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Concurrent Object Oriented C (COOC) is a ldnguage based on the premise that an
object not only provides an encapsulation boundary but can also form a process boundary;
“each object acts concurrently. The COOC language model employs a wait-when-neces-
sary communication and affords shared resource protection (via exclusive method invoca-
tion). The COOC runtime provides for several execution paradigms for object’s and
method invokation.
COOC is a superset of C, C++ and Objective-C. The undcrlymg syntax of COOC is
the same as that of Objective-C. The COOC compiler converts COOC into C
We present COOC’s concurrency object model, runtime and support for various execu-
tion and service policies.



1 Introduction

Concurrent systems have been noted for their
power [1]. For example, concurrent features are
suitable for specifying and reasoning about sys-
tems in which several tasks or events may occur
simultaneously: operating system; databases;
and user interfaces (in particular multi-user sys-
tems, like groupware). Moreover the effective
use of multiprocessor architectures requires al-
gorithms and programs which are concurrent in
nature, and thereby exploit concurrency as par-
allelism. However, while the benefits of concur-
rency are many, concurrency adds complexity to
a system. Concurrent languages require addi-
tional syntax and semantics for specifying con-
current components; their interaction and con-
trol.

Object oriented programming consists of two
inter-related themes; encapsulation and in-
heritance [7] [3].

Encapsulation data is not accessible directly,
instead the supplier of data also has to pro-
vide the methods (interface) to manipulate

it. These two components, the functions

(procedures) and the data, make up an ob-
ject. Basically, objects provide a method
for abstracting functionality from imple-
‘mentation hence localising change and pro-
moting development of systems via prede-
fined units, or components [2]. The ques-
tion of how an object is defined is addressed
by the notion of a class. A class provides
the means of defining those properties (ser-
vices) that are generic to a set of similar
objects, namely the functionality and data
model. In this respect a class provides a
template for defining individual objects.

Inheritance is a mechanism for sharing and
version management of functionality and
data. Instead of reimplementing/copying
some system before extending or updating
its functionality, inheritance provides for a
dynamic sharing mechanism. Inheritance
allows the new class, répresenting a varia-
tion of an existing abstract data type, to
dynamically share common specifications
from an existing class. Inheriting is pre-
ferred to static sharing, like copying, be-

cause if the superclass is subsequently ex-
tended or debugged, objects based on this
superclass can automatically be updated.

Objects may provide a solution to both (com-
plexity and concurrency) in that objects pro-
vide a logical unit which encapsulates data with
functionality and communicates via message
passing, while concurrent systems require a unit
of computation which can take place largely in-
dependently of other computation and which
have a mechanism for interaction. The intro-
duction of concurrency to the object oriented
model raises many questions [7]. It should be
noted, however, that the encapsulation provided
via object oriented systems affords an extension
of the client server model; sending a message to
another object can be seen as making a request
for a service.

Concurrent Object Oriented C (COOC)*! ob-
jects provide a generalisation of the client
server paradigm. COOC employs a wait-
when-necessary communication model and af-
fords shared resource protection (via exclusive
method invocation). The runtime for COOC
provides a resource boundary, possessing a num-
ber of threads and a mail queue. Various
scheduling and evaluation models can be sup-
ported by employing differing resource config-
urations. For example limiting the number of
threads results in lazy evaluation, while limit-
ing the mail queue size gives rise to a coarser
grain. ’

Section 2 presents the COOC language: its
unification of process and object; its client per-
spective, message sends and reply handling; and
its server perspective, message receive and dis-
patching. Section 3 details the functionality of
the COOC runtime and behaviour under vari-
ous resources, threads and message queue, con-
figurations. Finally in Section 5 we give our
conclusions and areas of future research and de-
velopment.

1The COOC language and execution model is realised
ona C base: COOC is an extension to C. The underlying
syntax of COOC is the samie as that of Objective-C [2],
moreover Objective-C objécts are COOC objects which
are to be evaluated with a sequential runtime and em-
ploy no concurrency control. Additional syntax provides
for concurrency aspects. The current compiler converts
COOC into C and supports C++ [4]. Hence COOC is
a superset of C, C+4+ and Objective-C.



