Suys5ivy—FE-Ef-EE— 3-U4
(1991 7. 17

A Debugger for the Parallel, Object-Oriented Language A’ UM-90

Charles Fabian, Tsutomu Maruyama, Koichi Konishi, Akihiko Konagaya
NEC Corporation, C&C Systems Laboratory

1-1, Miyazaki 4-Chome Miyamae-ku Kawasaki Kanagawa 213 JAPAN

A major obstacle of concurrent programming is the complexity involved in program debugging. A debug-
ger for such a system must be powerful enough to overcome non-determinism and other difficulties associated
with debugging such systems. It is also important that the debugger does not alter execution behavior. We
have implemented an event-based debugger for A’ UM which provides execution histories, deterministic execu-
tion replay and a graphical interface. Our debugger provides this powerful functionality while minimizing its
effect on performance. This balance is achieved through separation of debugger operation into history recording
and active debugging modes of operation. In this report we present the design of this debugger as well as some
preliminary analysis of its overhead.

WA 7 = 7 vERIEEE A UM-90 D7\ v 77

Charles Fabian, Full #4. /PN BA—. /NER BHE

AAER (k) C&C v 2 7 LB

WFIBEO Ty 71X, WFISEOHF OB EEEO DI VEETH 2, coc®H, WEEDF~y /Ic
X, FEREER IR S Bx OB Y IRMWICE S C LB TE ST Ny FHERAIRTD 5o Tx ik, AEFIA
TVx2 2 MERAERE A Unm HOF Ny HEVER Lo RF Ny k. 4 XV FCESKERFe 2+) itk thy
A ETEBRBOBEBIVY 77 4 v 74 v 27 2 REOBBER 0. RF N0 HClk, 7y ZFift%R, #EfTe
R FIEEETASED . TRERAWCERCF Ny 72 FASEBI L COT B IR XD, 7Ny HiIC X 557~
OEEYB/MNRCIATWw3, RS, 74y TOREHE & tOFHICOWTi_ 3,

—121—

1 Difficulties of Distributed Debugger Design

There are three major issues to be considered for the design of an effective debugger for a parallel,
distributed system such as A’'UM. First, the debugger must be powerful enough to help the user
to overcome the added difficulties associated with debugging concurrent computation. Potential
non-determinism means that, even given the same inputs, a program may have different results for
different executions. Erroneous behavior may be difficult to repeat, perhaps occurring only once out
of every one hundred executions — a debugging nightmare. The debugger should provide aids, such
as deterministic re-execution, to help overcome non-determinism.

The second issue is that a debugger must minimize the probe effect. The probe effect refers
to the interference by an external influence, such as a debugger, has on the computation and the
possibility that such interference will alter the behavior of computation. In the parallel case, the
probe effect is particularly hazardous, as a slight difference in execution timing may greatly alter
execution behavior. While it is impossible to design a debugger which fully avoids the probe effect,
the probe effect may be reduced to a tolerable level by minimizing the memory and computation
cycle requirements of the debugger.

Finally, of course the debugger must be easy to use. While this is not easily quantifiable, a well
designed user interface is a major factor when considering usability. While ease of use is important for
both sequential and concurrent debuggers, it is particularly helpful for the concurrent case because
of the much greater complexity of parallel/distributed systems.

There is a direct conflict between the second goal of reducing the probe effect (i.e. minimizing the
debugger) and the other two goals of providing a powerful and easy to use debugger (i.e. increasing
the size and complexity of the debugger). Thus, the difficulty of designing a debugger is finding a
good balance between reducing the probe effect and providing powerful functionality.

Despite this apparent trade-off we feel that it is possible to design a debugger which is quite
powerful and at the same time reduces the probe effect to tolerable levels such that program be-
havior remains consistent with actual execution. We believe that this may be achieved through
the realization that debugger operation should be separated into two distinct modes of operation.
We call these modes the history recording and the active debugging modes.! We have attempted
to design such a debugger for A’U{M . But before describing our debugger we must first briefly
introduce A’ UM.

