M B P B 60—4
Tars vy AW RE—~ 2-4
(1991 6 21)

Futures and Multiple Values in Parallel Common Lisp

Heh iz IR 15

HET A - €=« T A (¥ BRGTEBIIeaT
T 102 HCHER =N 5-19

% { D3 € Y RO Lisp THIEFIEDERIRIC future ARV T %, A Tid Common Lisp
SAEHEARIC future X EAL/SFEOMBICOWTE X 2, future LS{ERAEY TS B 20 12D
future 77 V= 7 PICHBOEERMTEL LI THLEND S, LAVt DTIOHELHVS
&L T OF T AT future FIALZEAEL LD o &L CERTHOMMBERL - CLEIBEMDY,
Common Lisp TEHENHLENERELATLE Ho T ORHIBUEHRT 5 72012 mv-context HE & my-p
TSRO ODHEERRRT B, SO 2 00MEEINF TS OLy Y - TS A5~ a ¥ TOP-1 L
?iEF) Lisp « TOP-1 Common Lisp ICBWTHEBR Lz,

Futures and Multiple Values in Parallel Common Lisp
TANAKA Tomoyuki UZUHARA Shigeru

IBM Research, Tokyo Research Laboratory
5-19, Sanbancho, Chiyoda-ku, Tokyo 102, JAPAN

The future construct is used in many shared-memory parallel Lisp systems to express concurrency.
We consider the impact of introducing the future construct to the multiple value facility of Common
Lisp. A natural way to accommodate this problem is by modifying the implementation of futures so
that one future object returns (or resolves to) multiple values instead of one. We first show that how
such a straightforward modification fails to maintain the crucial characteristic of futures, namely that
inserting futures in a functional program does not alter the the result of the computation. To overcome
this problem, we present two methods which we call the mv-context method and the mv-p flag method.
Both of these methods have been tested in TOP-1 Common Lisp, an implementation of a paraliel
Common Lisp on the TOP-1 multiprocessor workstation. To our knowledge, this problem has never
been analyzed nor solved in an implementation of parallel Lisp.

(13

1 Introduction

The future construct is used in many shared-memory parallel Lisp systems
to express concurrency. There are several problems in the language definition
(specification of semantics) that must be solved in a Lisp system that incorpo-
rates the future construct:

e scope and extent of (lexical and special) variables

o what other mechanisms for synchronization and concurrency to introduce,
if any

e whether to allow non-local exit (catch and throw, block and return-from,
tagbody and go in Common Lisp; call/cc in Scheme) to cross process
boundaries

Moreover, the implementation must be devised for each of the semantic specifi-
cation decided upon.

In this paper we address one of such problems, that of coexistence of the
future construct and the multiple value facility of Common Lisp. We briefly
examined the problem and outlined our approach in [5]. We will explore this
problem more fully and present two solutions, both of which have been tested
in TOP-1 Common Lisp, an implementation of a parallel Common Lisp on the
TOP-1 multiprocessor workstation [5].

TOP-1 Common Lisp is a parallel modification of Kyoto Common Lisp
(KCL) [8] featuring a real-time multiprocessor garbage collector [7]. For an
overview of TOP-1 Common Lisp please see [5],

2 Futures and multiple values in Lisp

2.1 Futures

A future was first used in the Lisp language in Multilisp [2]. A future is a
placeholder for the value being computed by the process associated with the
future. When a form (future form) is executed, a new process is created and
the evaluation of form begins immediately in the new process. The future
special form returns a placeholder, called a future, to the process that called the
future. ‘

When the evaluation of form completes and the value is determined, we
say that the future has resolved. If a process needs to know the value of an
unresolved future (e.g., in order to do an addition) the process is blocked until
the future resolves. (This is described as, “The process touched the future.”)
Thus, a future is never visible to the programmer, and future is not a data type.
Touching can be done implicitly by value-requiring functions or explicitly by
the touch special form.

2]

In many situations an unresolved future can be used as a placeholder for the
real value: it can be passed as an argument to a function, returned as a value
of a function, assigned to a variable, or placed within a data structure.

The future construct can be thought of as a declaration: its use asserts
that a form can be executed concurrently without changing the result of the

computation. No semantic aspect of the program changes except introduction
of concurrency.

2.2 Multiple values in Common Lisp

The motivation for providing a multiple value facility in a programming language
are as follows: ’

1. A computation often involves simultaneous computation of some related
values. It is convenient to return them simultaneously rather than having
to recompute each.