2 COOC Model

COOC is based on the view that notions of ob-

jects and aspects of concurrency could form a .

useful union. This union could result in a sys-
tem in which desirable aspects of concurrency
like modelling and speed-up can be enhanced
while complex issues like control and synchro-
nisation can be hidden or supported elegantly
(within a message passing object paradigm).

objfct Thread
E: Function l
Memory Methods -

Figure 1: COOC Object

2.1 COOC Object Model

In a concurrent system a given object may re-
ceive a request from several clients at the same
time. If several requests are processed concur-
rently they may interfere with each other and
hence lead to buggy and unpredictable code.
There are several approaches to resolving this
problem: atomic objects, exclusive meth-
ods, interface abstraction.

Atomic objects are objects which can only be
servicing one request at a time, subsequent
requests are blocked until the current re-
quest has been completed. This approach,
however, results in deadlock problems [8];
request sequences which contain the same
object twice will block? and result in dead-
lock.

Exclusive methods extend the method inter-
face to specify those methods that cannot
be serviced concurrently. Methods that
change the internal state of an object and
so may interfere with each other’s execu-
tion are specified as exclusive and sequen-
tialised This model allows for an object to
have internal concurrency, the servicing of
several requests at the same time; hence

2In the case of direct request (requests to self) this
problem can be avoided by not actually making another
service request, but just evaluating the local function.

resolving some of the deadlock problems
associated with atomic objects. Deadlock
still occurs if concurrent requests require
resources to be changed.

Interface abstraction affords the program-
mer a meta-level, or control level, for spec-
ifying the concurrent interface to an object
class; for example the exclusivity of meth-
ods. While this approach generalises both
atomic objects and exclusive methods it re-
sults in another level of complexity with
respect to requiring a meta-level language
and inheritance of the control specification.

#import <cooc/Object.h>

@interface Account : Object
int accountValue;

/*class methods#/

+new: (int)initialValue;

/*instance methods*/
~(int)checkBalance;

/%instance exclusive methodss/

Cexclusive

~(int)withdraw: (int)value;
-(int)deposit: (int)value;
Qend ’

Qend

Figure 2: account.h - bank account header file

COOC objects not only provide an encap-
sulation boundary but ‘also serve to provide a
process boundary. An object is made up of
memory, hidden functions, an interface (meth-
ods/services) and a process. COOC employs
exclusive methods for defining a control inter-
face. Typically, methods that change the state
of an object are exclusive, while methods that
do not are non-exclusive. For example, figure 2
presents the header file for the bank account
object; the methods withdraw and deposit
both change the state of the internal variable
accountValue and so have been declared exclu-
sive. In terms of object specification COOC’s
syntax and inheritance model is an upwardly
compatible extension of Objective-C, with one
additional syntactic construct @exclusive.



2.2 COOC Client Model

Program

Figure 3: COOC language model

This section considers the client perspective of
message requests. COOC objects communicate
using message requests, Figure 3. Logically no
control flow is transferred on a message send,
however, as an implementation efficiency the
client thread can be employed to support the
service requested. Two communication models
are provided to the client synchronous (block-
ing) or asynchronous (non-blocking).

Synchronous Synchronous messages require
the sender to wait until the request has
been fully serviced. While the basic syn-
chronous communications model is uni-
directional it can be extended to provide
bi-directional information transfer, which
is required for supporting a client-server re-
lationship between two processes [1].

Asynchronous Asynchronous messages pro-
vide greatest flexibility, as messages can
be sent and received in any order. This
also increases concurrency in that message
sends can be concurrent with other opera-
tions. However, using such features is dif-
ficult conceptually (as a message send may

- or may not have actually taken place) and
practically (for example, debugging; as be-
haviour may be difficult to reproduce).