2 Introduction to A'UM

A'UM is a stream based, object-oriented language for parallel execution, similar in many ways to
the actors model. [1] :

Each object is a separate process, with its own thread of control — many objects may be executed
concurrently. It has an input queue for messages, and when a message arrives on this queue the
object is awakened to be scheduled for execution. If the physical processor is busy, the object
may have to wait before being scheduled for execution; while waiting newly arriving messages will
continue to enqueue on the queue. An object executes its messages in the strict order of their arrival
on its queue. Note that this is independent of the order which these messages may have been sent.

The execution of a message is an atomic event, an object executes these messages sequentially. 2

By stream based, we mean that messages are channeled to objects through queues which we call
streams. Messages are sent in a “send-no-wait” asynchronous manner. The primary work of an

1 Halstead uses the terms production mode and trace mode for his Multivision system. [4]
2For brevity, in this paper refer to the “execution of the method for a particular method” as “execution of the
message.” Likewise, “execution of an object” refers to the “execution of a method for the object.”

—122—

X

receiving
object

|
I\
Y

7X

S

/[

Figure 1: Stream Network

A’ UM method is to build up a network of streams by connecting them one to another. The above
mentioned input queues of objects are also streams.

In addition to building up this stream network, methods may also create objects and, of course,
send messages. Messages may carry a number of arguments; these arguments are references to
objects or streams. An object is terminated when it receives a close message on its input stream.

Objects may also have a sense of state — state is represented by fixed length list of streams
which the object has reference to. (Each such stream reference is called a slot.)

Because objects execute message exactly in the order they are found on its input stream, the only
source of non-determinism is at the “joints” of the stream network, where the arrival of messages
from two separate streams can not be determined.

OO0 -
-

o %

possible oxders: .3 a2 b1 b2
al bl a2 b2
al bl b2 a2
b1 al a2 b2
b1 al b2 a2
bl b2 al a2

Figure 2: Message Ordering

3 The Debugger

Our debugger is an event-based debugger [5] which provides an execution history, deterministic replay
and a graphical user interface. Traditional breakpoint and tracing mechanism are also provided, as
well as message level and instruction level execution stepping. The user may examine arguments,

reorder messages, and exercise control over the scheduler to try and isolate and correct erroneous
program behavior.

Debugger operation is divided into two modes: history recording and active debugging modes.
During the recording mode, execution occurs just as in normal A’UM execution, except that a
history of synchronization events is recorded for possible execution replay.

—123—

3.1 History Recording

The debugger records an execution history for each object, called an object history. The only events
that must be recorded in this history are message executions. From the order of message execution,
the entire state of the object can be reconstructed.

top_level:init
f 3

counter2:init window: show

counter:init(0), (window:init()) top_level:begin

counterl:up Counter: +(AT1) window:put (Sum) ,

dountexr2:who_are Jou(T1) counter:reset (gum)

O:+(1)
Figure 3: Message Backtrack History

Complementing the object histories is a message hierarchy tree. This is merely a representation
of the causality of a program. The parent of each message is recorded — the parent being defined
as the message whose execution resulted in the creation and sending of this message. The result is a
tree representing the control structure of the program, analogous to the procedure invocation stack
of a language such as LISP. Figure 3 is an illustration of a message hierarchy tree.

The object histories provide only a partial ordering over message execution. Each history only
specifies the execution ordering of messages executed by that object. The object histories imply no
ordering constraints between messages executed by different objects. However, a complete ordering
over all message executions would be expensive to record, considering that on a distributed system
there is usually no global clock. Further, such an ordering would enforce non-existing constraints on
execution ordering. For example, there are many cases where two messages executing on different
objects whose execution ordering are independent; either one could execute first, or they may even
execute simultaneously, without affecting the execution outcome. A complete ordering would unnec-
essarily place the constraint that such messages execute in the same order in which they executed
during the original execution.

The only constraints between messages executing on different objects are the result of message
creation. With the addition of the message hierarchy tree, which reflects these creation dependencies,
it is possible to deterministically reconstruct execution from the object histories. Using this scheme,
only actual constraints are specified for re-execution.

Besides forming the foundation of execution replay, the histories are also useful aids in under-
standing and debugging the program. For example, during the active debugging mode, the user may
use the message hierarchy tree to examine the causality of the program. The user may also backtrack
up this tree, like backtracking up the call stack, to examine in more detail the other messages in the
causality chain.