2. It is sometimes necessary to indicate the occurrence of a special (or ab-
normal) case in an access function. This is sometimes done with certain
distinguished values, such as an “eof object” in Scheme [3]. In Common
Lisp this is done by returning the second, diagnostic value (such as for
hashtable and package lookup functions). It is more uniform to provide
the multiple value facility to the user.

3. The effect of returning multiple values is sometimes simulated by storing
them in special (or global) variables or by returning a list or vector con-
taining the values. Having the facility provided in the system avoids this
clumsy simulation. ‘ :

Multiple values in Common Lisp are produced with the values function.
Multiple values are received with multiple-values-accepting special forms and
macros, namely multiple-value-list, multiple-value-call, multiple-value-bind,
and multiple-value-setq. If there are more values produced than requested,
the excess values are simply ignored. If there are less values produced than
requested, the unpresent values defaults to nil. Only one value is requested
when an expression is evaluated as an argument to a function, and when an
expression is evaluated to be bound or assigned to a variable.

The introduction of the multiple value facility is currently being discussed
for the Scheme dialect of Lisp [1]. We deal with the problem of futures and
multiple values in Scheme in [6]. :

2.3 The goal: the coexistence of futures and multiple val-
ues

We have stated earlier that the future construct can be thought of as a declara-
tion: its use asserts that a form can be executed concurrently without changing

€3]

the result of the computation. No semantic aspect of the program changes ex-
cept introduction of concurrency. Our goal is to preserve this characteristics of
futures even with the multiple value facility in the language.

3 The implementation of futures with multiple
values

3.1 The problem with the straightforward implementa-
tion

We observe that futures must resolve to multiple values in some situations.
For example, when 3valsf is defined as

(defun 3valsft ()
(futurs (values 1 2 3)))

the evaluation of (multiple-value-list (3valsf)) must proceed as follows:
first (3valsf) is evaluated to return a resolved or unresolved future, then, after
the values are determined, a list of the three values is created and returned by
multiple-value-list. The three values must be carried by the future.

Now, let us consider the following example.

(defun foo ()
(let ((x (3valsf)))
x))

While evaluating (multiple-value-list (foo)), the result of the argument
form (foo) is a future that will eventually resolve to 1, 2, and 3 as in the last
example, but this time, the correct value of (multiple-value-list (foo))
is (1), not (1 2 3). This is because programs containing future constructs
should produce the same result as when they are absent, and if future were
not present in the definition of 3valsf, during the evaluation of (foo) only the
first value returned by 3valsf would be bound to x and hence returned by foo.

3.2 The implementation of futures without multiple val-
ues

Before we provide our solutions, of which there are basically two approaches,

we describe the original implementation of futures without multiple values. The

description here closely follows the implementation in TOP-1 Common Lisp.
An object of type future contains the following fields:

resolved-p ... flag that indicates if the future has resolved already

waitq ... queue of processes waiting on this future

4]

lock ... (boolean) lock which is locked while waitq is manipulated
value ... slot for storing the value of the future when it is determined
The future construct is a macro defined as

(defmacro future (form)
(let ((newvar (gensym)))
‘(let ((,newvar (make-future)))
(process-funcall]
#'(lambda () (eval-set-future-1 ,newvar ,form)))
,newvar)))

so that (future <form>) expands to

(let ((#:g001 (make-future)))
(process-funcall
#’(lambda () (eval-set~future-1 #:g00i <form>)))
#:g001)

make-future is an internal function which returns a new future object. When
a future is newly created, resolved-p is initialized to false. process-funcall
creates a new process and calls the argument function in a new process. The
eval-set-future~1 special form evaluates the argument expression, stores the
value in the value slot of the argument future object, and sets resolved-p to
true. Exactly one value is stored regardless of the number of values actually
resulted from the form: if one or more values results from the form, only the
first value is stored; if the form produces no values, nil is stored. #:g001 is a
new and uninterned symbol. '

Whenever a real value of a future is required the following internal function
touch is called.

(defun touch (future)
;3 FUTURE may or may not be a future.
(Loop
(wvhen (not (future-p future))
(return-from touch future))
(when (not (future-resolved-p future))
(enqueue *the-current-process* (future-waitq future))
(sleep-and-schedule-another-process))
;3 FUTURE is a resolved futurs.
(setq future (future-value future))))

This is the slightly simplified version (for example, it does not include the

lock and unlock operations) of the corresponding C function in TOP-1 Common
Lisp.

