TRPF VY- AR HR-
(1992 3 12)

BIEF v — 4 v JETHR D 7 D OB
(extended abstract)

AR FHHEGHE EE
PR EETHERITER

e v — A v VEER Y ETT SRR E R, EEF v—4 v 7EER (BIFTE’ LNC
LHg3) GEEE - REESEOHEOEFTALTH S, TREH (LIFCik LNAM t#83) X LNC
DA VAL IORNEERE RS bDTHB, ¥F, LNC 244 2AaBRL v X7 AH#S
CBERL LTCEET 3. LT, LNAM o EHK 254 5. LNAM 0oEfEIR LNC 7
g7 5% LINAMOa—- FYEBRT2a2vy~"4 5% ¢ BLTCHLAKA S, LNAM ik WAM
DR & LTHEE T T3, RS LNAM ORDEEARITH 5, TOHRIC X DR
FERTE & THOMIPREBR S 3,

An Abstract Machine for a Lazy Narrowing Calculus
(extended abstract)

Taro Suzuki, Tetsuo Ida, Satoshi Okui

Institute of Information Sciences and Electronics, University of Tsukuba

An abstract machine for a lazy narrowing calculus is presented. The lazy narrowing calculus
(to be called LNC) is a computation model for functional-logic programming language. The
abstract machine (to be called LNAM) is the target machine of the compiler of LNC. We first
give the overview of LNC based on conditional closure reduction scheme. We then give the
formal definition of LNAM. To see how LNAM works we show the compilation of programs
of LNC into LNAM code. LNAM is characterized by an extended WAM. The extension is
essential since it realizes the lazy evaluation and term reduction.

6—3

1 Introduction

In the previous papers[5, 6] we presented lazy narrowing cal-
culi to be used as a computation model for functional-logic
programming languages. In this paper we present an ab-
stract machine for a particular lazy narrowing calculus to
be called LNC 1. The abstract machine is an implemen-
tation model for LNC, and hence for the functional-logic
programming language that we discussed in the previous
papers. For our subsequent discussion we call the lazy nar-
rowing abstract machine LNAM (Lazy Narrowing Abstract
Machine).

2 Closure‘rewriting system

Theories of lazy narrowing have been studied on first-order
terms that are conceptually represented in trees. In the im-
plementations of the lazy narrowing calculus it is more con-
venient to treat terms as dags (directed acyclic graphs) for
the following reason: Full laziness in functional program-
ming implies that terms to be reduced are never copied dur-
ing the reduction, and we want to realize this kind of full
laziness in the implementation of the lazy narrowing calcu-
lus. A direct implementation of terms as dags has turned out
to be an unnecessary complication, however, since it would
imply direct modification of dags and copying of terms (of
- the righthand side) of rewrite rules. We develop in this pa-
per a formalism which in essence realizes a more efficient
treatment of rewriting of dags. It is based on the rewriting
of closures. The idea goes back to refined basic narrowing of
Nutt et al. [4] and of Hblldobler[3]. We first define a closure
rewriting system.

2.1 Basics

Let V(5 #,y,2) and 7(3 s,t,1,7) denote a set of variables
and terms, respectively. We distinguish a special term L
which denotes an undefined value. A binding is a pair of a
term and a variable, written as t/z where t € 7 and z € V.

A set 0 = {t/z|t € T,z € V} of bindings subjected to
the condition: -

t/z,t'/r’ €ebands =2 =>t=1

is called a substitution.

A substitution is used as a mapping from V to 7. That
is, for 8 = {t;/a;li € T}, 6z; = t;,i € Z and Oy = y for
yé€{zlieI}.

Let 0[t/x] denote a substitution such that

_ft fy=ux
8lt/21(v) = { 8(y) otherwise
6[t/<] in set representation is (8 — {§z/z}) U {t/x}. As
usual, substitutions are extended to a homomorphism from
TtoT.

In the papers{5, 6] LNC is called LNC;.

. f
g
/
b
[y X
environment o={ ..., s/, iy, ... } term fig(y, x), x)

closure o - f{g(y, x),x)

f
/g<>
t N

dag

Figure 1: closure and dag

We are interested in a particular class © of substitutions
that satisfy the following property:

VoeOVieT In>0,0(6m) =47t)

A substitution 6 in © is called an environment. 6™t is called
an instance of &,

A pair of an environment and a term is called a closure.
A closure consisting of an environment « and a term t is
written as « - .