3.2 Active Debugging

The active mode of the debugger is for interactive examination of program execution. This mode
may be entered immediately upon encountering an execution error during history recording mode,
or active mode may entered with the replay of execution.

—124—

The execution replay mechanism uses the recorded histories to deterministically re-execute the
program. With this mechanism, the user can confidently reproduce erroneous program behavior.
It is possible that two messages which do not have timing constraints between them will execute
in a different relative order during re-execution. However, this would not have any effect on the
execution outcome, any erroneous behavior would be reproduced (provided that there is not a bug
in the actual system).

The debugger is also equipped with a message reordering mechanism. While the execution is
suspended, the user is able to reorder the messages waiting in an object’s input queue. In this way,
the user can experiment with different event orderings, producing different execution outcomes.
Thus, the user may have an active role in debugging.

The user can also exercise control over the scheduler, which determines the order in which
“ready” objects execute. As with message reordering, the user may use this ability to experiment
with different possible pathes of execution.

The debugger is also equipped with the traditional breakpoint and tracing mechanisms. Break-
points may be set to occur on several different conditions, such as scheduling an object or execution
of a particular method.

3.3 Graphical Interface

In order to enhance use of the debugger a visual interface is also provided. Users select certain
objects to be displayed on the screen while they perform active debugging. The displayed object,
along with its execution history and its input stream is graphically displayed. From this display, the
user may selectively step through the execution, reorder messages in the input queue, and examine
the arguments of messages in more detail. While stepping through message execution, changes in
an object’s state or input queue is automatically reflected by updating the display.

top $6af0,,
.

bunter $6cd4=1counter

tcountex C
i indow_$6da8=Iwindow

| window
N—

ivalue

)

O=1value 2=1value

Figure 4: Example Visual Display

Figure 4 illustrates the basic concept of the graphical interface. In the illustration two'separate
objects are being displayed. Each object’s history, and input queue are displayed. The shaded
messages have already been executed. The currently executing messages are outlined in bold. The
remaining messages are waiting in their respective object’s queue. Changes in slot values are shown
below the messages which caused their change. Also, an arrow represents the parent of messages
wherever possible.

4 Implementation

Implementation of the message hierarchy tree requires increasing the internal representation of mes-
sages by one field to hold the reference to the parent message.

The object history also can be maintained easily: the input queue is basically the same form
as the history. Instead of removing messages from the front of the queue as they are executed, a

—125—

Message Structure
[MSG | next] — to next message
[pip 1
[MSG | parent] — to parent message
[trace mask]
[arg 1

Figure 5: Modified Message Structure.

pointer is moved along the queue to indicate the next un-executed message. Thus the implementation
requires adding just one field to the internal representation of the object structure.

Of course the memory used to internally represent messages may not be reclaimed once the
message has executed, unlike in regular execution. On the other hand, the accurate replay of
execution requires that the entire history be preserved. This would present no problem if unlimited
memory were available, but this is not the case.

L HEADER]

[M3G | first] — front of input queue
[MSG | last] — back of input queue
[MSG | history] — first executed message

[trace_ mask 1]
[unique id]
[message count]

Figure 6: Modified Object Structure.

The execution replay mechanism is also straightforward to implement. Only the main loop of
each processor must be modified to guarantee that messages execute in the correct order. Instead
of the normal behavior of executing the first message waiting in an object’s queue, the object first
consults the history to determine which message should be executed next. If the correct message is
not yet available on the queue, the object enters the waiting state, as if it had no messages on its
queue.

5 Logging Schemes

Preserving a history of execution is fairly costly in terms of memory. In normal A’ UM execution,
the memory used to internally represent a message may be reclaimed as soon as the message is
executed. With the debugger, that memory space not be reclaimed, the message instead remains in
the object’s history of executed messages.

In order to avoid running out of memory we can save the object histories to a disk file. However,
writing to a file is a slow operation, so we are faced with a time-space trade-off. If it is necessary to
write the histories to disk, the information written to disk should be minimized as much as possible.

To be able to accurately recreate execution, for each message we must be able to determine
its destination object, its relative execution order, and its parent message. (As stated earlier, a
complete ordering on message executions is not required to be able to recreate execution behavior.
Only specification of the relative ordering of messages executed by the same object is required.)

