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Instantaneous Message Passing
in Asynchronous Distributed Systems -1I-

Terunao SONEOKA  Toshihide IBARAKI
NTT Software Laboratories Kyoto University
Musashino-shi, Tokyo 180 Kyoto-shi, Kyoto 606

Abstract Asynchrony (unknown message transmission delay) complicates the design of protocols for distributed systems.
To simplify the protocol design task, therefore, this paper proposes an interprocess communication mechanism simulated
by instantaneous message passing. This mechanism has the following properties. 1) It is applicable without deadlock to the
partner model in which each process acts as both client and server. 2) It requires at most three signals to send a message,
which is shown to be the quasioptimum message complexity (at most one larger the lower bound). 3) It has the optimal
time complexity, where time complexity is evaluated by the worst-case delay from a send request to the occurrence of the
corresponding send event under the assumption that an upper bound is known for the interprocess communication delay.
Furthermore, a modified algorithm is proposed for attaining a shorter average delay by using a randomization technique.
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1 Introduction

Distributed systems without exact knowledge on relative process
speeds or message transmission delays are called asynchronous.
Asynchrony makes coordination between processes difficult, and
complicates the design and verification of protocols for such sys-
tems. These difficulties can be reduced if one can assume that
every message passing is achieved instantaneously.

Typical coordination errors in asynchronous systems are illus-
trated as follows.

¢ An executive manager A first sends engineer C a message
my “Please do a job X”, and in an hour sends message msy
ordering a division head B to check C’s progress on the job
X. On receiving m;,, B asks C the progress of job X by
sending message m3. However, when C receives mg, as C
has not yet received m;, C is confused about what B is
asking. This situation corresponds to the violation of the
causal delivery in [2, 12] (see Fig. 1 (a)).

A sends his girl friend B a message m; “I will pick you up at
your office at 5:00 PM”. Concurrently, B sends A a message
my “Let’s meet at the theater at 5:00 PM”. Thus, A goes
directly to the theater, but B keeps waiting for A at her
office. This situation corresponds to the collision in [4] !
(see Fig. 1(b)).

A monitoring process A is looking for the process having
a token. If A asks B and C “Do you have a token?” by
sending messages m; and my while the token is in transit
from B to C, then A receives “No” from both of them; so A
might mistakenly assume that the token has been lost (see
Fig. 1(c)).

mi

m2 m3

(@) (b)

Figure 1: Examples of coordination errors in asynchronous dis-
tributed systems

All of these errors can be easily avoided if every message pass-
ing is achieved instantaneously. Unfortunately, one cannot im-
plement a system with instantaneous message passing. Along
the lines of [11], which proposed a mechanism simulated by syn-
chronized clocks in distributed systems in order to simplify the
design task, this paper? proposes a mechanism simulated by in-
stantaneous message passing (i.e., synchronous message passing)
in distributed systems. Here, simulated means that each pro-
cess in a system can perform as if the system is using an ideal
instantaneous message passing.

“The collision is very often found in OSI protocols and telephone service
protocols.

2This paper is a revised version of [13]. The paper [13] proposes an ineffi-
cient algorithm whose message complexity is O(k?), where & is the maximum
number of messages in a deadlock cycle.

This paper first defines the concept of a system “simulated” by
another system with a different message passing property, and
presents a necessary and sufficient condition for simulated by in-
stantaneous message passing. This condition enables us to devise
more efficient means than the totally ordered message passing
using Lamport’s mutual exclusion algorithm[10] and Bagrodia’s
rendezvous algorithm[1] for the generalized alternative command
suggested in CSP[9]. It is also shown that the proposed mecha-
nism simulated by instantaneous message passing achieves higher
(stricter) synchrony than the causal delivery in [2, 12]. We then
propose a naive algorithm for achieving the mechanism. This al-
gorithm is deadlock-free even for the partner model of distributed
systems, where each process acts as both client and server. The
partner model is important for communications software such as
caller/callee processes in switching programs and SCP /SSP enti-
ties in an Intelligent Network. It requires at worst three signals
for transmitting a message, which is shown to be quasioptimum
in message complexity (at most one larger than the lower bound).
The naive algorithm is further shown to have the optimal time
complexity: that is, the worst-case delay from a send request to
the occurrence of the corresponding send event is bounded by
2kT, where & is the maximum length of the dependent message
sequence and 7" is assumed to be an upper bound on interprocess
communication delay.

Among the related communication mechanisms for asyn-
chronous distributed systems are the remote procedure call
(RPC)[3], Bagrodia’s rendezvous algorithm[1], and Goldman’s
synchronous multicast[6]. Although the RPC is widely used for
the client/server model, it may cause deadlocks in the partner
model. The instantaneous message passing mechanism proposed
in this paper is applicable without deadlock even for the part-
ner model. In Bagrodia’s rendezvous algorithm, on the other
hand, the sender and receiver must both be ready before mes-
sage passing execution. Thus, the concurrency of the redezvous
algorithm([1] is low in the sense that at most % processes can
send messages concurrently in an n-process system. Although
Goldman’s synchronous multicast is similar to our algorithm, his
algorithm requires 3 or 4 signals to handle a message® and the
worst-case delay from a send request to the occurrence of the
corresponding send event is equal to 4(k + 1)T.

The rest of the paper is organized as follows. Section 2 presents
a model of distributed systems and its related definitions. Sec-
tion 3 first presents a necessary and sufficient condition for simu-
lated by instantaneous message passing, which enables us to de-
vise more efficient algorithms than the previously proposed ones.
Next the effectiveness of the instantaneous message passing is
shown. Section 4 first proposes a naive algorithm for this mech-
anism and proves its correctness, freedom from deadlock, and
fairness. Then the lower bounds of message complexity and time
complexity are derived for instantaneous message passing prob-
lem. From these, the proposed algorithm is shown to be quasiop-
timum in message complexity and optimum in time complexity.
Section 5 presents a modified algorithm for attaining a shorter
average delay by using a randomization technique.