Property (1) means that for a given closure o - £ the en-
vironment a has a unique fixed point which is an instance
of t. We denote the fixed point as ja - ¢]

The domain of a substitution 6 is denoted as Dom(6). A
set of occurrences of z in a term ¢ is denoted as O(t, z), and
a set of occurrences of all subterms of ¢ is denoted as O(t).
An example of pictorial representation of a closure is shown
in Fig. 1. Let ©(3 o,) and C be a set of environments
and closures, respectively. Two closures a - ¢ and &' - ¢' are
equal (written as -t =o' -¢') iff |a-t| and | o/ - '] are
syntactically equal.

A subterm (- t)/u at an occurrence u of closure « - ¢ is
defined as follows:

(a-t)/A = ¢
o = [(ea(@)iv Ho(z)#
(a;:c)/m.t - { und:ﬁned * I)tl(:e::wisez
(a-fleonstsy..) /iw = (a-t:)/u

Let (- ¢)fu « 5] denote a closure which is created by
substituting term s for the subterm at an occurrence u. It
is defined formally as follows:

(e-2)u — s] = dt'f2] -z

where o - t' = a- tfu — s]

z and t satisfies:

3> 0,0t (z) =t g V,oi(z) =z
(- flo.stis A~ 8] = a-s
(@ floostiye- v — s] = o - f(o..,8..0)

where o -t} = (a-t;)[u «— 3]

2.2 CCRS

Since we need to define LNC in terms of a conditional
rewriting system, we will first define a closure rewriting sys-
tem. Let R be conditional term rewriting systems of type
1I[1] (or standard conditional term rewriting systems [2]).

Given a conditional term rewriting system (7,R), we
call (C,R) conditional closure rewriting system (CCRS for
short) whose underlying system is (7, R).

A binary relation on a set of closures = (i > 0) is induc-
tively defined as follows:

1. %is9 (empty set).

2. a-t = f-s if the following condition is satisfied: there
exists =7 < 81 | t1,...,5, | t, of a new variant of a
conditional rewrite rule in R, non-variable occurreiice
u of term ¢ and substituion o such that

@) |a-t| /u=al
(b) 6 = {({e- t)/uv)/z | v € O(,2), x € Dom(o)}

() B-s=(0UaUv-t)u — r] wherey={L/z|
z€Var(sy L t1, -+, 8n | ta) = Var(l)}

(d) Vk=1,...,n, 3 Br-q, 0-5k e A AN

Note that § is well defined since a - t/u.v for all
v € O(l,z) are the same because of 2 (a). Relation

i-1 . <. i-1
—» denotes a reflexive and transitive closure of —.

A reduction relation — w.r.t. CCRS (C,R) is defined as
Uizo =

3 Lazy Narrowing Calculus Based
on CCRS

The lazy narrowing calculus LNC is a realization of lazy
narrowing based on CCRS which is the starting point for
developing the interpreter and the lazy narrowing abstract
machine in the following sections. The conditional reduction
introduced in the previous section can be simulated by LNC'.
LNC realizes conditional narrowing which is the same as con-
ditional reduction but uses unifiers instead of matchers. It
allows us to solve equations. We first extend the closure
defined in the previous section to a sequence of equations.
That is, we also call a pair of an environment and a sequence
of equations a closure. In particular we call a closure whose
sequence part is empty an empty closure.

3.1 Language for LNC

The language for LNC is a language of first-order Horn
clause logic equipped with only equality predicate symbol,
which is used as an infix predicate symbol.

The alphabet consists of

1. function symbols (denoted by f,g,...),
2. constructor symbols (denoted by ¢,...),
3. predicate symbols (=) and

4. logical connectives (<=, , (comma)).

Terms are classified into three categories, i.e. function
terms, constructor terms and variables, depending on the
leftmost symbol of the terms. A function term (respectively
constructor term) is a term whose leftmost symbol is a func-
tion (respectively constructor) symbol. A data term is either
a variable or a constructor term whose proper subterms are
data terms.