COOC employs a hybrid approach to synchro-
nisation. On a message request the client is free
to continue executing, hence the model is asyn-
chronous, however, if and when the client re-

quires the result the client process suspends and
waits,

total = [banka;cpuntl checkBalance]
- + [bankaccount2 checkBalance];

Figure 4: Synchronous messageé in COOC

In the case where the result of a request is used
just after the message send, Figure 4, the model
is synchronous and bi-directional. The results of
the two message sends are required immediately
hence the client suspends awaiting both results.

(void) [bankaccounti deposit: 10];

Figure 5: Asynchronous 1nessages in COOC

In the case where the result of a request is not
required, Figure 5, the model is asynchronous
and uni-directional. This is true even if the re-
sult is not required under some condition.

balancel = [bankaccountl chqckBalance];
balance2 = [bankaccount2 checkBalance];'

total = balancel + balance2;

Figure 6: Wait-when-necessary messages in
COOC

In the case where the client requires the result
some time after the message send, Figure 6, the
model is asynchronous on send but synchronous
on reply; known as wait-when-necessary. If
the results from the message sends are avail-
able when required, the computation continues,
if the results are not available then the compu-
tation suspends. ‘

The base language for the COOC model is C,
which allows for conditional branches and loops.
This may result in several message sends being
issued which have the same reply address. In
these cases COOC assumes a last sent model:
the reply should contain the result of the last
message sent. Suspension and synchronisation
is also based on the last message sent. Previous
message sends are not terminated, however their
reply is not returned by the runtime.



2.3 COOC Server Model

This section considers the server’s, recipient,
perspective of message sends in COOC. The ex-
ecution of a process, its message sends and re-
ceives, its reads and writes and its use of various
resources all require coordination and synchro-
nisation. Several approaches could be employed
for this synchronisation:

P/V semaphores The coordination of pro-
cesses which employ shared resources,
like memory or devices can be controlled
through the use of semaphores. Before us-
ing a shared resource a process requests ac-

. cess to the resource by trying to gain access
to a semaphore (this is known as a P oper-
ation). One the resource has been finished
with it is released (by using a V operation).

Rendezvous To synchronise a client process
with a server process a rendezvous mech-
anism can be employed. The client and
server should meet at some point {period)
in time, at which a request can be issued
and, possibly, a reply obtained. This can
be achieved by the client/server issuing an
request/accept for a connection. If either
process arrives at the rendezvous point be-
fore the other it blocks until the connection
takes place. On rendezvous the client and
server threads are synchronised and mes-
sage passing and results can be transferred
between processes.

Monitors A server .process thread could be
equipped with a mail queue which is moni-
tored for certain type of requests. Monitors
also define a set of interface procedures to
which the monitor can respond, effectively
providing an interface protocol for the mon-
itor (those services the monitor can pro-
vide). For example if the server maintains
a bounded buffer, when the buffer is full
the server should field a get request next.
Finally, a monitor is allowed to multiplex
between several internal threads.

The concurrent access of encapsulated ser-
vices forms part of the interface of an object,
hence should also be encapsulated. COOC pro-
vides the exclusive method type to handle most

cases in which resource synchronisation is re-
quired. If an exclusive method is currently be-
ing executed the subsequent exclusive requests
will be queued and scheduled when the cur-
rent method is finished. On certain occasions,
however, an object may wish to effect the or-
der of methods invocation, for example when a
bounded buffer object becomes full. For this
purpose COOC employs an abstract interface
to the runtime; the runtime is encapsulated as
an object. :

- put: (int) aValue

{
buffer [next++] = aValue;
if(next==buffferMax) .
[[self runtime] scheduleNext: get]

}

- get:

Figure 7: Scheduling via COOC runtime

The local runtime for an object is obtained
by a message runtime to self. The runtime
method is defined in the class Object and so is
inherited by all classes and objects. Figure 7
highlights how to request the runtime to sched-
ule get once a bounded buffer is full.

COOC Machine (CM)

Object Space

Figure 8: COOC Machine (CM)

The combination of an object space, all ob-
jects with the same runtime, and the runtime is
known as a COOC machine Figure 8. A COOC
machine provides a resource allocation bound-
ary, a logical machine boundary and a policy
boundary. In the network implementation the
COOC machine provides the means by which
objects are grouped and located.