2 Model and definitions
2.1 Model

We consider an asynchronous distributed system consisting of
two layers: the application layer consisting of n user processes
and the message-passing layer with channels, through which user
processes communicate with each other. By asynchronous, we
mean that there is (1) no global clock (each user process is not

3The 4th signal is necessary for avoiding deadlocks, and can be shown to
be necessary even for single-cast cases.
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aware of the physical time, though it has its own local clock),
(2) no knowledge about the message transmission delay, and (3)
no assumption about the relative speed of user processes. We
however assume that (1) user processes and message-passing layer
are teliable, i.e., every message sent out is eventually received
by the destination user process after some nonnegative time has
elapsed ¢ if measured along the physical time axis, and that (2)
each user process has a distinct ID. For simplicity, we let P =
{u1,...,un} be the set of user process ID’s in the system.

In order to send a message m to another user process ug, user
process u, issues “will-sendl(m)” to the message-passing layer.
Upon receiving it, the message-passing layer sends m through
the channel and notifies u, of the occurrence of send event (de-
noted by send(m) or, shortly, sendp(m)) if some condition is
satisfied. After a short delay, the message-passing layer delivers
m to the destination user process u, (denoted by delvf(m) or,
shortly, delvy(m)). Besides send event and deliver event, user
processes also execute internal event, which is the result of ac-
tions autonomously taken by it. We assume for simplicity that
each event takes exactly one local time unit to execute.

2.2 History

To define “simulated”, the concept of history must be clearly
defined. We will follow the notation used by Neiger and Toueg[11]
to describe the history of a system, which is a specific execution
of a system. A history H consists of the following four history
functions; H =< C,Q, A, MP >. A system § is identified by the
set of histories that correspond to ail possible executions of the
system and is denoted by S(C,Q, A, M P).

o The clock history function C maps from user processes P
and physical time space R (non-negative real numbers) to
clock time space N (natural numbers); i.e., C: PX R N.
C(up,t) is the time on uy’s clock at physical time ¢. Since a
user process clock never decreases, all clock history functions
satisfy the condition: CC : Vu, € P Vi1,t2 € R [t1 < ta =
Clup, t1) < Clup, t2)]-

The state history function @ maps from user processes and
clock times to user process states S ie., @ : P X N — §.
User process u, is in state Q(up,c) when its clock shows c.

The event history function A maps from user processes and
clock times to events E; i.e., A : Px N ~ E. Note that only
a single event can occur in a user process up at a clock time.
This is a partial function, since a user process may not have
an event at every instant of clock time. User process u, has
event A(up,c) when its clock shows .

o The message-passing history function M P maps from pairs
of send events and the corresponding delivery events M C
E x E to pairs of physical times; i.e., MP : M — Rx R.
A message m € M is sent at r; time and delivered at 7,
time if M P(m) = (r1,72). Since the message transmission
delay is a nonnegative time, for any m € M, 11 < 1 if
MP(m) = (r1,72)-

Two histories Hy =< C1,@1,41,MPy > and Hy =<
C3,Q2, Aa, M P, > are equivalent to user process u,, denoted by
Hy & Hy, if Q1(tp,¢) = Q2(up, ¢) and Ay(up,c) = Aa(up,c) for
any ¢ € N. Furthermore, two histories Hy and Hj are equivalent,
denoted by Hy ~ Ha, if Hy X H, for all up € P; otherwise, we
denote Hy o Hy. Informally, Hy ~ Hp if all user processes be-
have in exactly the same manner according to their local clocks in
both histories. Since user processes cannot observe physical time

“Note that we do not assume that channels are FIFO (first-in-first-out).

(they can only observe their local clocks), they cannot distinguish
Hy from Ha.

2.3 Relations between events and messages

The “happens-before” relation “—” is defined on the set of events
of a system by Lamport[10] as follows.

Definition 2.1 Event e; happens-before event e;, denoted by
ey — ey, iff one of the following conditions is true.

1. ey and ey occur on the same user process Uy, and e, precedes
eg in its local time (denoted by e; LN eg).

2. e; is the sending of a message and e is the delivery of that
message.

3. transitive closure of 1 and 2.

Note that e; /4 e; for any event e; (irrefleziveness).
Furthermore, we define the “ezists-before” relation “<” on the
set of messages in a system as follows.

Definition 2.2 Message m; exists-before message mz, de-
noted by my < ma, iff onie of the following conditions is true.

1. my and my are sent by the same user process up and
sendy(my) B send,(my) (denoted by —my =<, —mg and
called (—,~) relation).

2. my and mg are respectively sent by and delivered to the same
user process u, and send,(mi) B delv,(my) (denoted by
—my <p +my and called (—, +) relation).

8. mq and my are respectively delivered to and sent by the same
user process u, and delvy(my) 2 sendy(my) (denoted by
+my <, —my and called (+,-) relation).

4. my and mgy are delivered to the same user process u, and
delvy(my) B delv,(m2) (denoted by +my <, +mz and called
(4, +) relation).

5. transitive closure of 1, 2, 3, and 4.

In particular, we denote my <, my iff one of the above conditions
1, 2, 3, or 4 holds for a given user process up.

