i 5 A% H
RIS IV I—FE K EE—
(1991 6 21)

RERENCBIEER 2 LI2NANR—FF AN VAT A

I~
FR TR AL

A U F T 2= ADRZFOERG % EFHYT HBRICHAITEEC L 5508
REBINBZINAN—TFFA I VAT ARRET D, HEHET. ERICER
LTHOLDETHEID W EFHE LIZ WEWIEHEDH 72012, BELFETIC
A AR RET B LPWETH S, FERELT, 70 b ¥4 E2/ERLT
FHMEL . EEEZMZ 5T LBV, TOBDELZES 7202, 79 AERIC
PEEEEAL, 7T ADEERT V., A VAT VARERLZETL 2T
AT BEREDPA VA VATRCUEET AL I B A= AL %HL, $7-,
T AT TR L7B% 7 G ADERICEFHATEDL L) BRNA/—FF A
FATARREL, FOFMEEITE 0

KHS :
A Hypertext which allows to define the graphical interface lazily

Kazumichi Hirai
Department of Computer Science Tokyo Institute of Techonology

2-12-1 Ohokayama, Meguro-ku, Tokyo 152, Japan.

We propose a hypertext system that provides an environment where a designer
can define the detail of graphical interface through trial-and-errors. For con-
structiong a graphical interface, a trial-and-error method is essential because the
designed interface cannot be really evaluated until it is implemented and used
by end-users. Thus, reasonable approach for designing such an interface is to
make its protptype, check it, and modify it. Here we propose a hypertext sys-
tem -KHS- that is suitable for such approach. KHS has the following features
that makes easy to follow this approach: after declaring a class and making its
instances, the modification on the class will be propagated. And an instance that
is implemented as a prototype can be reused in defining the class.

~1~

60— 1
2—-1

1 Introduction

Today, a hypertext system is getting popular as
one of information organizing tools. Comparing
with other systems, the graphical interface of hy-
pertext should be more emphasized because it is
a tool to control the view of a text. To construct
the graphical interface, trial-and-error method is
essential because the designed interface cannot be
really evaluated until it is implemented and used
by its end-users.

In this paper, we propose a hypertext system
KHS that provides an environment where a de-
signer can define the detail of graphical interface
through trial-and-errors. Here we first intro-
duce the notions of "hypertext” and "hypertext
system”, and explain the background and moti-
vation for proposing our hypertext system KHS.
We then give the overview of KHS.

1.1 Hypertext and hypertext sys-
tem

As one approach to computerized information
management and representation, the notion of
"hypertext” has been introduced [1]{2}[3]. The
hypertext is a form of electronic document. It is
an approach to information management and rep-
resentation in which data is stored in a network
of nodes connected together by links. The nodes,
and in some systems the network itself, are meant
to be viewed through an interactive browser and
manipulated through a structured editor. By “the
execution of a hypertext”, we mean such an ex-
traction of the information in the hypertext. Re-
cently, a demand for processing a non-standard
form of data has been increasing. Thus, it is of-
ten required that hypertexts can contain, in its
nodes, not only text data or source code, but also
graphics, audio, video, etc. Such hypertexts are
called "hypermedia”.

A hypertezt system is a system for manipulating
hypertexts. That is, a hypertext system provides
both a developing environment and a executing
environment, and it is used to develop hypertexts
and execute them. Thus, when talking about a
hypertext system, there are essentially two sorts
of users: end-users and designers.

End-users are the users who want to get some
information from a given hypertext. On the other
hand, designers are those who use the hyper-
text system to design hypertexts; that is, a de-
signer puts some information on his hypertext
and wants to convey that information in compre-

hensible way. It means that the designer corre-
sponds to the programmer in a conventional pro-
gramming environment, and the end-users do the
users of the program written by the programmer.
Further more, hypertexts correspond to programs
and thus, a hypertext system corresponds to both
a programming environment and the program-
ming language. In the following discussions, we
use the term hypertezt to refer a structured infor-
mation system and use hypertext system to refer
a system for constructing such information sys-
tems That is, designers construct hypertext on a
given hiypertext system and end-users execute a
given hypertext obtain informnation from a given
"hypertext.”