3 COOC Runtime

The runtime has two resource parameters,
{number of threads and {mail queue size.
Varying these parameters allows for differing ex-
ecution models-and policies (see Table 1): the
mapping and scheduling of requests depends on
the available resource.

Mail Queue | Thread | Behaviour

[¢] 1 Sequential (Obj}-C)
small +1 Course & Eager
large +1 Course & Lazy
infinite +1 Pure Lazy

large large Fine Grain

Table 1: COOC runtime execution models

3.1 Message Send

A message send is compiled into a function call:

C00C.Send (id obj, char #selector,
void *reply.addr, int reply.size, args);

This function serves two purposes: firstly, house
keeping related to message loops, conditional
and reply handling; and secondly, to either place
the message in the runtime mail queue or dis-
patch the message.

3.1.1 House Keeping

Firstly, as noted in section 2.2, it is possible for
several message sends to have the same reply
address, in this case the runtime should return
the result of the last message send. To achieve
this a record of each message send and whether
a reply is required is noted. If another message
with the same return address is requested, the
runtime invalidates the required flag of the pre-
vious message send and then creates a new send
record. On completion of a request the runtime
checks if the result is still required before re-
turning its value to the client.

Secondly, reply addresses that become in-
valid, for example at the end of a program block,
are invalidated in the runtime by a compiler in-
serted function:

3obj is the recipient object’s id; selector is the
method selector; reply-addr is the reply address;
reply-size is the size of the reply type; and args are
the method arguments.

[ C00C_Clear(void *reply.addr);

3.1.2 Queue or Dispatch

A message send corresponds to placing the mes-
sage in a runtime mail queue, the client ob-
Jject is then free to continue execution. If the
mail queue is full the runtime does not make a
record of the request as indicated; instead the
request is dispatched for immediate evaluation
and employs the client’s thread (as in a func-
tion call). Hence, when the message queue be-
comes full the current implementation defaults
to a sequential evaluation, in which a message
send corresponds to an indirect function call.

Note that in the limit, if the mail queue size
is specified as zero, the execution defaults to a
sequential model (Objective-C).

3.2 Message Reply

COOC employ’s a wait-when-necessary model
(see Section 3) hence before the result of a mes-
sage send is used the system, compiler and run-
time check if the result is available. To this end
before the result is used the compiler inserts a
call to the runtime:

COOC_ReplyWait(void *reply.addr);

3.2.1 Suspend or Continue

If the request has been completed and the re-
sult obtained the client’s execution continues.
However, if the result is pending the scheduler
is notified to prevent further execution of the
client until the result is available.

3.2.2 Eager or Lazy

In the case where the request has not been dis-
patched, the scheduler immediately dispatches
the request and employs the client’s thread to
perform the evaluation. This gives rise to 2
lazy evaluation execution model. .In the limit
where the mail queue size is infinite and only
one thread is employed the model is purely lazy;
only required results are evaluated.



4 Example-Shared Draw

Shared Draw is a groupware application imple-
mented in COOC [6]. Each member of the
group manipulate a drawing via a local graphi-
cal interface, as is found in a conventional draw-
ing program. However, the elements that make
up the drawing are not stored locally, but are ac-
cessed via shared memory (in the C implemen-
tation) and via a database object (in COOC im-
plementation). In this section we consider the
concurrency control aspect of this application
by considering pseudo which employs C with
lightweight processes and COOC.

lightweight thread. It then creates a scheduler
to provide for the time slicing of threads. Fi-
nally, while threads are still available a new in-
terface is created for each new user. The inter-
face threads invoke an X-based drawing inter-
face and behaves like a any other window appli-
cation. Using this model shared information is
maintained as global data, functions that ma-
nipulate this data, aUItask, such as callbacks
from an individuals interface are required to
provide for critical regions: in this case by di-
rectly employing process priorities (other mod-
els - semaphores, monitors, etc - could also be

used).