3 Simulating instantaneous message pass-
ing
3.1 Necessary and sufficient condition

This section first defines the concept of a system “simulated” by
another system with a different message-passing property, and
presents a necessary and sufficient condition for simulated by in-
stantaneous message passing. We consider systems with different
message passing : a system using a message passing layer with
property M P is simply denoted by S(MP) by omitting C, @,
and A if the systems with the same C, @, and A are considered.
To clarify the relationship between a system §(M P;) with a mes-
sage passing property M Py and a system S(M P,) with a mes-
sage passing property M P,, we define the following terminology:
S(M Py) is simulated by S(M Py), denoted by S(M P1) 4 S(MP,),
(or simply, M Py is simulated by M Py) if

VH € S(MP) 3H' € S(MP;) [H ~ H').

Cleatly, S(MP)) 4 S(MP;) if S(MP;) C S(MP); that is,
H e S(MP,) = H € S(MP,). It is said that S(MPy) is dis-
tinguishable from S(M Pp), denoted by S(MPy) /AS(MPy), if
1H € S(MP)VH' € S(MP,) [H # H'].

The following lemma holds.
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Lemma 3.1 Relation 4 is transitive, i.e., S(MP;) < S(MPy)A
S(MPy) < S(MPs) => S(MP,) < S(MP).

Proof:

Obvious because VH € S(MP)AH" ¢ S(MP)H ~ H"
if VH € S(MP)3H' € S(MP)H ~ H'] and VH' €
S(MP,)AH" € S(MPs)[H' ~ H").

[m]

We will consider the following ideal instantaneous message
passing property I, which cannot be achieved by asynchronous
distributed systems in the real world.

I: Instantaneous message passing property. For any mes-
sage m, its transmission delay is always equal to zero; that
is, every message is transmitted instantaneously.

The following actual message-passing properties CD, NMC,
RDV, and TO are also considered. The algorithms for achiev-
ing causal delivery property (CD) in asynchronous distributed
systems are proposed in [2, 12]. The algorithms for no-message-
crossing property (N MC') will be proposed in the following sec-
tions. An algorithm for rendezvous property (RDV) is pro-
posed in [1] and an algorithm for total ordering property (T0)
can be easily obtained by using Lamport’s mutual exclusion
algorithm[10].

CD: Causal delivery property. If send,(m) — sendy(m’),
then delv?(m) = delvi(m').

NMC': No-message-crossing property. There is no pair of
messages m and m’ such that (m < m') A (m’ < m).

RDV: Rendezvous property. For any message m sent by
up, the receiver u, does not send or deliver any other mes-
sages m’ in the physical-time interval between send(m) and
delv?(m).

TO: Total ordering property. There is at most one message
in transit in the system at any physical time.

The following relations are satisfied (see Fig. 2).

Theorem 3.1 1. S(MP)3 S(I) iff S(MP)=S(NMC).
2. S(NMCYC S(CD). S(CD) AS(NMC). S(CD) AS(I).
3. S(RDV) C S(NMC) (hence S(RDV) 4 S(NMC)).
S(NMC) ¢ S(RDV). S(RDV) 4 5(I).
4. S(TO) € S(RDV) (hence S(T0) 4 S(RDV)). S(RDV) &
S(T0). S(T0)d 5(I).

Proof:

1. Consider any H € S(NMC), where every message can be
partially ordered according to the relation m < m’. Let us
assign any physical time ¢; € R to message m; such that m; <
m; = t; < tj. From this, it is clear that the clock of any
user process up, C(up,t), satisfies the clock condition C'Cj
that is, 1 < t2 = C(up,t1) < C(up,t2). Thus, there exists
H' € 5(I) such that H ~ H'. On the other hand, if S(MP)
does not satisfy NMC, then there is a pair of messages m
and m’ in H” € S(MP) such that (m < m/) A (m’ < m).
Let us assume that 3H' € S(I)[H"” ~ H'] and respectively
assign any physical times ¢ and ¢’ € R to messages m and
m’, then we get ¢ < t' and ¢ < t; a contradiction.

2. The first predicate is trivial. On the other hand, Fig. 1(b)
and (c) are counterexamples of S(CD) 4 S(NMC). The
third one is straightforward from Lemma 3.1.

| : Instantaneous message passing

CD: Causal delivery
NMC : No-message-crossing
RDV: Rendezvous

TO: Total ordering

Figure 2: Relationships among synchronous message-passing cat-
egories

3. Let us assume that there is a pair of messages m and m’' in
H € S(RDV) such that (m < m')A(m' < m); i.e., there is a
sequence of messages M .S : m = mg, m1, Mg, ..., Mgy =m'
such that Vi € {0,1,2,...,k = 1} : m; <p;, Mit1 (mod #)-

Case 1: Every relation m; <, miyq in M S is the (+,-)
relation of the exists-before relation.
In this case, send(mo) — delv(mg) B send(m;) —

P send(myq) — delv(mp_y) B send(mg) holds;

this contradicts the irreflexiveness of the — relation.

Case 2: Every relation m; <p; m;11 in M S is the (—,+)
relation (see Fig. 3 (a)).
Since the receiver of a message m does not send any
other messages m’ in the physical-time interval between
send(m) and delv(m) in H € S(RDV), send(m,) oc-
curs before send(miyq) (¢ = 0,...,k — 2) in physical-
time space. Thus send(my..1) occurs at the receiver of
Mo, Up,_, , between send(mg) and delv(mg) in physical-
time space; this is a contradiction.