(5]

3.3 The mv-context method

We observe that every expression is evaluated in a multiple value contezt (mv-
context), the context of how many values are expected from the evaluation of
the expression.

In this method the following two fields are added to a future object.
mv-context ... contains one of ignore, single, or multiple (see below)
2+values ... slot for storing the list of all subsequent values after the first one

At run time the correct value of mv-context is maintained in the mv-context
slot whenever an expression is evaluated. For a function call (foo <formi>
<form2>), <formi> and <form2> are evaluated in an mv-context of single re-
gardless of the mv-context of the entire form. For a progn form (progn <formi>
<form2> <form3>) evaluated in some mv-context ¢, <form1> and <form2> are
evaluated in ignore, and then <form3> is evaluated in ¢. The predicate ex-
pression of an if form and expressions evaluated to be bound or assigned to
variables are all evaluated in an mv-context single.

This mv-context is available at run-time so that when the value(s) of the
argument form to future are calculated the process evaluating the form can
store the appropriate number of values in the future object. The expansion for
(future <form>) is therefore

(case (mv-context)
((ignore)
(process-funcall #’(lambda () <form>)))
((single)
(let ((#:g£001 (make-future)))
(process-funcall
#’(lambda () (eval-set-future-i #:g001 <form>)))
#:g001))
((multiple) '
(let ((#:g001 (make-future)))
(process-funcall
#’(lambda () (eval-set-future-m #:g001 <form>)))
#:2001)))

mv-context is an internal function that returns the current mv-context. The
eval-set-future-1 special form stores exactly one value in the future object,
and 2+values slot is left to nil. The eval-~set~future-m special form stores
all of the values resulting from the form in the future object.

The mv-context can be determined at compile-time in some cases, in which
case the run-time dispatch on the mv-context can be avoided.

The internal touch function is the same as presented earlier. The multiple-
value-receiving constructs calls the following mv-touch function when it’s argu-
ment form evaluates to a single future. mv-touch chases the chain of futures

(6]

and returns the “last” future in the chain. The “last” future is defined as the
first future encountered in the chain which does not have exactly one future
value, in other words, the first future which has either multiple number (2 or
more, or 0) of values, or one non-future value.

(defun mv-touch (future)
;3 FUTURE is a future.
(let ((value nil))
(loop
;3 sleep if not resolved-p
(when (not (future-resolved-p future))
(enqueus *the-current-process* (future-waitq future))
(sleep-and-schedule-another-process)) '
;3 FUTURE is a resolved future.
(setq value (future-value future))
(cond ((and (future-p value)
(null (future-2+values future)))
(setq future value))
(t

(return-from mv-touch future))))))

This mechanism is implemented in a prototype version of TOP-1 Common
Lisp

3.3.1 Future chain elimination

If an expression of the form (future (future <form>)) appears in a program,
it can be automatically and safely rewritten as (future <form>) without chang-
ing the meaning of the program, including the level of concurrency produced.
The only difference is an extra (and redundant) process and future object are
not created.

This is sometimes possible even when the second future is not lexically
within the first one. An expression (future <form>) can be replaced with
<form> if the result of the expression will be taken as the result of another
future form, and a new future object and a process do not need to be created.

The expansion for (future <form>) taking this observation into considera-
tion is

(case (mv-context)

((ignore)
(process-funcall #’(lambda () <form>)))
((single)
(let ((#:g001 (make-future)))
(process~funcall
#'(lambda () (eval-set-future-1 #:g001 <form>)))

C7]

#:2001))
((multiple)
(if (evaluating-for-future-p)

(eval-set-future-m (future-evaluating-for) <form>)

(let ((#:g001 (make-future)))
(process=-funcall
#’(lambda () (eval-set-future-m #:g001 <form>)))
#:£001))))

Two internal functions evaluating-for-future-p and future-evaluating-for
are used in the expansion. evaluating-for-future-p returns if the form
(future <form>) is being evaluated for a future, and future-evaluating-for
returns the future for which evaluation is being done. At run-time these two
piece of data must be available for evaluation of each form.

