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Homomorphism Theorem

of Generalized Logic Programs

Kiyoshi Akama

Faculty of Engineering, Hokkaido University

In order to solve complicated problems, we often simplify the problem into more man-
ageable abstract problems, and get information for the original problem by solving it
in an abstract form. Such techniques are widely used in problem solving (hierarchical
planning) or program analysis (abstract interpretation).

In this paper we propose a new framework and the conditions where such techniques
are safely used. Based on the theory of generalized logic programs, we introduce
the concept of homomorphism between two program domains and prove the homo-
morphism theorem which gives the relation between the declarative semantics of
two programs. The theory is elegant and general because the theory of generalized logic
programs unifies the theory of declarative semantics for various declarative programs,
even if the program domain is concrete or abstract.
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1 Introduction

When we are asked whether 26676 + 10851 is even or odd, we can immediately answer
that the result is odd. Instead of performing the addition of 25676 and 10851, we use the
rule of modulo arithmetic that tells us that adding a even number with an odd number
always gives us an odd result. We use such techniques very often to solve complicated
problems in the field of computer science and artificial intelligence [6, 5]. Therefore it is
very useful to find the conditions where such techniques can be used safely.

In this paper we formalize the safety conditions in the framework of the theory of gen-
eralized logic programs [1, 3]. For this purpose, we will discuss the following items.

¢ two specialization systems, which correspond to, respectively, the concrete base
domain and the abstract one.

o two generalized logic programs, which correspond to, respectively, the concrete
system of computation and the abstract one.

¢ a homomorphism between two specialization systems, which explains the reason
why we can regard the one base domain as concrete and the other as abstract.

¢ a homomorphic relation between two generalized logic programs, which explains
the reason why we can regard the one system of computation as concrete and the
other as abstract ‘

o declarative semantics of two generalized logic programs, which correspond to the
meaning of, respectively, the concrete system of computation and the abstract one.

e a inclusion relation between the two declarative semantics, which guarantees that
the abstract system of computation can be safely used for getting information of the
result of the concrete computation.

Note that such a theory can not be constructed elegantly in the usual framework of logic
programs, because the usual concept of logic programs is too specific to deal with both
concrete and abstract programs uniformly. In the usual theory the base domain is fixed to
the usual concrete atoms consisting of predicate and terms, which provides the foundation
for discussing concrete programs. However it does not provide a base domain for abstract
programs. Strictly speaking, in the usual theory abstract programs are not logic programs
in the sense that they do not have the same declarative semantics as the concrete programs
have. This difficulty is overcome by the theory of generalized logic programs, because it
provides us a very general concept of logic programs on various base domains, whether
concrete or abstract.

2 Specialization System and Programs

2.1 Specialization Systems

By generalizing the structure of terms and substitutions, we have defined [1] more abstract
structures called specialization systems, which are the formalization of base domains on
which generalized logic programs (GLPs) are defined.



Definition 1 A specialization system is a 4-tuple < A,G,S, p > that satisfies the follow-
ing conditions. ‘

(1) p: 8 — partial_map(A)
(2) Vs1,52€ 5,35 € S p(s) = psa) o ulsy)
(3) 3§ €S, Vae A:p(s)(a)=a

)

(4

Elements of A are called objects or atoms. Elements of S are called specializations. The
specializations that satisfy (3) are called identity specializations.

ADG

When there is no danger of confusion, we regard elements in S as partial mappings over
A, and use the following notational convention. Each element in & which is identified as
a partial mapping on A is denoted by a Greek letter such as 6, and the application of
such a partial mapping is represented by postfix notation. For example, s € S, u(s)(a) and
f(8n) © pt(sn—1) 0+ -~ 0 u(s1) are denoted respectively by 8 € S, a6 and 6, 060,0---06,. The
composition operator o is often omited.

From the definition, 1 is a subset of S xpartial_map(A). As each element in partial_map(.A)
1s a subset of A X A, p is a subset of S X powerset(A x A). We often regard u as a subset
of § x Ax A, because x C S x powerset(A x A) and v C S x A x A determine each other
uniquely by the following equations.

p=A{(s,M)| M= {(a,b) ] (s,a,b) € v}}
v= {(s,a,b) | (s,M) € 1, (a,b) € M}

2.2 Examples of Specialization Systems

Throughout this paper we use the example of modulo arithmetic. Here we will give two
examples of specialization systems which correspond to concrete and abstract base domains
for the example of modulo arithmetic.