Case 3: M S has a (+, +) relation +m; <, +miy1 (see Fig.
3(b))-
If you trace M S from mjyq, you will find either of
the following two types of relations; the (—,+) rela-
tion (—mit1 <p;y; +Mite) or the (—, —) relation. Let
mj =<p; mjy1 be the first (—,—) relation (—m; <,
—mjy1) found by tracing MS§ from m;y;. By further
tracing M5, you will find either of the following two
types of relations; the (+,~) relation (+mj41 <p,,,
—mjyg) or the (+,+) relation. Let my <p, mpyq be
the first (+,+) relation (+mg <p, +mgyr) found by
tracing M S from mjqq.
Since the receiver of a message m does not send or de-
liver any other messages m’ in the physical-time inter-
val between send(m) and delv(m) in H € S(RDV),
delv(m,;) occurs before send(miy1), send(miyy) oc-
curs before send(miy2),..., send(mj_1) occurs before
send(m;) in physical-time space. From this and the
causality from send(m;) and delv(my), delv(m;) occurs
before delv(my) in physical-time space. Tracing further
from my4q and using similar discussions, it can be de-
rived that delv(m;) occurs before delv(m;) in physical-
time space. Thus, delv(m;) occurs before delv(m;) in
physical-time space; a contradiction.
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m2

(c)

Figure 3: Explanation for proof of Theorem 3.1

On the other hand, Fig. 3(c) is a counterexample of
S(NMC)C S(RDV). The third one is straightforward from
Lemma 3.1.

4. The first predicate is trivial. On the other hand, Fig. 3(d)
is a counterexample of S(RDV) C S(T'0). The third one is
straightforward from Lemma 3.1.

a
The first predicate of this theorem shows that no-message-
crossing property N M C is necessary and sufficient for simulated
by instantaneous message passing. The second relation shows
that the no-message-crossing property (i.e., instantaneous mes-
sage passing property) achieves higher (stricter) synchronization
than the causal delivery property. The third and fourth rela-
tions show that the rendezvous property and the total ordering
property are too strong for simulated by instantaneous message
passing.

3.2 Effectiveness of instantaneous message passing

Before explaining the effectiveness of instantaneous message pass-
ing, we prepare the following concepts about the application pro-
tocols. Each user process u, runs a local application protocol
(6up, Iy, ). 6y, determines the next state of the user process from
its present state and the event executed; i.e., &y, : § X E — S.
If u, is in state s and event a occurs, then it changes to state
buy(8,@). Given u,’s state, II,, specifies the next event candi-
dates executed by up; i.e., Iy, : § 2E. If u, is in state s, then
it executes an event in I, (s). If a € I, (s) and a is an internal
event, then |IT,,(s)| = 1; that is, internal events are determin-
istically selected. However, user process u, is allowed to non-
deterministically select one of several communication (i.e., non-
internal) event candidates, e.g., send events and deliver events
for execution, as adopted in some of the existing local applica-
tion protocols written with the generalized alternative command
for CSP. The set of local application protocols for all user pro-
cesses, Il = {(6u,, T, )|u, € P}, is called an application protocol.

History H =< C,Q,A, M P > is consistent with protocol 1I if

Vu, € PYee€ N [ A(up,c) is defined =
Qup,c+1) = ‘Sup(Q("wc)vA("‘pa <))
/\A(up,c) € Hup(Q(“p» o))l

Conceptually, histories consistent with II are those that may re-
sult when we run II in the system. This definition leads to the
following[11]:

Lemma 3.2 If H; ~ Hy and Hy is consistent with application
protocol 11, then H; is also consistent with 1.

We consider that any problem to be solved in a distributed
system S is specified by a predicate ¥ on histories. Furthermore,
we assume that the specification ¥ is internal in the sense that,
for any equivalent histories H; ~ H, H satisfies ¥ if and only if
so does Hy. This in particular implies that ¥ does not contain the
concept of physical time ¢. Many problems in distributed systems
can be defined without involving #; for example, the concept of
serializability in executing transactions. We say that a protocol
11 solves the problem specified by 3 if any history consistent with
Il in S satisfies X.

Now we explain the effectiveness of instantaneous message
passing. Suppose that a designer verifies an application protocol
for a system with an ideal instantaneous message passing prop-
erty I. That is, the designer proves that all histories in S(I) con-
sistent with the application protocol under consideration satisfy
a given specification . Then, the application protocol may not
satisfy ¥ if it is run in a different system that does not have 7. The
following theorem shows that if X is internal and if a system uses
the message passing M P simulated by I (i.e., S(MP) 4 §(I)),
then the application protocol remains correct.

Theorem 3.2 Let £ be an internal specification. Let I be an
application protocol that satisfies T when run in a system with
an ideal instantaneous message passing I, S(I). Then II also
satisfies Y when run in a system S(MP) simulated by S(I).

Proof: By the assumption on II, any H' € S(I) that is consistent
with IT satisfies X. Consider an H € S(M P) consistent with II.
Since M P is simulated by I, there is an H' € S(I) such that
H' ~ H. By Lemma 3.2, H' is also consistent with II. By the
assumption, H' satisfies ¥. Since ¥ is internal and H' ~ H, H
also satisfies .
[m]
This property simplifies the design and verification of appli-
cation protocols. For example, if an application protocol is run
on a system with the property NMC, which is simulated by in-
stantaneous message passing property I, then it is sufficient to
design and verify under the assumption of instantaneous mes-
sage passing I, and the coordination errors illustrated in Fig. 1
can be easily resolved even without the assumption of property
I. Traditionally, coordination errors have been resolved during
the design phase by adding extra states and transitions; in some
cases, however, the modification was difficult and error-prone,
and the modified design was also more complicated and difficult
to understand. The instantaneous message passing property sim-
plifies these points.

4 Naive algorithm for achieving no-
message-crossing property

We will consider the message-passing layer of a system comsist-
ing of control processes and channels, and propose a naive algo-
rithm for a control process achieving no-message-crossing prop-
erty NMC, which by Theorem 3.1 is simulated by instantaneous
message passing 1.