A conditional equation is formed according to the follow-
ing syntax.

{conditional equation) u:= (head)(body) | (head)

(head) == (equation)
{body) == < (equation),,...,{equation),,
where n > 1
{equation) == (term)= (term)

A program R is a set of conditional equations. We impose
the following conditions on R.

C0. R is a conditional term rewriting system.

C1. A conditional equation in R. is of the form:
f(d],‘..,dn) =t&<ti=¢e1ynytm=¢em

where d;,...,d, are data terms and ej,...,e, are
ground data terms.

C2. R is weakly non-ambiguous and left-linear.

C0 ~ C2 implies that R is a restricted I, CTRS.
A goal is formed according to the following syntax.

(goal) ::= (environment)- {equation),,...,{equation),

wheren >0
We impose the following conditions on a goal.
C3. A goal a- E,t = d, E' satisfies the following conditions:
C3-1. Var(la-t)NVar(la-d]) =0.
C3-2. Var(la- Ej)nVar(ja-d]) = 0.

C3-3. |a-d]is alinear data term.

o &,: transformation of a conditional equation to homogeneous form
®iff(....d,...) =s = E]=®,[f(...,2,..) =s «z=d, E]
where d is a non-variable data term and z is a fresh variable.

¢ &,: shallowing for the bodies of a conditional equation:

A4=<I>2[...,S=C(...

] = A€ B, s =cf...

VO he=d,. .]

where d is a non-variable data term, z is a fresh variable and 4 is an equation.

o ®;3: shallowing for a goal:

@3[a~(...,s=c(...‘,d,...),...)]]=Q;,[O:U{J./a:}'(...,s=c(...,z,...),m=d,...)ﬂ

where d is a non-variable data term or a variable occurring in the initial goal, and z is a fresh variable.

Figure 2: transformation rules

3.2 Transformation to the basic forms

In order for LNC to be simple and efficient as a calcu-
. lus, we transform conditional equations and goals to struc-
turely simpler forms called basic conditional equations and
basic goals respectively. The transformation consists of three
transformation rules: transformation to a homogeneous form
and shallowing on the bodies of conditional equations and
on initial goals. The transformation rules are given in Fig.
2.

A conditional equation of the form f(w1,...,an) =t &
F where z,...,2, are distinct variables is called homoge-
neous [8]. The transformation rule ®; transforms a condi-
tional equation to a homogeneous conditional equation.

A data term of the form ¢(z1,...,25) or a variable is
called shallow. The transformation rule ®; transforms a
conditional equation to a conditional equation such that the
righthand sides of equations in the body are linear shallow
data terms, and ®3 transforms a goal to a goal of the form
a- E,t =d,E’ where |a-d| is a linear shallow data term.

@3 is applicable to a sequence of equations of the form
a-(E,s=¢(..,d,...),E') even when d is a variable if it
occurs also in the initial goal, whereas ®; is not.

To a conditional equation, ¥, is first applied and then
@, is applied. The resulting conditional equation is homo-
geneous and all the righthand sides of the equations in the
body are shallow. It is called a basic conditional equation.
®3(E) is called a basic goal. The basic conditional equation
is simply called a rule in the sequel, and the leftmost symbol
of the lefthand side of the head equation is called the name
of the rule.

3.3 Inference rules

The inference rules of LNC are as follows.

1. outermost reduction [or]

a-(s=d,E) |a-s|=f(...)where
o - (F,s' = d,E) & means a —{L/z|z € Dom(a)}
f(z1, ., zn) =t F

where o’ - s' = ({((a - 8)/1)/21,. .., ((a 8)/n) /2,
L/z,oo o, Lfzm} U s)[A « t]and {z1,...,2m} =
Var(F) - {z1,...,za}.
2. variable elimination of data terms {vd}
a-(s=d,FE)
Toldfa] E

where ad/z] is an environment part of (a-z)[A «~ d]

{@-sl=2

3. variable elimination of constructor terms [vc]
a-(s=d,FE)

als/z]-E } =2

|
sl=c(...)