Example 1 [a specialization system for the concrete system of computation]
We use usual terms to represent concrete numbers. Let V; = {X,Y,Z,W,U,- -}, K1 = {0},
Fy = {suc} and P; = {plus}. Each element of V}, K;, F; and P, is called, respectively, a
variable, a constant, a function and a predicate. Let 77 be the set of all terms (in the usual
sense) over Vi, K; and Fy. For instance, 0, suc(suc(X)) and suc(0) are terms over Wi,
Ki and Fy. Let A; be the set of all atoms of the form plus(t1,ts,t3) where t,’s are terms
in 7;. For instance, plus(0,suc(suc(X)),suc(0)) is an atom in A;. Let G; be the set of
all ground atoms in A;, that is, {plus(t1,ts,13) | t1, 2,13 € {0, suc(0), suc(suc(0)),---}}.
Let S; be the set of all substitutions over V; and 7;. Substitutions in S; are sets of
pairs of variables in V) and terms in 7;. For instance, {X/suc(Y),Y/0} is a substitution.
Application of a substitution 6 to atoms defines a mapping My on A;. The mapping,
p1: Sy — map(A;) is also defined to give such a mapping My for each substitution 0. For
instance,

pa({X/suc(0)})(plus(0, suc(suc(X)), suc(x)))

= plus(0, suc(suc(suc(0))), suc(suc(0))).

Then the 4-tuple I'y =< A;, G2, S1, 11 > is a specialization system.



Example 2 [a specialization system for the abstract system of computation]
We use “abstract terms” to represent “abstract numbers”. Let Vo = V;, Ko = {even, odd},
F, = F; and P, = P,. Each element of V3, K3, F; and P, is called, respectively, a
variable, a constant, a function and a predicate. Let T, = V, U K2 U {suc(z) | = €
Vo} be a set of terms over Vi, K, and Fi. For instance, Y, even, odd, suc(X) and
suc(Y) are terms in 7. Note that suc(suc(X)) and suc(suc(suc(even))) are not
terms in 75. Let A, be the set of all atoms of the form plus(ti, s, t3) where t;'s are
terms in T5. For instance, plus(odd, suc(X), even) is an atom in Aj,. Note that
plus(odd, suc(suc(X)), suc(odd)) is not an atom in A, because suc(suc(X)) and
suc(odd) are not in 75. Let G, be the set of all ground atoms in A, that is, Go =
{plus(ty,t2,ta) | t1,t2,t3 € {even,odd}}. Let S; be the set of all substitutions over V, and
7,. Substitutions in S, are sets of pairs of variables in V; and terms in T,. For instance,
{X/suc(Y), Y/even, Z/W} is a substitution in S,. But {X/suc(suc (Y)),Y/0} is not a
substitution in S, because suc(suc(Y)) and 0 are not in 7. Next we define a mapping
vy 1 Sy — map(7Tz) as follows.

Vg(e)(k) =k e 0eSyke K,

va(0)(z) = =8 e 0eSyzel,

vo(6)(suc(z)) = suc(z0) e SyreVy,zleV,
va(8)(suc(z)) = odd oo B €Sy, ze Vo280 =even € Ky
vo(6)(suc(z)) = even oo 0 € Sz e Vo2 =0dd € Ky
va(0)(suc(z)) =y 6 €S,,x€ Vo260 =suc(y),y €V

For instance, v({X/even})(odd) = odd, v,({X/even})(X) = even, vy({X/even})(suc(Y)) =

suc(Y), vo({X/even})(suc(X)) = odd. Using v, we define up by pa(0)(plus(ty, iz, t3)) =

plus(vy(8)(t1), v2(8)(t2), v2(6)(ts)) where t.’s are terms in 7,. For example,
p2({X/suc(Y),Y/even})(plus(even, suc(X), suc(Y))) = plus(even, Y, odd).

Then the 4-tuple I'y =< A3, Ga, Sz, iz > is a specialization system.

2.3 Programs on Specialization Systems

We review the definition of generalized logic programs (GLPs) on specialization systems.
Details are found in [1]. We fix a specialization system I' =< A G S u>.

Definition 2 A program clause on A (or on I') is a clause of the form : H «— Ay, -+, Ay,
where H, A,,- -, A, are atoms in A. A logic program on A (or on I) is a (possibly infinite)
set of program clauses on A (or on I').

The set of all program clauses on A (or on T') is denoted by Pclause(A) (or by Pclause(T)).
The set of all programs on A (or on T') is denoted by Program(A) (or by Program(T)).