4.1 Algorithm

The system architecture is illustrated in Fig. 4, where u, denotes
the user process engaged in an application protocol and p denotes
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Figure 4: System architecture

the control process working for u,. User process u, and its control
process p are located at the same site and communicate with
each other through shared memory. Each control process p has
a distinct ID and maintains a pending queue PQ, for storing
messages until they are sent or delivered. Upon receiving “will-
sendd(m)” from a user process up, the control process p sends m
to another control process ¢ through the channel and notifies u,
of the occurrence of send event (denoted by send(m) or, shortly,
send,(m)) if some condition is satisfied. On receiving the message
m (denoted by recvE(m) or, shortly, recvy(m)), ¢ delivers m to
its user process u, (denoted by delvi(m) or, shortly, delvy(m))
if some condition is satisfied. On delivery of a message m, the
receiver user process u, changes its state, and may decide to
withdraw some messages m’ issued to its control process ¢ with
“will-send(m’)” but not yet sent out.

Each control process p has a clock, and can issue timestamps
T, based on it. To sever ties between the same clock time of
different control processes, each control process p issues a times-
tamp T} of its clock time Cp appended with its process ID, p, i.e.,
T, = (Cp,p). The timestamped message m is denoted by “Tp:
m”. The ordering < among timestamps can be chosen to be lex-
icographical ordering. Control process p increments its clock Cp
at each local event, and at most one event can occur in a control
process p at the same clock time. Upon receiving a timestamped
message “T, : m” from control process ¢ where T; = (Cy,q),
control process p always sets its clock to: Cp = max{Cyp,Cq} +1
where C,, is the current clock value of p. The pending queue P@Q,
stores messages in the order of increasing timestamps. Hereafter,
as the message-passing layer of a system is mainly considered,
control processes are simply called processes.

The naive algorithm of process p given in Fig. 5 achieves no-
message-crossing property NMC in three phases® as shown in
Fig. 6; this is inspired by the deadlock-free concurrency control
algorithm for distributed database systems([8]. Here, LT, is max
{the timestamp of the latest message sent from p to another pro-
cess, the timestamp of the latest message delivered to u, from
P}

Example 4.1 and Figure 7 explain the behavior of the naive
algorithm.

Example 4.1 On receiving “will-sendy(m)” and “will-
sendj(m')” successively from a user process ug, process ¢ sends
timestamped signals “7y : request” to r and “Tp : request”
to s (T1 < T3), and stores “Ty : r,m, requesting” and “Tj :
s,m!, requesting” in P, in the order of increasing timestamps.

5Phases here are counted according to the number of signal transmissions.

— 150 —

. Message reception: On receiving a message “I” : m

. Request: On receiving “will-send}(m)” from a user process’

up, process p sends a timestamped signal (not message m)
“Ty : request” to process ¢, where T, = (Cp, p) and C), is the
current value of its clock, and stores the message m marked
as requesting, “Ty, : g,m, requesting”, in its pending queue
PQ,.

. Permission: On receiving a signal “T : request” from g,

e if (T > LT),) then process p stores “I" : reserved” in
PQp, and sends a permission signal “T" : permitted(T)”
to q.

e if (T < LT),) then process p stores “T” : reserved” in
PQyp, where TV = (Cp,p) and Cp is the current clock of
p, and sends “T" : permitted(T)” to gq.

. Reception of Permission : On receiving a signal “T” :

permitted(T)” from ¢, process p changes the stored message
“T : q,m, requesting” to “I" : g, m, permitted” in PQ,,
and reorders PQ, in the order of increasing timestamps.

. Message send: If the head of PQ, has a permitted mes-

sage “T’ : ¢,m, permitted”, then process p sends a mes-
sage “T' : m” to process g, sets LT, = T”, removes “T’ :
g, m, permitied” from PQ),, and notifies user process u, of
the occurrence of the send event. This is repeated as long as
the head of PQ, is a permitted message.

”

,
process p changes “T" : reserved” to “T’ : m” in PQ,. On
receiving a null message “T” : null” (to be mentioned in Step
6), process p just removes “T" : reserved” from PQ,.

. Message delivery: If there is a message “T” : m” at the

head of PQ,, then p delivers m to its user process up, sets
LT, = 7', and removes “T’ : m” from PQ,. Upon delivery,
the user process changes its state, and might decide to with-
draw a message m whose “will-send(m)” has been issued but
has not yet been sent out. If user process u, changes only the
message content from m to m’ (and does not change its des-
tination), then u, changes “T : g, m,*” (* means requesting
or permitted) to “T : g,m’/,*”. If up cancels its issued “will-
send(m)”, then u, changes “T : ¢,m,*” to “T : q,null,*".
This is repeated as long as the head of PQ, is a received
message.

Figure 5: Naive algorithm A; for control process p
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Assume that LT, > Ty and LT, > T. On receiving a signal
“Ty : request” from g, process r stores “TY{ : reserved” in PQ,
and sends “T} : permitted(T1)” to q, where T} = (Cy,r) and C;
is the current clock value of r. Similarly, on receiving a signal
“T, : request” from g, process s stores “Tj : reserved” in PQ,
and sends “T} : permitted(Ts)” to ¢, where T = (Cs,s) and C; is
the current clock value of s. Here, we assume that T3 < 77 < T4.

On receiving “T{A : permitted(Ty)” from r, ¢ changes “Ty :
r,m, requesting” in PQ, to “I{ : r,m, permitted” and re-
orders PQ,. Since T < Tj, ¢ cannot send m to r before
“Ty : s,m’, requesting” is removed.

