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Abstract

An ordered binary decision diagram (BDD) is a graph representation of Boolean functions. By using BDD’s, many
of practical Boolean functions are represented in feasible size and Boolean operations are executed efficiently. In
this paper, we consider minimum BDD identification problems: given positive and negative examples of a Boolean
function, output the BDD of minimum width (or minimum number of nodes). We prove in this paper that the
problems are NP-complete. The result implies that k-width BDD and k-node BDD are not learnable under PAC-

learning model unless NP = RP.
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1 Introduction

An Ordered Binary Decision Diagram (or simply
BDD) [1, 2] is a graph representation of a Boolean func-
tion. The BDD representation of Boolean functions has
the following good properties : there exists a unique
canonical form for any Boolean function, many of prac-
tical Boolean functions are represented in feasible size,
various basic operations such as reduction (minimiza-
tion) and Boolean operations are executed efficiently.

Owing to the excellent properties, BDD’s have come
to be indispensable in application programs of logic de-
sign verification fault diagnosis of logic circuits, logic
synthesis and so on. In the applications, the use of
BDD’s enabled us to deal with large scale circuits ef-
ficiently.

On the other hand, researches on the properties of
BDD’s from theoretical aspects have come to be made at
last recently. [3] and [4] deal with the number of nodes
necessary to represent varioous Boolean functions. [3]
proves that the function to represent the output of a
multiplier cannot be represented within polynomial size.
[5] and [6] define a class of languages expressed by poly-
nomial size BDD’s and discuss the relation to various
complexity classes. [7] and [8] take up the efficiency of
basic operations on BDD’s. They show that there are
NC algorithms for the operations.

In this paper, we consider the problems to identify
the minimum BDD that satisfies given positive exam-
ples and negative examples. Although the size of BDD’s
may largely vary according to the variable ordering, we
assume in this paper that the variable ordering is fixed.
The width and the number of nodes are used as the mea-
sure of minimality. We prove that, in both cases, the
minimum BDD identification problem is NP-complete.
If we regard that the values for the assignments which
are not in the examples to be undefined, this problem
is to find a simple completely specified Boolean func-
tion that is consistent with a given incompletely specified
function.

This problem is also closely related to computational
learning theory. In the PAC(Probably Approximately
Correct)-learning model [9, 10], the learner generates a
hypothesis based on the examples given by the teacher.
It is known that k-term DNF, k-clause CNF, p-formulas
are not learnable under the PAC-learning model unless

NP = RP [11].

In the same manner, we can observe

from the above result that k-width BDD and k-size BDD
are not learnable in polynomial time under PAC-learning
model unless NP = RP.

2 Binary Decision Diagrams
An Ordered Binary Decision Diagram (BDD) [1, 2] is

a directed acyclic graph that represents a Boolean func-
tion. The nodes of a BDD consist of variable nodes and
two value nodes. The outdegree of a variable node is
2. The edges are called 0-edge and 1-edge. One of the
variable node is called a root node whose indegree is 0.
Two value nodes are called 0-node and 1-node.

A BDD is represented by a root node and a set of 4-
ples (7, index(7), low(t), high()) that correspond to vari-
able nodes, where

¢ is a node number,

index(:) € {1,2,---N} (N is the number of vari-
ables) is an index of the variable that is assigned to the
node, and

low(i), high(i) are the numbers of the nodes pointed
by the 0-edge and the 1-edge respectively. The node
number of 0-node is 0 and that of 1-node is 1.

The Boolean function that is represented by node ¢,
denoted by f;, is defined as follows by Shannon’s expan-
sion.

fo=0, fi=1,

fi = Tindea(i) * Frigh(i) + Tindez(@) * Slow(s)-
When the root node of a BDD A is a, the function rep-
resented by A is fa = fu.

For a permutation 7 on {1,2,--- N}, every node of a
BDD satisfies

n(index(1)) < w(indez(low(s))),

n(index(t)) < n(index(high(i))),
except when low(i) or high(?) is a value node. 7 is called
a variable ordering. (indez (7)) is denoted by level(i)
and is called the level of node 7 or the level of Zindex(i)-

When two nodes 7 and j represen'; the same function,
they are called to be equivalent and denoted by i = j.
i=jiff

level(z) = level(y),

high(s) = high(j),

low(t) = low(j).
Node 7 is called to be redundant when

high(i) = low(z).
A BDD is called a dense BDD when all the variable

nodes satisfy
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level(i) + 1 = level(low(?)) = level(high(t)).
Any BDD can be transformed to a dense BDD by adding
redundant nodes.