After making this difference clearly, when we re-
view the conventional hypertext, we can see that
we tend to lay emphasis on interface between end-
users and a hypertext as we can see in hyperme-
dia. However, we claim that the interface between
designers and a hypertext system is also very im-
portant. We can say that hypertext system is a
method for a designer to send some information to
end-users and the designer is some kind of special-
ists for a certain information. If a hypertext has
a confortable environment to design, many spe-
cialists can be its designers. Then that increases
the usefulness of the hypertext. Accordingly a hy-
pertext system should be easy to understand and
easy to use for those designers. Therefore, it is
important for a hypertext system to have a good
interface to a designer.

1.2 Designer-friendly hypertext

system

What kind of hypertext system is easy to use
for hypertext designers? This question should
be considered in several aspects: from designing
methodology to technical details.

We first point out that the “trial-and-error”
construction is essential in constructing systems
such as hypertexts, and thus claim that a hy-
pertext system should provide an environment in
which designers can achieve trial-and-errors eas-
ily.

We can regard a hypertext as a special and ad-
vanced form of “computer program”. When writ-
ing a program (or making a system), we more
or less have to do trial-and-errors. Suppose that
a system is implemented in C language and that
it is specified in details with much care. Then
it might be possible to avoid a big modification
after testing phases. (Of course, we always need
small ones.) However, such detailed specification
is almost impossible when the target system is

~2~

huge and/or it concerns with user-interfaces like
hypertexts. When designing hypertexts, we have
to consider how some information should be pre-
sented, e.g.,in which way it is displayed more com-
prehensively. We think that the easiest design-
ing methodology for such systems is to construct
some examples, test them, and choose the best
one; that is, the trial-and-error construction.

When constructing a system by trial-and-
errors, we have to be careful not to waste time
and effort so much.

1.3 Features of KHS

In this paper we propose a new hypertext system
~ KHS - that provides a good developinent envi-
ronment for hypertext designers.

Similar to Hyper Card[4][5], a hypertext devel-
oped in KHS is fully structured. Its primitive in-
formation unit is called a boz. Information in a
hypertext is stored as a collection of these boxes
associated each other by linkage. And a hyper-
text provides some commands (to end-users) to
extract necessary information from such a collec-
tion of boxes.

As we said, we can regard hypertexts as one
type of "program”. A hypertext is constructed
by a designer and used by an end-user, which
corresponds to the process that an ordinary pro-
gram is made or written by a programmer and
executed by its user. Thus, proposing a new hy-
pertext system is similar to proposing both a new
programming language and its developing envi-
ronment. For a new hypertext system, one has to
consider the following two aspects: (i) a way to
specify hypertexts in the system (like a program-
ming language) and (ii) a machinery by which hy-
pertexts are constructed and used (like a program-
ming environment). In the following we explain
these two aspects for introducing our hypertext
system, KHS.

In KHS, a designer can:

¢ specify a format, a connection to the other
boxes, and available commands for a box in
a uniform way,

¢ describe complex linkages between boxes and
specify commands for searching through such
linkages.

¢ use “class” to generate similar boxes,
e define “class” from its instances,

e specify a sequence of commands from
monotony operations,

e test a developed hypertext easily,

More precisely, KHS has the following features:

e KHS handles only one object,boz. From its
appearance, a box is just a plain rectangle
and all of its own data such as width, height,
or dimension is administrated as the property
in KHS. From its usage, a box contains prop-
erties and is connected by linkage. The link-
age between bozes is also managed as prop-
erty. The designer can name the linkage to
distinct later.. A boz and its properties are
defined on KHS Editor.

¢ KHS introduces the Abstraction mechanism.
It helps to achieve ”try-and-error construc-
tion”.

o KHS is an ”event-driven system” for an end-
user.” Certain action of end-users causes to
trigger the corresponding event(s). To indi-
cate what to do when an event occurs, KHS
has the script language named K Talk[5]. And
to behave as the script describes when an
event occurs, KHS has the interpreter KHS
Event Driver.

In KHS the designer can name the linkage as he
wants. KHS has Abstraction mechanism to reduce
the designer’s routine such as making same object.
It is similar to the class concept in object-oriented
paradigm [6]. But it differs a lot from it.

KHS consists of three parts: Abstraction Li-
brary, KHS Editor, and KHS Event Driver. Both
Abstraction Library and KHS Editor are the pro-
gramming environment including its library of ab-
stracted objects. and KHS Event Driver is the
executing environment. KHS Event Driver is the
place where the end-users use the hypertext.