Before receiving “T4 : permitted(T;)”, let us assume that ¢
transmits “Ts : permitted(T3)” to p and stores “Ts : reserved”
in PQy, where T, < T{ < T3 < Tj. On receiving “T; :
permitted(Ty)” from s, g changes “Ty : r,m’, requesting” in
PQq to “Th : r,m'!, permitted”, and reorders PQ,. Then, since
the head of PQ, is “T] : r,m, permiited”, ¢ immediately sends
a message “Iy : m” to r and removes the corresponding message
“Ty{ : r,m,permitted” from PQ,. However, ¢ must wait at this
point because “T3 : reserved” is at the head of PQ,. On receiv-
ing “T3 : m""” from p , q changes “T5 : reserved” to “Ts : m"” in
PQ,, and g delivers it to ug, removing it from PQ,. Let us assume
that ¢ still wants to send m/ to s. Since “Tj : s,m/, permitted”
is now at the head of PQ,, ¢ sends message “Ty : m'” to s.

[w}

4.2 Correctness proof

First, we will prove that this algorithm has no-message-crossing
property NMC.

Theorem 4.1 The above algorithm A; achieves NMC; i.e., for
any H € S(NMC), there is no pair of messages m and m' in H
such that (m < m') A (m/ <X m).

Proof: Similar to the proof of the third predicate in Theorem
3.1, let us assume that there is a pair of messages m and m’
in H such that (m < m') A (m' < m); ie., there is a sequence
of messages MS : m = mg,m1,Ma,...,Mk—1 = m’ such that
m; <p; Mit1(mod k) fori € {0,1,2,. k= 1}.

Case 1: Every relation m; <p; mit1 in M S is the (4, —) relation.

This can be proven in the same way as in Case 1 of the third
predicate in Theorem 3.1.

Case 2: Every relation m; <p, miy1 in M S satisfies the (—,+)
relation (see Fig. 3 (a)).

Let the timestamps of a message m; (i = 0,...,k — 1) be
T;. When the send event of m; occurs in process p; before
the delivery event of mit1, if time T;1; has been reserved in
PQ,, for miy; before sending m;, then T; < Tipq because
“T; @ p;_1,m;, permitted” is the head of PQ,,; otherwise,
mit1 will be permitted with T;4q which is larger than LT; >
T;. Thus, we get To<Ti <T2<...<Tg-1 < To; this is a
contradiction. .

Case 3: MS has the (+,+) relation +m; <, +mit1 (see Fig.
3(b)).
Similar to the proof of Case 3 of the third predicate in The-
orem 3.1, let mj <p; mjy1 be the first (—, ) relation found
by tracing M S from mitq, and mg ~<p, mi41 be the first
(+,+) relation found by further tracing M S from mj41.

Let the timestamps of message m; (¢ = 0,...,k — 1) be T;.
From the same reason as in Case 2, we get Ti41 < Tipz <
... < Tj. Since the message at the head of PQ@y; is sent
by pj, and p; requests sending with the timestamp of its
current clock value, we get T; < Tj31. When the delivery
event of mjy; occurs in process p;j41 before the send event
of M2, if pj+1 has sent the request of sending m;,, before
delivering mj41, then Tjy1 < Tjqz because “Tjyq : mjpr” is
the head of PQ,,,,; otherwise, Tj42 > Tj41 because mj4a
will be requested with a timestamp of the current clock value
of pj+1, which is larger than Tj41 and not larger than T)ys.
Thus, we get Tiy1 < Tig2 < ... < T; < Tj1 < ... <
T < Tks1. Tracing further from mgyy and using similar
discussions, we can get Tx4q < ... < Tj < Tyyq; thisis a
contradiction.

. a
Next, we will prove that this algorithm is free from deadlock.

Theorem 4.2 The naive algorithm A; is free from deadlock.

Proof: Process po must refrain from sending a permitted mes-
sage “Ip : mg” to pg, if there is either a requesting mes-
sage “Ty : q,m', requesting”, another permitted message “Ty :
g,m!, permitted”, or a reserved message “Ty : reserved” at the
head of PQ,,. Since the requesting message at the head of PQ,,
will never fail to become a permitted message and the permit-
ted message at the head will never fail to be sent and removed
from PQy,, it is sufficient to consider the case that a reserved
message “T; : reserved’exists at the head of PQ,,. If po has
issued a permission signal “Ty : permitted(---)” to p; and has
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stored “Ty : reserved” in PQy,, and if Ty < Ty, then py must
refrain from sending a permitted message “Tp : mp” to py, until it
receives a timestamped message “T} : m;” from p1. By a similar
discussion, deadlock might occur when py refrains from sending
my until receiving “Ty : my” (Ty < T1), p; refrains from sending
mg until receiving “Ts : ms” (T3 < Ty), ... , py refrains from
sending my until receiving “Tp : mo” (Tp < Ti). This case how-
ever means that Ty > T4 > Ty > ... > Ty > Tp: a contradiction.
. =]
Finally, we will prove that the algorithm satisfies the following
fairness condition.

Theorem 4.3 The naive algorithm A; satisfies the fairness con-
dition: If process p continually wishes to send a message to an-
other process q, then p will eventually be able to send a message
to q.

Proof: Any sender p can send a request signal at any time and
the receiver ¢ will return the corresponding permission signal
with timestamp 7" immediately after receiving the request signal.
Since the number of processes in a system is finite and the times-
tamps of the successive requests from a process are always in-
cremented, the number of messages requested or permitted from
p with timestamp T < 7” is finite. From this and the freedom
from deadlock, the sender p will eventually be able to send the
message to g.

m]

4.3 Complexity
4.3.1 Complexity indices

We consider here the following message complezity and time com-
plezity of an algorithm A.