A dense BDD which has no equivalent nodes is called
a quasi-reduced BDD [12]. A BDD which has no equiv-
alent nodes and no redundant nodes is called a reduced
BDD.

Let width(k) be the sum of the number of nodes in
level & and the number of edges that passes through level
k. The width of a BDD is defined by maw <<, width(k).

BDD’s defined above have following good properties.

e A Boolean function is uniquely represented by a
reduced BDD or a quasi-reduced BDD, provided
that the variable ordering is fixed. Therefore, the

equivalence of Boolean functions is easily checked.

e For n-variable Boolean functions, the number of
nodes is O(2"/n), however, many practical Boolean

functions are compactly represented.

3 Minimum Binary Decision Diagram
Identification

3.1 NP-completeness of Minimum Binary Deci-
sion Diagram Identification Problems

In this section, we cousider the complexity of identi-
fying minimum BDD’s from positive examples and nega-
tive examples. We assume in this paper that the variable
ordering of a BDD is fixed. As the measures of the size
of BDD’s, we consider both the width and the number
of nodes.

Definition : MINIMUM WIDTH BDD IDENTI-
FICATION

Input : A set EX of examples and a positive integer k.
Output : Is there a BDD of width less than or equal to
k that satisfies all the examples?

Definition : MINIMUM BDD IDENTIFICA-
TION

Input : A set EX of examples and a positive integer k.
Output : Is there a BDD which has less than or equal
to k nodes that satisfies all the examples?

Note that an example is a pair (z, f(«)), where z €
{0,1}" is an assignment for variables zy, x4, - -, z,, and
f(x) € {0,1} is the value of f for the assignment. The
variable ordering of the BDD is fixed as w(z;) = ¢,1 <

1 < n.

When we assign values to zy,2, +,z,, a function
that satisfies £X is considered as (n— k)-variable incom-
pletely specified Boolean function. Let f, g,/ be incom-
pletely specified Boolean functions. We denote f C ¢
when g(2) = 1if f(2) = 1 and g(z) = 0 if f(z) =0
for all . f and g can be unified iff there exists & s.t.
FCTh gCh Let H={hlf Ch, g T h}, then
h' =U{f,g} is defined as k' € H, Vh € H h T I'.
Theorem 1 MINIMUM WIDTH BDD IDENTIFICA-
TION is NP-complete.

Proof First, we show a nondeterministic polynomial
time algorithm for MINIMUM WIDTH BDD IDENTI-
FICATION.

Let prefiz;(z) denote the (0 < i < n) highest bits
of z.

[Algorithm Minldent]

L P = {prefin(a) | (2, f(a)) € EX, 1 < i < n},
For all y € P, 1 < |y| < n, guess g(y) €
{1,2,-+-,min(k,2¥}. For y € P st. |y| = n,
let g(y) = fly).

2:For 1 < ¢ < n,1 £ 5 £k let Py =

{prefiz;(z)|g(prefiz:(z)) = j}.

3:For 1 <i¢ < n, 1 < j <k, check whether the
following conditions are satisfied. 1) g(r-0) = g(s-0)
forall r,ss.t. r,s € Pj, r-0€ Pand s-0 € P, 2)
g(r-1)=g(s-1)forallr,sst. r,.se P, r-1€ P
and s-1 € P.

If the conditions are satisfied for all 7,7, r, s, then

there exists a BDD of width less than or equal to &.

We can see that |P| < |EX

x n and |P;;| < |EX].
Therefore the time requirement of Algorithm Minldent
is bounded by a polynomial of n and |EX]|.

We shall claim the correctness of Algorithm MinIdent.
We can construct a BDD as follows. The path corre-
sponding to an assignment  is on the g(prefiz,_;(z))-th
node in level 7. Foreach 1 <i<n, r € P(jr|=i-1),
the 0-edge from the f(r)-th node of level : points f(r-0)-
th node of level t + 1 if 7 - 0 € P, and the 1-edge points
f(r-1)-th nodeifr-1 € P.

If the conditions of 3: are not satisfied, there exists a
node that has more than one 0-edges or 1-edges. Other-
wise, each node has at most one 0-edge and 1-edge, and
the generated graph is a subgraph of a k-width BDD.

Moreover, we can easily see that there are paths from
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the root node to constant nodes for all the assignments
given as examples. The edges which are not generated
by the above method may point any node.

Next, we show the NP-hardness of MINIMUM
WIDTH BDD IDENTIFICATION by the reduction
from GRAPH K-COLORABILITY.

Definition : GRAPH K-COLORABILITY

Input : An undirected graph G(V, E) and a positive in-
teger k.

