC
based on labeled transition relation of states.

Thanks to our notion of variant form variable,
meta representation framework, the notions of sus-
pended substitution and solved substitution, the op-
erations of plus-operation and minus-operation, the
general unification algorithm , and the concatena-
tion rule, we can define a simple and intuitive op-
erational semantics for meta and reflective GHC.

First, we need the following definition of re- -

stricted primitive term-pair set:

Definition 8

Let S be a primitive term-pair set, G be a goal,
and V(G) (C VARS) be the set of all the variables
appearing in G. '

Restrict S to G is defined as:
Sle =g {<t,z>|<t,z>SAze€
ViG)}.m

Now, we define the notion of labeled transition
relation of states upon which our operational se-
mantics is based.

Assume GOAL represent the set of all the goals,
PRO represent the set of all the meta and reflec-
tive GHC programs, DA represent the set of meta
representation of all the meta and reflective GHC
programs, and SUB represent the set of all the
primitive term-pair sets. We express a state by an
element in STATE = GOAL+*PRO*SUBx*DA.

Definition 9 (Labeled Transition Relation)

Let s;,s;, € STATE. s; = [G;, P, 0;, D;], where
label(G;) = 1. A labeled transition relation on
states is a relation satisfying the following condi-
tions:

(1) G; is a single goal:

(1a) s; L sk holds, where s; = s;;

(1%) G; = Gi1 = Gia:
if the general unification algorithm ob-
tains a primitive term-pair set o for the
pair set: {< Gi1,Gia >}, then s; R Sk
holds, where sy = [null, P;, 6; 0 o, D;];

(1c) G; = q(¥) and q is a system-defined com-
puting predicate:
if the general unification algorithm ob-
tains a primitive term-pair set o cor-
responding to the computing result of
Gi7, then s; 4 sk holds, where sp =
[nu”)}:'i) Bioal Di];

(1d) G; = ¢(I) and q € Po (ordinary predi-
cate):
if the general unification algorithm yields
a suspended substitution o for the pair
set: {<* (G;), H >}, where H
is the head of a clause C: H
Guard |Body (C € F;), then s; L os
holds, where s, = [G;, P;, 6; o 0, D;};
else if exists a solved substitution o
for the pair set: {<* (Gi), H >},
where H is the head of a clause C:

H «— Guard |[Body (C € P;) and

[(Guard)e, P;, 6; o o,D;} L .4

[null, P;, 6; 0007, D;], then s; LR
si holds, where s, = [~((Body)(o o
7))1 Pi) 0!'0607) Dt]

(2) G; is composed of several subgoals, suppose,
G; = Gy,,...,Gi,.. We assume at most one
reflective subgoal can have a real transition re-
lation while all the other subgoals only have
reflezive one:

(2a) If G;, = q(¥) (1 < u < m) is a reflective
subgoal in G; (q € Pr):
applying the lift function ¥ to G; , get
U(Gy,). if3C : reflect(H Env Nenv) —
Guard |Body in T (T is a subpro-
gram at meta level | 4+ 1), and
the general unification algorithm ob-
tains a solved substitution o for the
pair set: {<t (¥(G;))), H >}, set

7the elements of o have the form of < ¢,z >, z € (VARU
V ARS™), c is a primitive constant




D} = ¥(P;) and the environment vari-
able Env = [¥(F;), ®(6;), ¥(G})], where
G| = Gy, ...,Gi,_,,Giyys - Gi,y, Jur-

. I+l I+1
therly, if [Guardo,T,0,D}] = .. =
[null,T, o ov,D], then s:» i+ si holds ,
where s; = [¥(G;,),T,¢e,D!]® and s =
["((Body)(o © 7)), T, o 0v,Dj]; Fur-
therly, if s oW sh, where
sp = [null, T',00y0(, DY) and Nenv =
[DY,6,,G;); then s; 4 s;, holds, where

%

s, = [¥71(G,), ¥~Y(DY), ®-1(6.), ¥~ (D))

(21)) 1f [G‘jrpfyofyDi] _I> [Qi'j)-Pi)SG'j)Di]
(Si; are primitive lerm-pair seis, j =

1,...,m) exists v such that [G;,, P;, 0;, D;] #

[Qi,, Pi,Si,, Di] (1 <v<m)and no re-
flective subgoal has real transition rela-
tion, then s; 4 sk holds, where

sk = [(Qiy, - Qi JA(SiL iy s oo
St'y.IG'.',,.)r B, A(Sil lGe‘ yoees Sim IG.',,. )’ Di];
and A(Si\l6i,; - SimlGi,) is a solved
substitution which is the result of the
AND-combination of Si, g, ,---sSilG,, -
It is defined as follows:

Let S; (i = 1,...,n) be primitive term-
pair sets, which correspond to subgoals
Gi1,..,Gpn in a goal: — Gy,...,Gn. Ini-
tially, create a set: S = S1U...US,.
The AND-combination A(Sy, ..., Sn) can
be obtained by repeatedly performing the
following actions:

e For each<t,z > S z € VARS,
t € (TERMS* UTERMS), replace
all the variant form variables of z by
t;

e Then apply the general unification
algorithm for S. W

For a state with a single goal, (1a) says that
our transition relation is a reflexive one. For the
unify predicate “=”, (1b) creats a pair set whose
elements might contain meta level information and
variant form variables, and applys the general uni-
fication algorithm to it. For a system-defined com-
puting predicate such as summary, (lc) simply
computes it and creates the corresponding prim-
itive term-pair set. (1d) deals with user-defined
ordinary predicates. If a suspension yields for
the head unification, we adopt an active strategy
which can characterize efficient implementation of
GHC head unification and can also avoid deadlocks

8

€ is a null primitive term-pair set

sometimes (see [Shen 90]). In the transition rela-
tion, the states s; and s; have the same goals and
program, only have different primitive term-pair
sets, the one in si is a suspended substitution. As
for a successful head unification, our approach is
the same as the one in [Shen 90].

In (2), we make a constraint on computing the
concurrent combination of subgoals in Gy, i.e., at
most one reflective subgoal can have a real transi-
tion relation while. all the other subgoals only have
reflexive one. Because the execution of a reflec-
tive goal might catch and modify the current en-
vironment, so we assume that only one reflective
subgoal G;, in G; can go forward in one AND-
combination computation of transition relations if
the other subgoals of G; have reflexive transition
relation. The execution of several reflective sub-
goals in a goal can be characterized by comput-
ing AND-combination several times. For the re-
flective subgoal G;, (assuming at level [), transfer
it, the current program and primitive term-pair
set into the corresponding meta representations
at level 1+ 1. And set the environment variable
ENYV including the meta representations of cur-
rent program, current primitive term-pair set and
the remaining goals, and creat a state s} at level
! + 1, then establish some transition relations la-
beled as {+1. After the goals successful terminate
at level I + 1, do some level adjustments by ap-
plying the function ¥~! to the resulting program
data and remaining goals data, and the function
®-! to the primitive term-pair set, creat a new
state s}, at level [, and establish the transition re-
lation between the state s; and s}, labeled as [, i.e.,

84 4 s},. Note that a transition relation holds only
between the states at the same level. In the case
(2a), the only transition relation that holds at label

lis s; 4 s}, no transition relation holds between
s; and any of the states at level { + 1. Furtherly,
case (2b) describes the AND-combination for con-
current ordinary subgoals, which is similar to the
one in [Shen 90].

Based on the above transition relation of states,
we can define a simple operational semantics for
meta and reflective GHC:

Definition 10 (Operational Semantics)

Let G,G; (i = 1,...,m) be goals, P, P; be pro-
grams, D,D; € DA, € be a null primitive term-
pair set, S; (i = 1,...,m) be primitive term-pair

sets, s be a state: s = [G,P,e,nilll. We call

s = [G,Pe,nill] 5 [Gy, P, S1,D1] 5> .. 5



[Gm, Py Smy, Dm)] an execution of G. Furtherly,

o If Gy = null:
then it is called a successful ezecution of G,
and Sy, is referred to as an answer substitu-
tion of G; ’

e If Gy # null,
If S, is a suspended substitution, then it is
called a suspended ezecution. Furtherly, if all
the executions starting from goal G are sus-
pended ezecutions, we say the ezecution of G
yields a deadlock;

else if there ezists no transition relation for
the state [Gm, Pm,0m, Dm] furtherly, then it
is called a failure ezecution. W

5 Final Remarks

It is vital importance to develop a theoretical
basis dealing with not only concurrent logic pro-
gramming but also the meta and reflective issues,
especially in some important formal representation
and semantic aspects. As a first step work, this
paper proposes an operational semantics for meta
and reflective GHC.

Firstly, a formal representation framework for
meta and reflective GHC at higher meta-level has
been defined, and then a generalized unification al-
gorithm coping with meta, reflective facilities and
GHC head unification has been described. Fur-
therly, an operational semantics based on labeled
transition relation of states for meta and reflective
GHC by using the general unification algorithm
has been proposed.

It is clear that the meta and reflective problems
can be traced to the fact that it doesn’t handle
the representation requirements properly. Once an
appropriate representation is used, there is no the-
oretical impediments to obtaining a simple and sat-
isfactory semantics. This paper has showed it by
defining an operational semantics for meta and re-
flective GHC.

There remains much work to be done, which is
related to the semantics of meta and reflective con-
current logic programming. We would try to char-
acterize some issues such as declarative semantics
for meta and reflective GHC. And prove some cor-
rectness of practical systems by use of the proposed
semantics.

Il
It
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