® Message Complexity CM(4): the maximum number of
signals required to send a message if the senrder continually
wishes to send the message to the receiver.

¢ Time Complexity CT(A): the maximum delay from re-
ceiving a “will-send” request to the occurrence of the corre-
sponding send event, where an upper bound on interprocess
communication delay is given as T, and the processing time
of each process and the unit time of the clock can be consid-
ered to be negligible compared with 7.

4.3.2 Lower bounds of complexity indices

First, we will present a trivial lower bound on CM for any al-
gorithm achieving NMC. Note that obtaining the strict lower
bounds on CM remains for further study.

Theorem 4.4 For any algorithm A achieving NMC, CM(A) >
2.

Proof: Assume that there is an algorithm A’ achieving NMC by
sending only one signal for each message. At the initial state of
the algorithm A’ achieving NMC, only one process p must obtain
a permission to send a message. In order to achieve NMC, the
other processes have to receive a signal before obtaining permis-
sion to send a message, because each process can get information
only by exchanging signals. If there is a process that has received
a signal but will not send a message, then the algorithm A’ cannot
proceed; a contradiction. Thus, we get CM(A4) > 2.
[m]
We will next consider lower bounds on CT for algorithms
achieving NMC. The message sequence my < my_1 < ...m; <
mi—1 < ... < my such that m; < m;_; (¢ = 2,...,k) has the

(~,+) relation is called a dependent message sequence; it is said
that message my depends on m; (i =2,...,k). On the other
hand, the message sequence mj < mf_; < ...mi < mi_; <
... < mq sueh that m{ < m{_; (i = 2,...,k) has the (+,-)
relation is called a message chain.

Theorem 4.5 If an algorithm A achieving NMC does not use
global information (i.e., ‘the processes involved in determining
whether a message transmission can be executed or not are only
the corresponding sender and receiver processes), then CT(A) >
2kT, where k is the mazimum length of the dependent message
sequence.

To prove this theorem, the process’ knowledge concept must
be clearly defined. We will follow the notation used by Halpern
and Moses[7] to describe the knowledge of processes. We start
with the primitive propositions in ® and form more complicated
predicates ¢ by closing off under negation -, conjunction A, and
modal operators K1,..., K, (one for each process). A statement
like Ko is read “process i knows ¢.”

A process’ knowledge at the end of a history is defined induc-
tively on the predicate . The truth assignment  tells us, for
each history H and each primitive proposition p € ®, whether p
is true or false at the end of H. “y is true at the end of H,” is
written as H = ¢.

e H |= p (for a primitive proposition p € @) iff 7(H,p) =
true,

« HloApiff H g and 7 k= ¢,
o H=-piff H |£ ¢, and

o H |= Kip iff H' |= ¢ for all H' such that H and H' are
equivalent to i, i.e., H ~ H'.

The last clause captures the intuition that process i knows a
predicate ¢ in H exactly, if ¢ is true for all histories ¢ can consider
possible for H.

Chandy and Misra{5] defined a predicate ¢ to be local to a
process : if for all histories H, H |= Kip V K;—~. That is, the
value of ¢ is always known to i. They showed the following
lemma.

Lemma 4.1 ([5]) Let py,pa,...,Pks1 e processes in a system,
H and H' be histories such that H is a prefiz of H', and ¢
be a predicate that is local to pryy. If H |= —(Kp¢) and
H' = Ky (Kp,(-..(Kp(9)))), then there is a message chain
my < My < ... < mh < my from pry1 to py, which is con-
tained in H' but not in H.

Proof of Theorem 4.5:

Consider the case in which a process p; has sent m; to p,
and immediately after that the user process wu,, issues “will-
send (m')”, and there is a dependent message sequence of length
k, mp < mg_q < ..., < my, as shown in Fig. 8(a). It takes at
worst k7' from sending m; to receiving my. Since m’ has a possi-
bility to be instantaneously received, sending m’ to g is permitted
only if p; has the knowledge that there is no undelivered message
to the user process of g, uy, on which m; depends.

If global information can be used, then p; can get the above
knowledge in KT + T time after sending my, by letting each
process broadcast all the necessary information to other pro-
cesses on receiving a message. However, without global infor-
mation, py requires the knowledge K, (there is no undelivered
message to u, on which m; depends). For a dependent mes-
sage sequence of length & (note that the maximum length & is
assumed to be unknown to each process) the above knowledge
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Figure 8: Explanation for lower bound of time complexity

is equal to K, (Kp,(there is no undelivered message to u, on
which my depends)), where my is the message sent by ps be-
fore delivering my. Similarly, the above knowledge is equal to
Ky, (Kpy(Kps - - - (Kp,,, (there is no undelivered message to u, at
tk+1)))), Where txyq is the time instant that my is delivered to
Upyey1-

Since the predicate “there is no undelivered message to u, at
tr+1” is localto pryq, but not local to the other processes, there is
by Lemma 4.1 a message chain mj, < ... < mj < m} transmitted
after delivering my, but before sending m/; thus we get CT > 2kT.

O

4.3.3 Complexities of the naive algorithm

Since the naive algorithm Ay always requires three signals, “T :
request”, “T" : permitted(T)”, and “T' : m” to send a message
m, the message complexity of algorithm A;, CM(A;) is equal
to 3. The time complexity of A;, CT(41), is equal to 2T,
where k is the maximum length of the dependent message se-
quence. This is because sender process py must wait at most 2T
time from receiving “will-sendpet* (m)” to receiving the permis-
sion “Ty : permitted(Ty)” from pgiq, and must wait for receiving
a message “Ty_y : my—1” before sending the message “T} : my”
if p has returned a permission signal “T%_1 : . permitted(Tk—1)”
t0 pg—2 and Tr_y < T. As shown in Fig. 8(b), the waiting time
from receiving “Ty : permitted(T%)” to sending “T% : my” is at
most 2(k — 1)T if the maximum length of the dependent message
sequernce is equal to k. Thus, from these and the lower bounds in
Theorem 4.4 and Theorem 4.5, CT(A;) is optimum and C M (A;)
is quasioptimum (at most one larger than the lower bound).