QR R

4. unification of constructor terms [u]

a-(s=d,E) el
a{t]/l‘],.-.,t"/I"]'E {&(Sill; i%‘;z:‘l',).’,,,m”)

where t; = (- 8)/i, fori=1,...,n

3

Given a goal, LNC tries to reduce the goal to an empty
closure by repeatedly applying the inference rules. When a
goal a - E is rewritten to 8. ¢, we write @ - E —* 8- ¢, and
|B-Var(E)| is called an answer of the rewrite a- E —* §-¢.

The subset {[or], [vc], [u]} of LNC works as conditional
reduction defined in section 2.2.

In fact, LNC realizes conditional narrowing which is the
same as (conditional) reduction but unifiers are used instead
of matchers. The rule inference [vd] is used for this purpose.

It should be remarked that the bindings for the variables of
initial goals are formed only by [vd].

4 Implementation of LNC

A first step towards the implementation of LNC is a design
of the interpreter of LNC. Figure 3 shows the interpreter
solve. Since no non-determinsim is involved in the selction
of applicable inference rules for a given equation of the goal,
a sequential implementation given in the Fig. 3 is possible
without losing the completeness. Ounly non-trivial case is
[or]. solve calls procedure f, in which following actions are
taken in sequence.

(1) parameter binding

(2) non-deterministic selection of a rule f(z1, -+, za) =
teF

(3) call solve(F)
(4) call solve(t = d)

procedure solve(E)
; input : a sequence of equations F
; A global variable to this procedure is
; an environment a.
begin
if E is empty then return
let E=t=d,F
case type of |a-t|
for]: |a-t]is a function term f(s1,+*,5xs)
call f with terms sy,---,8,,d
call solve(F)
return
|- t] is a variable z
a:={dfz}Va
- call solve(F)
return
[ve,u] : |a-t]is a constructor term c(s1, -, Sn)
case type of ad
[vel: |- d|is a variable z
a:={c(s1, *+,cn)/z} U
call solve(F)
return .
fu] : |a-d]|is a constructor term c(xy,
a:= {5/, ", sn/2n}Ua
call solve(F')
return
endcase
endcase
end
end

[vd]:

'axn)

Figure 3. Interpreter solve.

Since the fairness in non-deterministic selection of rules
is difficult to achieve in sequential implementation, we im-
pose predefined ordering of rules and employ backtrack for
alternative selection of rules as in Prolog. The procedure f

is the realization of the following operations: selections of
the rules from the set of rules whose name if f, using back-
track if necessary, and the outermost reduction based on the
selection. Figure 4 shows procedure f.

5 Lazy Narrowing Abstract Ma-
chine

5.1 Overview of the machine

LNAM is specified by the following domains and the state
transition map that is defined for each instruction of
LNAM.

(1) program space : Paddr — Instr

(2) heap: Daddr — Term

(3) stack : D*

(4) trail : Vaddr*
where

Paddr, Daddr and Vaddr are a set of addresses of pro-
grams, terms and variables, respectively,

Instr is a set of instructions of LNAM,
Term is a set of representations of terms,

D = TermUPaddrUN where N is a set of non-negative
integers, and

D*=D4+DxD+---.

The program space is an abstraction of compiled code of
the program that LNAM executes. The heap is an abstrac-
tion of the collection of representations of terms, and is given
by a map from Daddr to Term. We distinguish a represe-
tation of a term and a term itself since later we will discuss
data structuring of terms. We write Term = {p[t] | ¢t € T}
where p is a map from a term to the representation of a
term and is defined in section ?. The stack is an abstraction
of an environment and the workspace, and is represented
as a sequence of elements in D. LNAM is equipped with
a trail which functions like a trail of Prolog systems. The
(abstract) trail is represented as a sequence of addresses of
variables that are trailed.

The configuration of LNAM is defined by the triple

(prog, 50, M)

where prog : Paddr — Instr is a program space, sp is an
initial state of LNAM and M is a state transition map. The
state of LNAM is defined by the following 9-tuple

(p, heap, stack, trail,a,e,b,cp, s) 2)

where p € Paddr, a € D, e € M, b € N, cp € Paddr,
s € Daddr x NV, and represent the values of program counter
P, accumulater A, environment pointer E, backtrack pointer
B, continuation pointer C'P, structure pointer S, respec-
tively.