A designer loads some information on a hyper-
text or defines the behavior of the hypertext work-
ing on KHS Editor. Sometimes he works on KHS
Event Driver to check those events which he de--
fined will be interpreted appropriately responding
to the end-users action, then he gets back on the
editor and change or correct some.

On the other hand, end-users get the hypertext
and execute it on KHS Event Driver. They get
some information by invoking some events on the
hypertext and browsing on it. This is the outline
of a lifecycle of a hypertext.

KHS can only handle sequence of character.
So KHS is not a multi-media hypertext system.
Linkage is managed as a property in KHS. All in-
formation about a boz ,such as size of a boz, is
managed as properties as well as the linkage. All
properties of a boz is displayed on property table.
A designer can edit the property table on KHS
Editor. .

Those are the overview of KHS. We discuss in
detail in the following.

’\13’\/

2 Requirements for a good
hypertext system

In this chapter, we think what is needed for a hy-
pertext system. In the first section, we show a
basic function which is important for a hypertext
system as an information organizing tool. As we
discussed above, the essential character of hyper-
text system is very abstract. So we think what is
demanded for a hypertext system through exam-
ples. That is a hypertext which is structured to
reflect a paper’s logical structure.

In the second section, we simulate how the de-
signer think when he construct a hypertext. Ob-
viously, there is no unique way how a designer
construct a certain hypertext. Yet we can think
of some common scheme that is often taken by
hypertext designers. Here we see such scheme
through an example of making hypertexts: Sched-
ule Chart. Then we discuss about kind of features
required to our hypertext system in this designing
schema.

2.1 Schedule Chart

Schedule Chart is a hypertext that keeps and

shows one’s schedule of each month. In Fig. 1 (a),

we illustrates the screen made by Schedule Chart.
From this screen, Schedule Chart may look like

a system showing a calendar, but it has the fol-

lowing functions eventually:

- Display the schedule on the day indicated by
mouse.

- Edit the schedule at a certain time on a certain
day.

- Search free time specified with some method.
Now let us simulate the outline of the way how

one designer would do when constructing this hy-

pertext, Schedule Chart.

(1) First the designer wants to make a frame, base-
sheet, which is used as a frame of the schedule
management chart.

(2) He wants to make rectangles, day-boz, as many
as the days of the month. FEach of them is
labeled as the date and invokes to show the
schedule on the indicated day when clicked by
mouse.

(3) He notices that there may be some weekly
schedule which depend on the day of the week,
such as a meeting from 9 a.m. to 10 a.m. on
every Monday. And he wants to manage these
weekly schedule independently and merge both
daily one and weekly one when the schedule of
the day is to be displayed. Thus, the system is
reorganized accordingly.

At step (2) the designer has to make about 30

January 1991

[bo] [w]] (] (5]

nianinin
[e] G [e] (5] [oo] [1] [i2]
[13] (1] [s5] [e] [12] fs] [is]
(2o] BN [22] 2] [oo] [as] e
2] (28] fo] o] [51]

(a) Screen of Schedule Chart
Mon. Jan. 21 1991

9:00
10:00

Conference with V.P.

(b) Getting a schedule on a day

Figure 1: Schedule Chart

day-boxes. Note that those day-squares are simi-
lar; more precisely, they have the same function,
but their appearance, i.e.,their position on the
base-sheet, and the text, i.e., the date, written
on them are different. In a conventional hyper-
text system such as HyperCard, the designer has
to make such similar rectangles with the copy-
and-paste operation; that is, he has to do 29-(%1)
copy-and-paste operations. It is a tedium work
for him.

To avoid this routine work, we suggest the fol- -
lowing two methods: (i)write a program that gen-
erates those day-boxes, or

(ii) define the “class” of day-box and instantiate
it as many as the number of the days. In this
example, using class concept seems to be better.

Then the designer wants to add new function
on the day-frame (3). No matter which way did
he select in the previous example(i or ii), he has
to modify each of them by his hand or write a
program for the work. Since the class has already
defined. But if he had noticed the function be-
fore he defines the class, he could avoid this waste
effort. And this is the best way in constructing

Schedule Chart as a result. Then you may say
that he should have been more careful when defin-
ing the class. But it is difficult to determine the
whole specification as we mentioned above.