As references, the complexities of Goldman’s algorithm G are:
CM(G) = 4 and CT(GQ) = 4(k + 1)T[6], and those of Bagro-
dia’s rendezvous algorithm RDV are: CM(RDV) = 4n — 3 and
CT(RDV) = 4(n — 1)T, where n is the number of processes

1. Request: Same as Step 1 of algorithm' A; except for setting
MT, =T,

2. Permission: On receiving a signal “T' : request” from ¢,

o if (T > MT,) then process p stores “T" : reserved” in
PQp, and sends “T : permitted(T')” to g.

o if (LT, < T < MT,) then process p chooses T, as
either T or T’ at random, stores “T, :
PQy, and sends “Ty, : permitted(T)” to g, where T’ =
(Cp,p) and C, is the current clock of p.

reserved” in

e if (T' < LT,) then process p stores “I” : reserved” in
PQ, and sends “T" : permitted(T)” to g.

4. Message send, 6. Message delivery: Same as Steps
4 and 6 of algorithm A; except for setting MT, = T’ and
LT, = T' instead of LT, = T".

Figure 9: Improved algorithm A, for control process p

in a system[1]. Namely, the naive algorithm A; is better than
Goldman’s algorithm and Bagrodia’s algorithm in CM and CT.
Although RPC is efficient with respect to its complexities, i.e.,
CM(RPC) = 2 and CT(RPC) = 2kT[3], it may cause deadlocks
in the partner model.

5 Improvement of average-case behaviors
by randomization

This section proposes another algorithm A, in order to improve
the average-case time complexity of the naive algorithm A; by
using a randomization technique. Let us consider the case in Fig.
8(b) which gives the worst delay, i.e., CT(A;) = 2kT. Let each
process p; request with timestamp T; (Ty < T2 < ... < T}) and
T be the timestamp that p; is permitted to send. If 7; = T/ for
every ¢, this worst case occurs. However, if T < T4, T§ > T4,
T < Ty,..., then the message chain m; < mq < ... < my is
cut separately and the worst delay in this case becomes shorter.
It can be easily shown that algorithm A; still works even if the
timestamp T, that each process p gets from ¢ is set to any value
not less than max {7}, LT, + 1}, where LTy is identical to the one
defined in the algorithm A;. Therefore, the sending pattern can
be changed by chosing the value of T, appropriately.

The algorithm A, given in Fig. 9 has an improved average
delay by technique that randomly selects 7. Here, M Ty, is max
{the timestamp of the latest message sent or requested from p to
another process, the timestamp of the latest message delivered
to u, from p}, and LT}, is as defined for algorithm A;. All the
other steps are the same as those for A;.

Here, we will evaluate the average of all sending patterns, as
shown in Fig. 8(b), for ¥ = 4. For simplicity, we assume that
LTy < T; (i = 1,...,4). For example, consider m; and m; in
Fig. 8(b), then the permitted timestamp for sending m; will be
Ty or T3(> Ty) and that for sending my will be Tz or T4(> T3).
When the permitted timestamp of my is T4 and that of my is Ty,
p2 can send my without waiting for the reception of m; because
T2 < TZI

Let (r1,72,73,74) be a tuple of the permitted timestamps of
™1, Mg, M3, and my. We will evaluate the worst delay WD for
all sending patterns and their average CTy,.
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WD and CT,, for As

WD (r1,72,73,74) Probability
2kT = 8T (T1,T2,T3,Ty) x
k- VT = 6T | (T4, T, T, Ty), (T T4 T4 Te) | 4
(TévTé»TLT‘i)v (Té,T2»T3,T4)
2(k - Z)T =4T (Tl’TévT-'i’T‘i)’ (TéaTé7T37T4) %
(T}, T2, T4,T4)
CToy 5.5T

The average of WD, CT,,(A2) = 5.5T, is an improvement from
CT(A;) =8T.

Note that this randomization does not increase the delay WD
even for the other cases by the following reason. Consider the
case of k = 3. f T} < Ty and T35 < T, then the randomization
might cut the message chain m; < mg, but does not influence the
order of my and mgs. ¥ Ty > T, > T3, then the randomization
does not work for this case. If Ty > Ty and T3 > Th, then the
permitted timestamp of mg is chosen randomly as T or Ty(>
T3). If Ty is chosen, then the message sending pattern is the
same as that of naive algorithm Ay. If T} is chosen, then the
randomization creates a new message chain my < mg but cuts
the original message chain my < mg separately, and thus does
not increase W.D. Thus, the randomization does not increase
WD in every case.

6 Conclusions

This paper presents a mechanism simulated by instantaneous
message passing in asynchronous systems. A necessary and suf-
ficient condition is first clarified for simulated by instantaneous
message passing, which enables us to devise more efficient algo-
rithms than the previously proposed ones: Bagrodia’s rendezvous
algorithm[1] and Goldman’s algorithm[6]. A naive algorithm is
next proposed for this mechanism whose worst-case message com-
plexity is quasioptimum and time complexity is optimum. Fur-
thermore, a modified algorithm is proposed for attaining higher
efficiency in the average case evaluation by using a randomization
technique.

Extension to multicast communications remains for further
study, which might improve the result of Goldman[6].
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