Program counter P is a pointer to the program space.
Continuation pointer CP which points to a return address
of a procedure is also used to address the program space. Ac-
cumulater A is used to hold the intermediate results of the
computation and serves as the communication workspace

among instructions. Registers E and B are pointers to the
stack. In addition to the above pointers, LNAM is equipped
with auxiliary pointers, S which points to the structure be-
ing processed, H which points to the free area of the heap, T'
which points to the start of the stack and T'R which points
to the start of the trail.

procedure f
; input : n terms and 1 data term
; @ is a global variable representing an environment
; as in solve
; This solves the equationf(a;,...,a,) = d
; using a set{f(zy,...,z,) =t; &« Ffi € {1,...,k}}
begin
a:=al {al/mi,' . ,an/xns d/ya-L/zl)'lJ-/zm}
where z),---, z,, are extra-variables.

; The following correspond to the first rule

i flzn,e,z0) =4 <= P

create a choice-point for the backtrack to [c_f,]
call solve(F})

call solve(t; = y)

return

create a choice-point for [c_f3]

; The following correspond to the second rule
H f(:r.l,--',x,.) =ty <= F5.

call solve(F;)

call solve(ty; = y)

return

[e-fa] :

[e_f2]) :

; The following correspond to the last rule
H f(zh”'yzn) =ty <= Fy.

remove a choice-point that have been set
before the entry to f

call solve(Fy)

call solve(tx = y)

return

[e-fe]:

end

Figure 4: procedure f

Semantically, the stack consists of the following threc
frames:
environment frame env € {v(E)} x {v(CP)} x Term*

choice point frame choice € {v(P)} x {v(B)} x
{v(B)} x {v(CP)} x {v(H)} x {v(TR)}

argument frame args € {DaddrU A},
where v(X) for X = E,CP,etc. denotes the value held in
the pointer X.
The initial state sq is (0, heapg, €, ¢, L, L, L, L, 1), where
heapy is the heap in the initial state.

5.2 Data structure of terms

For the discussion of instructions we need to give a more
concrete view of data structures of terms. A basic building

block of data structures is called a word. A word is a pair of
tag and val and is written as (tag val), where

tag € {var, const, list, struc, func} and val € DaddrUAN

Tags var, const, list, struc and func are used to distin-
guish the terms, each distinguinshing variables, constants,
list, structures, funcion terms, respectively. This classifica-
tion of terms is slightly different from the one we showed in
section ?. Since in programming, constructor terms whose
arity is 0 are treated differently, and since lists are heavily
used structures, we distinguish three subclasses of construc-
tor terms, i.e., constants, lists and structures.

We now define a map p[] as follows:
variable =

olal = (var addr(pfa]))
constant k
plk] = {const k)
list [ty | £o]
ollty | 2] = (list w)
and heap(w) = p[[t1],
heap(w +1) = pltz]
structure c(ty,...,t,)
ple(ty,. .., ta)] = (struc w)
and heap(w) = (const c/n),
heap(w + 1) = p[t],...,
heap(w +n) = pfta]
function term f(t1,...,tn)
pLf(t, ... ta)] = (func w)
and heap(w) = (const f/n),
heap(w + 1) = (var w+ 1),
heap(w + 2) = p[t,],...,
heap(w + n + 1) = p[t.]

Here, addr(t) : Term — Daddr is a map which returns
an address of a word where term t is allocated. Unbound
variables are represented as a self-referencing pointer. When
a binding of = with ¢ is formed, val part of pfz] is replaced
with addr(p[t]). The definition of variables, constants, lists,
and structures are the same as in WAM. Function terms
are original in LNAM. The function terms are represented
by the header (func w) and the body which consists of
words from heap(w) to heap(w +n +1). heap(w) is a word
consisting of the function symbol and the associated arity.
heap(w 4 2),..., heap(w +n + 1) represent a subterm of oc-
currences 1,...,n. heap(w + 1) is a special field called a
cache field. Function terms are reduced during the compu-
tation and the result of the reduction is stored in the cache
field. This special arrangement is necessary to realize the
so-called lazy evaluation. '

5.3 Instructions

We give the instruction set of LNAM in Fig. 5.