Assume that the designer notices all functions
that are convenient for Schedule Chart before he
defines the class. But there are another factors
that are hard to define before making all day-
boxes. One of those is the size of them. The
size of the day-boxes are to be determined with
the balance of all day-boxes. It means the size of
them should be fixed after making all of them and
evaluating as a set of day-boxes.

3 KHS

In this chapter we propose a new hypertext sys-
tem — KHS. This system is aimed to solve most
of the problems discussed in previous section and
provides a better environment for hypertext de-
signers.

3.1 Overview of KHS

KHS is a hypertext system on which designers
constructs hypertexts for end-users and also on
which end-users execute constructed hypertexts.

We can regard hypertexts as one type of "pro-
gram”. A hypertext is constructed by a designer
and used by an end-user, which corresponds to
the process that an ordinary program is made or
written by a programmer and executed by its user.
Thus, proposing a new hypertext system is similar
to proposing both a new programming language
and its developing environment. For a new hy-
pertext system, one has to consider the following
two aspects: (i) a way to specify hypertexts in the
system (like a programming language) and (ii) a
machinery by which hypertexts are constructed
and used (like a programming environment). In
the following we explain these two aspects for in-
troducing our hypertext system, KHS.

KHS has the following features:

e KHS handles only one object,boz. From its
appearance, a box is just a plain rectangle
and all of its own data such as width, height,
or dimension is administrated as the property
in KHS. From its usage, a box contains prop-
erties and is connected by linkage. The link-
age between bozes is also managed as prop-
erty. The designer can name the linkage to
distinct later. A boz and its properties are
defined on KHS Editor.

o KHS introduces the Abstraction mechanism.

It helps to achieve "try-and-error construc-
tion”.

o KHS is an "event-driven system” for an end-
user. Certain action of end-users causes to
trigger the corresponding event(s). To indi-
cate what to do when an event occurs, KHS
has the script language named K Talk{5]. And
to behave as the script describes when an
event occurs, KHS has the interpreter KHS
Event Driver.

Now we think the examples in chapter 2 again.
In the example ” Hyper Paper”, the paper is man-
aged in many bozes. And the structure of the
paper is described by the linkage. Then the end-
user can read the paper in the sequential order
by tracing the linkage. But in the paper, there
may be references to other part or section of the
paper. The cross reference is also described by
the linkage. The relationship between the boxes
connected by the former linkage differs from the
one between the ones connected by the latter one.
This could be a serious problem when the de-
signer tries to install a searching tool which re-
flects the structure of the paper. Because if he
does not pay attention to the difference of the
relationship of connected boxes, he may be em-
barrassed in a labyrinth of linkage. This prob-
lem is solved in KHS by allowing the designers
to name the linkage. It means that the former
linkage is named ”structure-linkage” and the lat-
ter "reference-linkage”. Then the searching tool
looks for a word by tracing only the "structure-
linkage”.

In the example ” Schedule Chart”, the order of
the decision of the specification was the serious
problem. It may cause the waste of the designers
efforts. Abstraction mechanism solves this prob-
lem. It is similar to the class concept in object--
oriented paradigm [6]. In the class concept, after a
programmer defines the class, he instantiates the
class. The property of the class is copied by the
instance. Applying this concept to construction
of hypertext obviously reduces the designers’ ef-
fort but it can be a serious trouble if the designer
wants to change the specification after instantiat-
ing the class. Abstraction mechanism also instan-
tiate objects but does not copy the property. The
instance of an abstracted object has the pointer
to the property, instead of copying the value. At
the same time, the abstracted object also has the
pointer to the instance. So if the designer wants
to change all instances of one abstracted object,
he just change the abstracted object as he wants.
Then the change to the abstracted object is prop-
agated to the instances of it. Now if the designer
makes clear what is the same among some object,

’\'5’\/

there is no fear of wasting his effort.

KHS consists of three parts: Abstraction Li-
brary, KHS Editor, and KHS Event Driver. Ab-
straction Library manages abstracted objects.
Abstracted objects can be regarded as the mate-
rials of the hypertext. Designers construct hyper-
texts by combining these objects properly. Both
Abstraction Library and KHS FEditor are the pro-
gramming environment including its library and
KHS Event Driver is the executing environment.
On the other hand, KHS Editor can be regarded
as the factory where the material is turned into
some products and the hypertext designer as both
the planner and the laborer. Then the hyper-
text is the products which made by the mate-
rial and KHS Event Driver is the place where the
end-users use the products. The end-users corre-
sponds to the consumer in this example.