Example 3 [a GLP corresponding to the concrete system of computation]
Let P; be a set {Ci1,Cr2} of two clauses:

Cii: plus(0,Y,Y) «
Cya: plus(suc(X),Y,suc(Z)) « plus(X,Y,2)

Then P, is obviously a program on I';.



Example 4 [a GLP corresponding to the abstract system of computation]
Let P, be a set {Ca1, Caz} of two clauses:

Cy:: plus(even,Y,Y) «
Cao: plus(suc(X),Y,suc(Z)) « plus{(X,Y,Z)

Then P, is obviously a program on I';.

3 Homomorphism

3.1 Tuples of Mappings

Let D;(1 < i < n) and Ri(1 <1 < n) be sets. The set of all tuples < Ay, hg, -+, hy > of
mappings h; : D; — Ri(1 <1 < n) is denoted by Map(Dy, Ry; D2, Ra; - - -5 D, R,).

Tuples of mappings determine various mappings. For example, let h =< hy, hy > be
a tuple of mappings in Map(D, Ry; Do, Ry). Let v : Dy x Dy — R; X Ry be defined
by 7(z,y) = (hi(z), ha(y)). We write h(z,y) instead of ¥(z,y) only when its meaning is
obvious from the contexts. Such convention is also used in the case of h; and hy,. We write
h(z) instead of hy(z), and h(y) instead of hy(y) as far as we can understand the meaning.
Such convention is widely used in this paper because of simplicity.

Example 5 [a tuple of mappings]
We give an example of a tuple of mappings, which will turn out to be a homomorphism
in example 6. Let us define h =< hy,hs > in Map(A, Ag;81,S;z). First we intro-
duce the following notational convention. Terms of the form E, suc(E), suc(suc(E)),
suc(suc(suc(E))), suc(suc(suc(suc(E)))), --- are denoted, respectively, by suc’(E),
sucl(E), suc?(E), suc?(E), suc*(E), - --.

Note that 7; = {suc”(0) | n € {0,1,2,---}} U {suc™(z) | n € {0,1,2,---},z € Vi}.
Therefore we can define hr : 7, — 75 by

hr(suc™(0)) = even <++  miseven.
hr(suc™(0)) = odd <+ nis odd.
hr(suc*(z)) ==z <+ miseven,z €V,
hr(suc(z)) = suc(z) ... mnisodd, z € V3

This definition is well defined since V; = V5.
Now we can define h =< hy, hs > using hr.

[ hA : Al - Ag by h,A(pl\lS(tl,tz,tg)) - plus(h/]’(tl),hy‘(tg),h'r(tg)).
o hs:Sy — Sy by hs(8) = {z/hr(t) | z/t € 6,2 € V1,t € T1}

These are well defined because P, = P, = {plus}, hr is from 7; to 7, and V; = Va.
Then, h =< h4, hs > is a tuple of mappings in Map(A;, As; S1,S2).



3.2 Homomorphism

We define a homomorphism from a specialization system to a specialization system.

Definition 3 Let T’y =< A;,G1,81, 41 > and Ty =< Ay, Gy, Sa, o > be specialization
systems. Let h be a tuple of mappings in Map(A;, As; S1,S2). h is a homomorphism from
Fl to FQ iff (1) h;(/lll) C o and (2) h(gl) - gg.

Note that p1 in h(p1) and ps in h(u,) are regarded respectively as subsets of Sy x A; x A;
and S; x A x Ay. Note also that h in definition 3 is regarded as the following four kind
of mappings :

1. a mapping form A; to A4,
2. a mapping from S; to S
3. a mapping from powerset(S; x A; x A;) to powerset(Sy x Az X As)

4. a mapping from powerset(A;) to powerset(.A;)

Proposition 1 Let h be a homomorphism from T; to 5. If an element 6 in S; is appli-
cable to an element a in .4;, then

(1) h(9) is applicable to h(a), and
(2) h(ab) = h(a)h(0)
Example 6 We prove that h =< h4, hs > is a homomorphism from I'; and T's.

1. [Proof of h(u1) C p2
h(8, suc’”( ), suc™(0)) =
™(0), suc™(0)) =

6, suc™(z), suc™(z)
( ) =

(

),0dd, 0dd) € po - -+ m is odd.
(9, )
h(
h(6, suc™
h(6

,even,even) € uy - -+ m is even. )
suc(z), suc( ) € 2 -z € Vy, z/t €6, mis odd.
L, L) € pg -z € Vy, zft €6, mis even.
), sucm2(y)) = (h(9), suc(a).9) € o
-z € Vi, zf/suc™(y) € 6, y € Vi, mis odd, n is odd.
Other cases are omitted because of space limitation.

m

2. [Proof of h(G1) C G]
Since G; = {suc™(0) | m € {0,1,2,---}}, h(G1) = {even, odd}, which is equal to G,.