main(){

1wp.setstkcache (STACK.SIZE, THREAD.X);
lwp.create(0, scheduler, SCHPRIOD,
0, lwpnewstk(),0);

while(i < THREAD.X) {
if (nev_user(name, &dpy)) {
lwp.create (&newthreadld,
UI, MIEPRIO, O, lwp.newstk(),
1, dpy);
i+
}

else
1wp.yield (THREADNULL) ;
}

}

scheduler(){
struct timeval interval;

interval.tv_usec = 10000;

for (;;) {
lwp_sleep(finterval);
lup_resched (IKPRID) ;

}
aUltask{dpy){
Yvp.setpri(SELF, MAXPRIO);

/* manipulate global data */
lwp_setpri(SELF, MINPRID);

}

Figure 9: Shared Draw - toplevel in C

Figure 9 presents pseudo code for Shé,red
Draw implemented in C. The system first
creates a set of stacks to be used by each

main()

db = [DBClass new];
um = [UMClass new];

vhile(1) {
if (new_user(name, &dpy))
[um add:name display:dpy db:db];

Figure 10: Shared Draw - toplevel in COOC

Figure 10 presents pseudo code for Shared
Draw implemented in COOC. Concurrency is
maintained by the underlying runtime system,
so the programmer just creates objects which
can act concurrently. The system first cre-
ates a databased object for maintaining the
shared drawing information* (objects). Then
a user manager object is created which pro-
vides for subsequent creation of user interface
objects. Each user interface object is informed
of the id of the database object at create time,
this id is then employed by methods which re-
quired access to the shared information. Pro-
tection of the shared information is maintained
via exclusive methods being employed in by the
databased objects interface. Process and mem-
ory allocation for each concurrent activity are
supported by the runtime system.

4Currently COOC, does mnot directly support
databased functionality, as in an ODBMS. Hence a
database object is employed to control access and up-
dates of the shared objects. : ’



5 Conclusions

COOC is based on the premise that notions of
objects and the aspects of concurrency form a
useful union. This union results in a system in
which desirable aspects of concurrency can be
enhanced while complex communications issues
can be supported elegantly.

The basic specification of COOC objects,
classes and inheritance, is the same ‘as for
Objective-C. However, COOC introduces the
notion of exclusive and non-exclusive meth-
ods. This provides for cases in which methods
change state and hence may effect the execu-
tion of other method invocations. In certain
applications, such as a bounded buffer, finer
level control of the scheduling of requests may
be required, to this end COOC affords an en-
capsulated runtime interface. The client of a
message send employs a wait-when-necessary
model; this allows both asynchronous and syn-
chronous communication to be easily realised.
Furthermore, communications can be uni- or bi-
directional. ’

The COOC runtime currently has two re-
source parameters; mail queue size and num-
ber of threads. If the mail queue becomes full
a message send defaults to an indirect function
call, as in current sequential implementation. In
‘the case where the mail queue size is specified as
zero COOC behaves like Objective-C and can be
used to execute Objective-C code; in this case
all the methods are non-exclusive. When the re-
sult of a message send is required a call is made
to the runtime. If the result is available the ex-
ecution continues, if the result is pending the
runtime suspends the further evaluation of the
client. In the case where the request has not as
yet been allocated a thread the client’s thread is
used. In the limit, when only one thread is avail-
able, the evaluation become lazy; only when a
result is required is the message request evalu-
ated.

We have realised the COOC runtime using
both lightweight processes and sockets available
on SUN’s SPARC based workstations. A proto-
type compiler has been realised, which also sup-
ports cross compilation of C, C++, Objective-
C and COOC; we hope to make a beta release
available in the near future. The compiler con-

verts COOC code into C which is then compiled
using a standard C compiler.

The runtime also supports a multi-layered de-
bugging environment [5], which consists of four
components: a high level object and message
oriented tracer; an object-thread level (inter-
nal concurrency) tracer; a thread-process level
(dbx) tracer; and a class browser. These differ-
ent tracers have been integrated into one uni-
form environment which allows the programmer
to control and view concurrent execution at dif-
ferent levels.
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