A designer loads some information on a hyper-
text or defines the behavior of the hypertext work-
ing on KHS Editor. Sometimes he works on KHS
Event Driver to check those events which he de-
fined will be interpreted appropriately responding
to the end-users action, then he gets back on the
editor and change or correct some.

On the other hand, end-users get the hypertext
and execute it on KHS Event Driver. They get
some information by invoking some events on the
hypertext and browsing on it. This is the outline
of a lifecycle of a hypertext.

Talking about media of KHS, it can only han-
dle sequence of character. So KHS is not a multi
media hypertext system. Linkage is managed as
a property in KHS. All information about a box
,such as size of a boz, is managed as properties
as well as the linkage. All properties of a boz is
displayed on property table. A designer can edit
the property table on KHS Editor.

The figure 2 is a scene from a KHS, where a
designer is constructing a hypertext. The upper
rectangle is a boz that the designer is now mak-
ing. And the lower one is the property table of
the boz. End-users can not see the property table
while they are browsing the hypertext. Only the
designer can see it through KHS Editor. In the
property table, “name:”, " absName”, "zPos”, etc.
are names of the properties. Similarly, “clickLeft”
is one of properties but differs a little. It is the
name of events that this object(box) can handle.
Then the value of the clickLeft stores the script of
procedure when the object(boz) receives the event.
It means that if an end-user clicks the left mouse
button on this boz, the event clickLeft sends to the
boz, then the contents of the property clickLeft is
executed by KHS Fvent Driver. The language to
describe the script of event is K Talk(see section

3.4).
Those are the overview of KHS. We discuss
their detail in the following sections.

3.2 Boxes: Objects in KHS

As we mentioned above, KHS has only one sort
of object called box. Each box can be connected
to the other box by linkage and it can have as
much linkage as the designer wants. Any two
boxes connected by linkage have partial order. In
other words, any linkage is directed. The link-
age between two boxes can be devided into twe
types. These are include linkage and child link-
age. They have difference when the connected
box is appeared on the screen. When a box is
displayed on a screen, the boxes connected by in-
clude is also displayed but the ones connected by
child is not. So designer should instruct the box
connected by child linkage if he wants to display
it. Assume that there is a box named "FATHER”
and it is connected with a box named "SON” by
include linkage and a box named "LOVECHILD”
by child linkage. When FATHER is displayed on
the screen, SON is also displayed on the screen
but LOVECHILD is not.

Each data of each object(boz) in KHS is han-
dled as a property: name of the object, height of
the object, or width of the object,etc.

The table 1 is list of reserved properties that
are arranged by the KHS for each purpose and all
bozx has. Of course the designer can declare other
properties than these.

The box can have as many properties as the de-
signer wants. In KHS, every property is handled
as character so he should be careful to use-the
property.

Beside this, KHS has event names which are
invoked by the end-user with mouse or keyboard. -
Each script which indicates what to do when an
event occurs is also regarded as a property. As-
sume that there’s an event named clickLeft and
one boz has to beep when it catches the event.
This is recognized that property clickLeft has the
value beep. We can say it in other words “If an
object gets an event, it executes the value of the
event”. The table 2 are the part of the events that
the end-users can invoke. The designer can define
new events but all of them are invoked by some
of these events indirectly.

We will explain the language to indicate the
action or to define what to do afterward.

~6~

Property table of Base

events

linksge

inclce:

Figure 2: A designer is making a hypertext on KHS

property name |

value

id the ID number of the box, KHS sets this and one can not change this
name the name of one box, it should be identical in whole system.

xPos the number of the pixel from left edge of one box’s parent to right
yPos the number of the pixel from top edge of one box’s parent to bottom
width the number of the pixel of one box counted from left to right

height the number of the pixel of one box counted from top to bottom

text stream of bite which is displayed on the box.

absName name of the abstracted box of one box (we will show its detail later)

Table 1: Reserved properties in KHS

event name

context

clickLeft click the left button of the mouse.

clickCenter click the center button of the mouse.