Output : Is there a function f: V — {1,2,--
f{1) # f(j) for all the edges (i, /) € E?

Let N denote the number of nodes in G. We can

<k} st

assume without loss of generality that IV is a power of 2.

The Boolean function of the reduced problem has -

6logN + 2 variables. The set of examples are as fol-
lows :
(Bi- Bj-B,-B;-00-B,-B,, fi(r,s)) (r<s)
(Bi-Bj-B,-B,-01-B,-B,, fi{r,s)) (r<s),
(Bi-Bj-B,-B,-10- B, - B, , f,(r,s)) (r<s)
(By_1+ By By By 11- B, - B, , g,(r,s))
(r<s,(r,s) € E) and
(Bi-Bj-B, B,-11-B,- By, fy(r,s))
(r<s,exceptingi=j=p=N—1),
where 0 < 4, j.p,¢q,r.s < N — 1 and B; is a bi-
nary representation of an integer . fo, f1, -+, fxv—1 and
90,91, -+, gn-1 are defined as follows :
filBi, B;) =01iff t <s,
fi(Be,By) = 1iff r < t,
9¢(B;, Bs) = 0iff t < s and (t,s) € F and
9(B,,B;)=1iff r <t and (r,t) € E.
The positive integer to bound the width of the BDD is
NY— N + k.
The number of examples is
(N = 1)(4N* — N) + 2|E| = O(N®).
The examples can be generated using O(logn) space.
We shall prove that there exists a (N* — N + k)-
width BDD that satisfy all the examples iff graph G is
k-colorable. In order to count the width of each level,
we use the following propositions.
1. Forany i,j i #£j, 0<i < N-—1),
fi and f; cannot be unified.
2. g; and g; (i # j) can be unified iff (4,7) ¢ E.
3. GCf(0<i<N-1)

Propositions

4. 1 gi, gigy -
can be unified with any of f; (0 <j <m).

Proof 1. When ¢ <y, fi(i,j) =0, f;(i,5)=1.

i can be unified, ¢’ = U{gi;, 9ips " * Gim }

4. We have only to prove the case where m = 2. f;
and f; (i < j) differ only when the parameters are ¢ and
J. However, g; and g; can be unified, because (i, ) ¢ E,
that is, gi(¢,7) and g;(7,7) are undefined. Therefore, f;
and g; (f; and g;) can be unified. o

The next lemma follows from Proposition 2.
Lemma 1 ¢;(0 < i < N — 1) can be devided into
k subsets all of whose elements can be unified iff G is

k-colorable.

The width of each level is as follows.

1. 1 < level < 4logN

width(level) < 2'*v=1. Especially, width(level) <
N*/2 when level = 4logN.

2. level = 4logN + 1

There are N* nodes in this level, some of which
can be unified. In case i = j = p = N — 1, there
are IV functions of the form Tyoyn41 - Taiogn+2 < go +
TslogN+1 - Tologht2* fn-1, 0 < a < N —1. Therefore,
the functions differ only when zyogn41 = Tarogny2 =
1. From Lemma 1, these N nodes can be reduced

to k nodes.

Otherwise, for at least one assignment to zg,yn41
and z4,9n 42, different functions are selected among
far 0 < a < N — 1. From proposition 1, the func-
tions cannot be unified.

Hence, width(4logN + 1) = N* — N + k. The fol-
lowing discussions show that we may minimize the

width in this level.

3. level = 4logN + 2

In this level, there are N? functions of the form
Tqloghtz - fa + Tarogny2 - f3,0 < a¢,b < N — 1 and
k functions of the form Ty ni2 - fv—1 + ZTatogn2 -
he, 0 < ¢ <k, where he = U{gi,,9i,, " gin }- The
former ones cannot be unified each other. The latter
ones can be unified with one of the former functions
from Proposition 4. Therefore, width(4logN +2) =
N2,

Even though the width is not minimized in level
4logN +1, the width of this level is N? by the same

argument.

4. level = 4logN + 3
As is the case of 3, width(4logN +3) = N.
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5. 4dlogN + 4 < level < 6logN + 2

In general, the width of a level is at most twice
the width of the preceding level.  Therefore

width(level) < N x 2level=tloyN-3 < N3,

As N*— N4k > N1/2 > 3/2N3 for N > 2, the width
of this BDD is N* — N + k. [l

The proof shows that it is still NP-complete to mini-
mize the width of a specified level.
Theorem 2 MINIMUM BDD IDENTIFICATION is
NP-complete.
Proof We can easily see that MINIMUM BDD
IDENTIFICATION is in NP by extending Algorithm
Minldent. For the proof of NP-hardness, we use a re-
duction from GRAPH K-COLORABILITY. The basic
idea of this proof is similar to that of Theorem 1.