This technique ensures that a chain (the situation where a future’s value
is another future) is never created in the context where multiple values are
requested. Therefore the argument future to mv-touch is now always the last
one, so that process requesting the values does not need to do any chasing, and
the code for looping can be removed from mv-touch. Future-chain chasing is
still necessary for touch touch. '

(defun mv-touch (future)

¢3 FUTURE is a future.

;s returns the "last" future

;3 sleep if not resolved-p

(when (not (future-resolved-p future))
(enqueue *the-current-process* (future-waitq future))
(sleep-and-schedule-another-process))

;3 FUTURE is a resolved future.

future)

3.4 The mv-p flag method

The mv-p flag method, which isimplemented in the final version of TOP-1 Com-
mon Lisp, is an optimization of the mv~context method. The first observation
is that the mv-context ignore is only used to avoid allocation of needless future
object and is not necessary for ensuring that the correct number of values be
returned. The basic idea is that instead of passing around the mv-context for
each expression, the fact that a future form appeared in a single context (which
makes the future the ability to return multiple values) is recorded in a special
flag of the future object. Then at future-chain chasing time, if any of the futures
in the chain has this flag disabled, it will mean that only a single value may
result in that case.

In this method, fields in a future contains the mv-p flag instead of the
mv-context field. The flag indicates that the future is capable of returning

€8]

multiple values. At run-time, when a future object is created, this flag is set on.
The flag is cleared when the future goes through contexts in special forms that
invalidate all but the first value: when it is assigned or bound to a variable, and
when it is passed as an argument to a function. It follows from this rule that the
flag is also cleared when a future is returned from certain places within macro
forms, such as a singleton clause of a cond form, one of the subforms (except
the last one) of or, the first form of progi, and the second form of prog2.
The expansion for (future <form>) is

(let ((#:g001 (make-future)))
(mv-on #:g001)
(process-funcall
#’ (lambda () (eval-set-future-m #:g001 <form>)))
#:g001)

The call to the mv-on internal function sets the mv-p flag in a future object.
It is necessary because the variable binding in the line above clears the flag,.

The internal touch function is the same as presented earlier. The mv-touch
function in this method is as follows.

(defun mv-touch (future)
:: FUTURE is a future.
(let ((value nil)
(any-mv-off-p nil))
(loop
(when (null future-mv-p future)
(setq any-mv-off~p t))
;3 sleep if not resolved-p
(when (not (future-resolved-p future))
(enqueue *the-current-process* (future-waitq future))
(sleep-and-schedule-another-process))
;s FUTURE is a resolved future.
(setq value (future-value future))
(cond ((and (future-p value)
(null (future-2+values future)))
(setq future value))
(t
(when any-mv-off-p
(setf (future-2+values future) nil))
(return-from mv-touch future))))))

4 Conclusions

We examined the problems involved in introducing the future construct to the
multiple value facility of Common Lisp, and presented two methods of imple-

93]

menting futures with multiple values: the mv-context method and the mv-p
flag method. We have also proposed the technique of future chain elimination,
which is the future’s analogue of tail recursion elimination.

References

[1] Curtis, P. The Scheme of Things. SIGPLAN Lisp Pointers. ACM, Vol. 4,
No. 1, 1991, pp. 61-67.

[2] Halstead, R.H. Multilisp: A Language for Concurrent Symbolic Compu-
tation. ACM TOPLAS. 7, 4 (Oct. 1985), pp. 501-538.

[3] Rees, J. and Clinger, W., Eds. Revised® Report on the Algorithmic Lan-
guageg Scheme. SIGPLAN Notices. ACM, Vol. 21, No. 12, December 1986.

[4] Steele, G. L., et al. Common Lisp: The Language. Digital Press, 1984.

[6] Tanaka T. and Uzuhara S. Multiprocessor Common Lisp on TOP-1. In
Proceedings of The Second IFEE Symposium on Parallel and Distributed
Processing (Dallas, Texas, December 9-13). IEEE, 1990, pp. 617-622.

[6] Tanaka T. and Uzuhara S. Futures and Multiple Values in Parallel Lisp.
TRL Research Report, forthcoming,

[7] Uzuhara, S. A Parallel Garbage Collector on a Shared-Memory Multi-
processor. “RYUKYU” Summer Workshop on Parallel Processing. IPSJ
SIGARC 83-35. 1990 (in Japanese).

[8] Yuasa, T. and Hagiya, M. Kyoto Common Lisp Report. Teikoku Insatsu
Publishing, 1985.

(10}