clickRight click the right button of the mouse.

click clickLeft or clickCenter or clickRight

dragLeft drag the mouse with the left mouse button down
dragCenter drag the mouse with the center mouse button down
dragRight drag the mouse with the right mouse button down
drag dragLeft or dragCenter or dragRight
doubleClickLeft | click the left mouse button twice in certain short timing
Key(control) type the key “Control”

Key(return) type the key “Return”

Key(a) type the key “a”

Table 2: The part of events that end-users can invoke

’\47’\4

on the hypertext on KHS

3.3 Abstracted Boxes : Class Ob-
jects in KHS

Abstraction is a mechanism that aims to achieve
lazy definition. The basic idea of Abstraction is
the following:

When a designer constructs a hypertext, it
sometimes happens that he knows that some
properties are equal but he can not make decision
about the value. For instance, think the example
1, there are as many boxes as the number of days
in a month. But he wants to decide the dimen-
sion of them after making all boxes. That will be
nice if he can define that all day-boxes have the
same dimension beforehand and change the value
afterwards. Let us explain more simple example,
assume that the designer needs a pair of boxes
which have the same dimension but the different
text. In a comprehensive way, he makes one box
and names it “A”. Then he copies the boz, places
it, and names it “B”. Both of “A” and “B” have
the same width and height. Now, if he wants to
change the dimension of “A” and “B", he must
change both of them In this example, the value of
dimension is managed in the system as expressed
in figure 3(a). But, if he could define the property
width of “B” as same as the width of “A” and
there were some mechanism to maintain the con-
sistency of the value, he had only to change the
width of “A” It means that the width of “B” has
the pointer to the width of “A”. (see figure 3 (b)).

\ =

name = A name = B
width = 120pt width = 120pt
height = 65pt height = 65pt

Figure 3: (a) Two independent objects.

Now if he make third and forth ones then can
manage the dimension as well as “B”. By the way,
boz “A” has the superiority to other bozes such
as “B”. Then we make a new ghost boz that are
superior to all of these boz. It is Abstracted boz(see
figure 5).

3.4 KTalk : A Script Language

KTalk is the script language on KHS. Writing
scripts in KTalk is different from traditional com-
puter programming in many ways, but the most
obvious difference is in modularity. The program

L name = A name = B .
b width = 120pt width =
height = 65pt heighi= ¢

S

Figure 4: (b) Objects with dependency

listing in languages like Pascal or C can be printed
out and viewed like a word processing document.
But in KTalk, KHS objects (bozes) contain short
scripts, which KHS Event Driver follows when-
ever events occur that affect those objects. For
example, if an end-user clicks a button(boz), KHS
Event Driver looks into the boz’s script to find out
what to do, and operates objects as the button’s
script.

The designer needs to write scripts only for the
actions he wants the boz to respond to. If he
does not want anything special to happen when
an event is happened, he does not need to do any-
thing for the boz. :

End-users browse the hypertext invoking events
on it. And as the end-users event, the KHS Event
Driver does the script of the target event of the
target object.

.

name = AbsAB
[width=120n
height = 65pt ~

name=RB
PO I <

Figure 5: Abstracted boz of both “A” and “B”

~ 8~

Like any language, KTalk has a vocabulary and
rules of syntax. The KTalk vocabulary is similar
to English, and so is the rule of syntax.

KTalk can be regarded as the sequence of im-
perative sentences. The basic syntax of a sentence
is like this:

{command){ar guments)(RETURN)

(RETURN) is the "end of line code”. Most
simple and frequently used command may be
?view+”. This command makes the box whose
name is same as the argument display on the
screen. For example, if the designer wants to dis-
play the box whose name is ”sectionl.1” when
a box is clicked then he may write the following
script as the value of the click.

view+ "sectionl.1”

As the argument of command view+ the de-
signer can other words to indicate a box, it means
it KTalk has other vocabulary to indicate a box
than the name. The designer can indicate a box
by the following vocabulary.

e "(name)”: bounded by double-quote.
er. view+ ”"sectionl.1”

e (property): one of the properties of the box
which the event is received.

er. view+ child

When KHS Event Driver interpret this
script, it look into the value of the property
”child” of this box. For this purpose the value
of the property ”child” should be the name
of other box.

o whose (property) is (value):
ex. view+ whose id is 71002”

For this sentence KHS Event Driver finds out
a box whose property ”id” equal 1002.