3.3 Program Transformation by Homomorphism

A mapping h : A4; — A, is naturally extended to a mapping h : Pclause(A4;) —
Pclause(.A,), which maps a clause C = (H « By, By, -, B,) on A; to a clause h(C) =
(h(H) «— h{By),h{B2), -+, h(B,)) on A,.

Moreover, h is extended to a mapping h: Program([‘l) —» Program(T'y) which maps a
program P on I'; to a program h(P) = {A(C) | C € P} on TI',.



Example 7 We have already defined h =< hy4, ks > in example 5, which is a homomor-
phism from I'; to I';. We have also defined P, and P, in example 3 and 4, which are
programs, respectively, on I'y and T's. Then the first clause Cy; in P; : (plus(0,Y,Y)
«) is transformed by h into the first clause Cyy in P, : (plus(even,Y,Y) ) because
h(0) = even. The second clause Ci, of P; : (plus(suc(X),Y,suc(Z)) « plus(X,Y,2))
is transformed by h into the second clause Cyy of P, : (plus(suc(X),Y,suc(Z)) «
plus(X,Y,2)), which is identical to Cy,. Therefore, the program P; on I'; is transformed
by h into the program P, on Iy, that is, h(Py) = Ps.

4 Homomorphism Theorem

The aim of this section is to establish the relation between the semantics of two programs
which are connected by a homomorphism of specialization systems.

4.1 Declarative Semantics and Homomorphism
The semantics of a program P, which is denoted by M(P), is defined by
M(P) = Mp = lfp(Kp) = Kp T W = lfp(Tp) = Tp T W = U[Tp]"((())

where Tp is a one-step-inference transformation of P and Kp = Tp + I, is a knowledge-
increasing transformation of P [2]. In the following, [T]"() is denoted by T(P,n).
We review the proposition which explains the relation between T(P,n) and M(P).

Proposition 2 Let P be a logic program on a specialization system I'. Then,
geE M(P) e dne{l,2,3, --}:9€T(Pn)

Example 8 We give the declarative semantics of logic programs P, and P, in example 3
and 4.

M(Py) = { plus(suc™(0), suc*(0), suc™+*(0))
|me{0,1,2,---,},ne{0,1,2,---,} }.
M(P,) = { plus(even, even, even), plus(even, odd, odd),
plus(odd, even, odd), plus(odd, odd, even) }
4.2 Homomorphism Theorem

First we give a proposition which relates a homomorphism A with T(P,n).

Proposition 3 Let h be a homomorphism from T'; to I'5. Let P be a logic program on
I'y. Then !, for arbitrary non-negative integer n,

WT(P,n)) C T(h(P),n).

The following is the main theorem in this paper.

IT(P,n) is a subset of Gi. & in A{(T(P,n)) is a mapping from powerset(Gy) to powerset(Gs). Then,
T (P,n)) C Gs.



Theorem 1 Let h be a homomorphism from I'; to I';. For any logic program Pon Ty,
h(M(P)) € M(r(P))
Example 9 As we have discussed in example 7 and 8:

M(Pl) = { plus(suc’"(O), Suc"'(())’ S\IC""+"'(D))
|me{0,1,2,---},n€ {0,1,2,---} }.

M(h(Py)) = { plus(even, even, even), plus(even, odd, odd),
plus(odd, even, odd), plus(odd, odd, even) }

And

hr(suc™(0)) =even --- miseven.

hr(suc®(0)) =odd --- nisodd.

hA(plus(tl,tg,tg)) = plus(hf(tl),hq-(tg), hT(t;;))
Since (m + n)mod2 = ((mmod2) + (nmod2))mod2, it is obvious that h(M(P)) =
ha(M(P1)) = M(h(F1)).

5 Concluding Remarks

We have introduced the concept of homomorphism between two specialization systems
and proved the homomorphism theorem. This is a very general and elegant theory for
discussing the relation between the declarative semantics of two generalized logic programs
on (possibly different) specialization systems. In the examples here h(M(P1)) is equal to
M(h(P1)), but in general h(M(Fy)) is a subset of M(h(P;)). An example where h(M(F1))
is not equal to M(h(P;)) is given in [4]. An isomorphism theorem is discussed in [4]. All
the proofs of propositions and theorems in this paper are also found there. This theory is
useful for hierarchical planning and abstract interpretation. Application to planning
has been discussed in {7].
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