These instructions are rigorously defined using the state
transition map M[7]. Figure 5 shows that LNAM are based
on WAM. Underlined instructions are original to LNAM.
push instructions are provided since LNAM is a stack-
based machine. LNAM has only single accumulator A,
whereas WAM is provided with (conceptually infinite) ac-
ccumulators. Instructions push_function, put_function,
call_function and jump_if_function are provided for the

o push instructions o unify instructions

push_variable z unify_void n
push_value T unify_variable T
push_nil unify_value T
push_constant k unify_local_value =z
push_list unify_nil
push_structure c¢/n unify_constant k
push_function f/n
push_args
e call instructions
o put instructions call p
call function
put_variable T,y execute P
put_value z,y proceed
put_nil Jmp i
put_constant k,x allocate n
put_list T deallocate
put_structure c/n,z
put_function fln,z
e try instructions
o get(accumulator) instructions try_me_else !
retry_me_else l
get_variable =z trust_me_else_fail
get_value T
get_nil
get_constant k ¢ indexing instructions
get_list
get_structure c/n switch_on_term z,lf,lcli,ls
jmp_if_function z,lf
o get(stack) instructions
o unification with a cached term (bind instruc-
get_variable z,y tions)
get_value 2,y
get_nil x bind.variable z
get_constant K,z bind_vajue z
get_list T bind_constant k
get_structure c/n,z bind.list

bind_structure c¢/n
e others
fail

pop n

Figure 5. Instruction Set of LNAM

manipulation of function terms. call_function is used for
the call of the procudure that is explained in section 6.
bind instructions are provided to realize the lazy evalua-
tion. For example, instruction bind_variable i performs
the follwing: .

M{bind_variable i] (p, heap, stack,trail,a,e,b,cp, L)
ESA

(funcz) «— a;
(p+ 1, heap, {var = + 1) : stack[i — (var z +1)],
trail,a,e,b,cp, L)

How bind instructions are used is explained in the full
version of the paper[7].

6 Compilation of programs

A program is divided into sub-programs P,,..., P, where
each Pj,j = 1,...,k consist of rules of the same name. Let
f; be the name of the rules in P;. P;,j = 1,...,k are ap-
propriately ordered and then compiled into a procedure fj.

The code of fj is following.
Let r1,...,7m (ordered in this way) are rules in P;.

When m > 1,
try_me_else $c_fp
Cﬂﬁ])
$c_fo: retry_me_else $c_fs
Cﬂr;]
Sc.fs:
$c_fm: trust_me_else_fail
Cllrm}
otherwise,
Clrl

where C be a function which compiles a rule.

The definition of C is given below:

Clf(z1y-..yzn) =t & Ey,...,E/]
=

allocate m
ClEr]
$Nezxt, : C.lE:]
$Next,_1: ClE.]
$Nezxt, : Clt=1]
$Next,.,: deallocate
pop n+1
proceed

The instruction allocate m allocates a frame whose size
is determinded by m in the stack. Following allocate is the
code for equations Ej,..., E, in this order. Equation ¢t = y
is for the unification of the result of this rewrite with the
righthand side of the equation that invokes the call of f
The instruction deallocate deallocates the frame. The in-
struction pop n + 1 deallocates the argument frame. The
instruction proceed return control to the caller.

We next give the definition of C, which is the most impor-
tant part of our compilation scheme. C, is given an equation
t = d, and, depending upon the types of ¢ and d, gener-
ates the code summarized in Table 1. Because of the space
limitation we only give typical cases (a) ~ (f).

(a) Celz =d]

case d of
variable y:
[put_variable
constant k:
[put_constant
list [y [z2]:
put_list 2
unify_variable
unify_variable
tructure c(zy,...,%y,):
put_structure c¢/n,z
unify_variable z;

U |

kx|

n

unify_variable z,
endcase

t\d first occurrence
of variable d =y

non-first occurrence
of variable d = y'

shallow constructor
d=b(z1,...,bm)

first occurrence
of variable t =

(a)setdtot

non-first occurrence
of variable ¢t = 2’

(b) compile a - (t = d)

function term
t= f(s1,...,5n)

(c) push arguments sq,. .., 8, onto the stack and call procedure f

constructor (d) setttod

t=c(s1,..,5n)

(e) unify ¢ with d

(fifcz=bandn=m
set 81,...,58n t0 Z1,..., ZTp,respectively
otherwise fail

Table.1 Compilation of equation ¢ = d according to the types of ¢ and d

where z’ is the non-first occurrence.