3.5 KHS Editor and KHS Event

Driver
3.5.1 KHS Editor

Almost all command in KHS Editor can be in-
voked by mouse. The designer selects a menu or
a tool, or click the mouse to construct the target
hypertext|7].

On this editor, the designer definds the bozes,
and their properties. Some of these properties,
like size or coordinates to the parent boz, are put
by the editor automatically. The designer can also
put the value directly to any property exept id.

To define the boz, the desiger may only choose
a tool and drag the mouse pointer from left top
point to right bottom point of the target boz.
Then the property zPos, yPos, width, height are

calculated by the editor and the proper values are
put in the property.

3.5.2 KHS Event Driver

KHS Event Driver is the interpreter on KHS. It
interprets the script language K Talk one line by
one.

KHS Event Driver watches the action of end-
users with mouse or keyboard. And when an end-
user push down the mouse button or hit the key
on keyboard, it checks where the mouse pointer
is and determine the target to the event. Then it
looks into the target object(boz) and look into the
property(script). If the object has the correspond-
ing property(script), KHS Event Driver execute
the value of the property as the script responding
to the event. If not, the event is passed to the
parent of the target boz. This process is repeated
until it reaches the root boz of the hypertext.. If
the root boz has no correspoinding property, it do
nothing.

4 Conclusion

4.1 Summary

We proposed a new hypertext system that aims
to decrease the designers’ work and efforts when
they construct hypertexts. We extracted the re-
quirements for the hypertext at the view point of
designers. At that point of view, the following
features are needed to the hypertext system.

‘e It should be easy to make similar objects.

o It should be easy to change after making sim-
ilar several objects. (It allow the designer to
construct with trial-and-errors construction)

o It should be easy to make temporary proto-
type and the products should be reused in
the final products as much as possible.

o It should define any complicated linkages be-
tween objects.

o [t should give some mechanism to the design-
ers to choose linkage from the script.

e It should offer a script language which is
properly easy to understand and has as many
functions as possible to access the internal
data of objects.

According to the requirements above, we pro-
posed KHS which consists of the following items.

o KHS Editor with abstraction mechanism and
its library

o KHS Event Driver with its script language
KTalk

~ g~

4.2 Direction for future research

In this thesis, we determine the media that we
manage as the sequence of characters. First we
said we should pay much emphasis on the inter-
face to designers, but it can be said that the inter-
face to the end-users is good enough to put and
display the necessary information on hypertext.
Thus, we may not discuss about the hypertext
without any idea of multi-media. Then we should
expand our system to the one which handle multi-
media such as music or animation, etc.

As the directions for future research, we ought
to implement all of KHS and evaluate the inter-
face to the designer in a practical use. And we
ought to introduce other media than sequence of
characters.

Acknowledgements

I wish to express my sincere thanks to all who have
helped me to produce this paper. First of all, 1
would like to express my best appreciation to my
supervisor Associate Professor Osamu Watanabe.
Works presented in this material was not possible
without intensive discussions with him, nor his
advises.

I would like to acknowledge members of the
Watanabe laboratory to discuss about my re-
search activity in spite of the lack of common
topics to theirs. The members of Katayama,
Yonezaki, Tokuda laboratory also helped me to
manage to write this paper.

I would also like to thank all the people who
has encouraged me during my writing.

References

[1] Bush V. As we may think. In Atlantic Monthly
176, pages 101-108, July 1945.

[2] Stephen F. Weiss John B. Smith. HyperText.
In Communications of the ACM, july 1988.

(3] Frank G.Halasz. Reflections on note-
cards:seven issues for the next generation of
hypermedia systems. COMMUNICATIONS
of the ACM, 1988.

[4] Danny Goodman. THE COMPLETE HY-
PERCARD HANDBOOK. Bantam Books,
1987.

[5] Danny Goodman. THE COMPLETE HY-
PERCARD2.0 HANDBOOK. Bantam Books,
1990.

[6] A.Goldbergand D. Robson. Smalltalk-80: the
language and its implementation. Addison-
Wesley, 1983.

[7) Shi-Kuo Chang. VISUAL LANGUAGES
AND VISUAL PROGRAMMING. PLENUM
PUBLISHING CORP., 1990.