—126—

While it is possible to write a log entry for each message as it is executed, we do not feel that this
would be a good solution. In order to uniquely describe each message we would have to devise some
identification scheme, which would require a lengthy entry to describe each message.

Instead, log entries for messages are written only when the executing object is terminated. Thus,
all messages in the same object history are logged at the same time. This has two advantages:

1. Writes to disk occur less often, with more data written at each write.

2. Identification of each message is simplified by the fact that all messages executed by the same
object are recorded together; for each message only the its parent and its relative position in
the object history need to be recorded. The relative position is taken care of by the log

For this scheme, each object is assigned a unique identifier. Each message is identified by its
executing object’s ID and the execution number of the message. For log entries, a message is
identified by its parent and a small integer to distinguish it from other children of the parent. Thus,
the log for a history consists of the object’s own ID, followed by a list of parent IDs, one for each
message in the history.

6 Reduction of Probe Effect

As we stated, the probe effect is the chance that the debugger may alter execution behavior. With
a concurrent system, even the slightest change in timing may result a drastically different execution
behavior; thus, it is impossible to fully avoid the probe effect when designing a debugger. However,
we can reduce the probe effect to a tolerable level; tolerable has different meanings with regard to
active mode and recording mode.

In active mode, we wish to reduce the probe effect such that

1. with the debugger enabled, all execution behavior exhibited will be correct with respect to the
semantics of the A’ UM language.

2. any execution behavior that is possible with the debugger disabled would also be attainable
with the debugger. In other words, using the debugger the user should be able to examine and
experiment with every possible execution behavior that the actual system might exhibit.

These conditions do not guarantee that execution behavior exhibited with and without the debugger
will always be the same, but this is acceptable because in a non-deterministic system it is also not
guaranteed that two separate executions will have the same result. On the other hand, the above
conditions do guarantee that all legal execution outcomes are attainable, if the user wished to
experiment with them. This is the most that can be asked of a debugger tool.

Guaranteeing that only semantically correct execution behavior is exhibited is no more difficult
than guaranteeing that the actual A’UM system produces only legal behavior. The message re-
ordering mechanism and manual control over the object scheduler allow the user to generate all
possible execution behavior, thus guaranteeing the second condition.

When in recording mode, tolerance of the probe effect involves another condition in addition to
the above.” The execution must require a noticeably longer amount of execution time. Unless the
history recording is enabled before the execution begins, the debugger’s replay mechanism would
be unable to recreate the execution behavior. Therefore we recommend that the debugger always
be enabled during the ptogram development cycle. However, this advice will not be heeded unless
performance is not greatly affected by the debugger.

It can not be quantitatively stated whether this condition has been met; however in the next
section we describe some preliminary analysis of the overhead introduced by the debugger. We

—127—

would like to point at this stage that an important decision in the design of our debugger is the
distinction between recording mode and active mode. During active mode there is a higher tolerance
for debugger overhead, and thus we are able to provide greater functionality. On the other hand,
during recording mode, functionality is not important; we must minimize the interference of the
debugger to minimize the probe effect. This concept may be generalized to the design of debuggers
for any concurrent system.

7 Analysis

We have conducted some measurements to quantify the overhead of the A’ M debugger. The critical
comparison to make is between the performance of the system in record mode and the performance
of the system without the debugger. For the active mode, it is only necessary to verify that execution
speed is adequate for human interaction. The user should not experience any noticeable waiting time
if possible. Both the memory and time requirements for active mode is expected to be quite large.

We examine the dynamic memory consumption of the A’ UM debugger in recording mode and
compare it with that of regular execution.

7.1 Space Analysis

bytes
4200 T T T T T T 1 T T

No Debugger — |
History Recording Mode =——

4100

4000
3900
3800
3700
3600
3500

3400 1 1 1] I] i 1 1
480 500 520 540 560 580 600 620 640 660

memory transactions

Figure 7: Dynamic Memory Usage for Primes 20

As mentioned, we expect the memory requirements of the debugger to increase, particularly the
dynamic memory usage of the system. How much more memory used would depend upon the
nature of the application. The worst case would be for computations which have objects with long
history chains. The memory used to represent the messages of the history would be collected soon
after the message’s execution under normal execution; with the debugger’s histories, such memory
can not be reclaimed until the entire history is through executing.