(b) Ccz' = d}

=
 jmp.if function ¢,$fun

Cla-(z'=ad)] %ifa-a'is
% not function term

jup $Nexzt

$func: Clla-(&' =d)] %ifa-z'is

% function term

jmp $Nezxt

where C., when o -z’ is function term f(t1,...,tn), is

given below:

Cilf(t1,. .. ta) =d]
=

case d of

variable y:
push_args
bind_variable y
call_function
variable y":
push_args
bind_value 3y’
call_function
constant k:
push_args
bind_constant k
call_function
list [z, | z2):
push_args
bind_list
unify_variable z;
unify_variable
call_function
structure c(21,...,2Zn):
push_args
bind_structure c¢/n
unify_variable

unify_variable =z,
call_function
endcase

(c) Ce[f(Sx,... ,s,,) = d]

Genpusnfsi]

Genpyshsn]
Gen,,,,,,,[d]
call - f

where
Genpysh|r] = push_variable
Genpusnfz'] = push_value
Genpysn|k] = push_constant

(@) Clk=141
=
[put_constant

ky |

(&) Clk =]
=
[get_constant

where y' is the non-first occurrence.

ky |

() Clk = d]

case d of

constant ky:
| get_constant
list [z | 2]
I fail
structure c(z, ..., Tn):

endcase

kwkl l

Finally, Fig. 6 shows an example of the program and its
generated code.

7 Concluding Remarks

We have shown the essence of the lazy narrowing calculus
LNC and its abstract machine LNAM. To fill the gap be-
tween the calculus and the machine we briefly explained the
compilation of the program of LNC. LNAM together with
the LNC compiler have been implemented and used for our
research purposes. For further details the readers are re-
ferred to the full version of the paper|[7].

References

[1] J. A. Bergstra and J. W. Klop. Conditional rewrite
rules: confluence and termination. J. Comput. Syst. Sci.,
32:323-362, 1986.

[2] N. Dershowitz and M. Okada. Conditional equational
programming and the theory of conditional term rewrit-
ing. In Proc. Int. Conf. 5th Generation Comp. Syst.,
pages 337-346, 1988.

[3] S. Hélldobler. Foundations of equational logic program-
ming. LNAI 353, 1989.

[4] W. Nutt, P. Réty, and G. Smolka. Basic narrowing revis-
ited. SEKI Report SR-87-07, Universitat Kaiserslautern,
1987. '

[5] S. Okui and T. Ida. Lazy Narrowing calculi. To be pub-
lished as Technical Report ISE-TR-92-97, University of
Tsukuba.

[6] S. Okui and T. Ida. Narrowing calculi for lazy functional-
logic programming languages (in Japanese). submitted
for publication.

{7} T. Suzuki, T. Ida, and S. Okui. An abstract machine
for a lazy narrowing calculus. To be published as ISE
Technical Report, University of Tsukuba,1992.

[8] M. H. van Emden and J. W. Lloyd. A logical reconstruc-
tion of Prolog II. J. Logic Prog., 4:265-288, 1974.

conditional equation

len() =0<«.
len([X|Y]) = succ(len(Y)) <.

basic conditional equation

len(X) =0« X =]
len(X) = succ(len(Y)) « X = [Z]Y].

LNAM instruction code

compiled code for (5) <

compiled code for (6)

Figure 6. compiled code for len/1

\

$L1:

$L2:

($C1:

$L3:

$L4:

try me_else $C1
allocate 1}
jmpif _function A0,$L1
get nil

jmp $L2
push_args

bind nil

call function
get_constant 0, Al
deallocate

pop 2
proceed
trust.me_else_fail
allocate 3
jmp_if _function A0,$L3
get.list

unify_variable Yo
unify_variable Y1l
jmp $L4
push.args

bind.1list
unify_variable Yo
unify_variable Y1
call function
put_function len/1,Y2
unify_value Y1
get_structure suce/1, Al
unify_value Y2
deallocate

pop 2
proceed

(3)
O

(5)
(6)