We measure the menlory requirements for the debugger using the benchmark program for finding
the first n prime numbers using the sieve of erosthothenes. This program acts as an approximation for
“worst case” conditions of memory consumption because the objects’ histories are fairly long chains

-of messages. Our dynamic memory usage measurements are results from executing the program on

—128—

only one process. This way, it is easier to see the total memory usage; the analysis can be extended
to execution on multiple processors.

For the sieve of erosthothenes, at the point of maximum memory usage the available memory
requirement approximately doubles. (This corresponds to what might be the expected behavior for
the algorithm.) Figure 7 plots the dynamic memory usage for both the original A’ M system and
the debugging system in history mode for finding the first 20 primes. In this plot the x axis is the
number of memory allocate and deallocate transactions done by the system. The creation of an
object, message or stream would result in memory allocation transactions. When the memory for
representing an object, message or stream is reclaimed, a deallocate transaction results. The y axis
represents the total amount of memory in use. Figure 8 plots the dynamic memory consumption for

bytes

10000 fy Y T T T T T T T

No Debugger —
History Recording Mode —— -

9000

T

8000

7000

6000

1
1

5000

4000 -

3000 | i |] 1 1 | i 1

500 1000 1500 2000 2500 3000 3500 4000 4500
memory transactions

Figure 8: Dynamic Memory Usage for Primes 250

finding the first 250 primes. We find that for the sieve of erosthothenes, the maximum amount of
memory used is consistently less than three times that required by the original system.

8 Conclusion

We have presented the design of a debugger for the concurrent system A’UM. The debugger, with
its object histories, message passing history and replay mechanism, has been designed to overcome
program non-determinism by allowing the user to deterministically replay execution. The debugger’s
graphical interface aids the user in visualizing computation, somewhat reducing the complexity of
concurrent debugging. The debugger has also been designed to minimize the probe effect.

We have been able to achieve a good balance of the trade-off between providing high function-
ality and minimizing the probe effect by separating operation of the debugger into two modes of
operation: history recording mode and active debugging mode. During history recording mode the
computation of the debugger, and thus, its interference on the actual computation, is minimized.
During interactive mode, when computation power is expected to be abundantly available on a par-
allel machine, the expensive computation of the debugger, such as providing a graphical interface,
is performed.

The debugger design is not without flaws. Large programs, which already push the A’ UM system
to its memory limits, would certainly cause problems for the debugger. However, such conditions

—129—

may be easily checked. In the future we would like to more closely examine other logging schemes,
such as the immediate logging of messages when executing. We may also incrementally logging
histories, say every 1000 message executions.

Further possible areas of research for the A’ M debugger project includes further improving the
user interface and possibly providing filters which can recognize, group, and classify events. Also
another area of research would be ways of integrating static analysis, compile time information about
the program into the A’2M debugger.

References

[1] Agha, G.A., Actors: a Model of Concurrent Computation in Distributed Systems, M.L.T. Press
(1986).

[2] Peter Bates., Debugging Heterogeneous Distributed Systems Using Event-Based Models of
Behavior, Proceedings of Workshop on Parallel and Distributed Debugging. SigPlan Notices
Vol. 24, No 1. January 1989.

[3] Elshoff, 1.J.P., A Distributed Debugger for Amoeba, Proceedings of Workshop on Parallel and
Distributed Debugging.

[4] Halstead, Robert H., Kranz, David, and Sobalvarro, Patrick, “Multivision: A Tool for Visual-
izing Parallel Program Execution,” Talk given at Tokyo University, April 8, 1991.

(5] Lin, Chu-Chung and LeBlanc, Richard J., Event-based Debugging of Object/Action Programs
Proceedings of Workshop on Parallel and Distributed Debugging.

[6] McDowell, Charles E. and Helmbold, David P., Debugging Concurrent Programs, ACM Com-
puting Surveys Vol. 21, No 4. December 1989.

[7] Yoshida, Kaoru, A'UM: A Stream-Based Concurrent Object-Oriented Programming Language
Keio University, PhD thesis. 1990.

—130—