The Boolean function of the reduced problem has

TlogN + 4 variables. The set of examples are as fol-

lows :
(Bi-B; B, B, B, -*000- B, - B, fi(rys)) (r < s),
(Bi-B;-B, By B,,-+001-B,- B, , filr,8)) (r<s),
(B;-Bj-B,-B, B, -+010- B,- B, , fo(rys)) (r<s),
(B;*B;-B, B, B,,-+011-B, - B, , fo(r,s)) (r < s),
(Bi"Bj+ By By B -0100-B, - B, , fu(r,s)) (r < s),
(Bi-Bj-B,-B,- B, -1100- B, - B, , Im (7, 8))
(r<s,(r,s) € E),

(Bi-B;j-B, By B,,-0101-B,- B, , folr,8)) (r<s),
(Bi-B; B, By B,,-1101-B,- B, , filr,s)) (r<s),
where 0 < 4,j,p,q,m,r,s < N — 1 and * means
both 0 and 1. fo, f1,-+, fv_1 and go,¢1.---,gn_1 are
the same as those defined in the proof of Theorem 1.
The positive integer to bound the number of nodes is
3N+ (k+2)N1 -2,
The number of examples is
LIN3(N ~ 1) + 2|E|N* = O(N®),
To count the number of nodes, we must remove re-
dundant nodes from the width of each level.
The minimum number of nodes in each level, denoted
by node(level), is as follows.
Let G be k'-colorable, that is, g;, 0 < i < N be de-
vided into &' subsets G; = {gn,01,, -1}, 1 <1 <
k' s.t.

9,91+ g, of the examples can be substituted by

all the elements of G, can be unified. Then

hi = U{g,, 95, g1, }. We claim that, in this case, the
minimuin number of nodes can be realized at the same

time for level < 5logN + 5.

1. 1 < level < 5logN + 1

There are N® nodes and any two nodes cannot be
unified. Therefore, node(level) = 2/U*/=1, The total
number of nodes is i <iciercsioqne 1 node(level) =

2N5 —1.

2. level = 5logN + 2

When 4,j,p,q are fixed and ZTsiogN+1 = 1, there
are N functions which differ only when TslogN+2 =
L, Z5109n 43 = Ts109n+4 = 0. They can be reduced to
k functions iff G is k-colorable. In any other cases,
the nodes in this level cannot be unified. Hence
node(5logN + 2) = N°® 4 EN* iff G is k-colorable.

3. level = 5logN + 3

In this level, there are N* different functions of the

form T5i;N13 - Totogia * Ja + TologN 13 * Tsloghr4 - [5 +
T5logN+3 * TologNi4 * Je + TslogN+3 * TsiogNta - fa, 0 <
a,bec,d < N — 1 and k functions of the form

T5logN+3 TlogN+4- Mo+ TslogN+3 - Tstogn44- f1, 0 < a <
k. The former ones cannot be unified each other.
Among them, N? nodes can be removed as redun-
dant nodes. The latter ones can be unified with the
former ones from Proposition 4. Therefore, for any

G, node(5logN + 3) = N1 — N2,

4. level = 5logN + 4
As is the case of 3, node(5logN +4) = N2 — N.

5. Slogn + 5 < level < TlogN + 4

node(5logN + 5) = N. Then the total number of
nodes is less than ¥ c;cpppen N - 271 = N® — N,

From the above discussion, when G is exactly k-

colorable, the total number of nodes is at least

UM pin (N, k)
= (2N°— 1)+ (N®+EN") + (N*—~ N?) + (N? = N)+ N
=3NS+ (k+1)N* — 1
and is not more than

UM 0z (N, k)
=(2N° — 1)+ (N° 4+ kN + (N* — N?) + (N2 — N)

+(N®—N)
=3N°+ (k+ )N+ N> —2N — 1.
As nump, (N, k + 1) > 3N° + (K + 2)N* — 2 >
NUMpags(N, k), the number of nodes is less than 3N®% +
(k+2)N*— 2. o
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3.2 Hardness of Learning Binary Decision Dia-
grams

The identification of the minimum BDD from exam-
ples is closely related to computational learning theory.
On the PAC-learning model [9. 10], the goal is to find
a good approximation of an unknown Boolean function
from random examples. When the learner requests an
example, it is drawn according to an arbitrary distribu-
tion P on {0,1}". The error of a hypothesis ¢ for un-
known f is defined to be the probability that f(x) # g(x)
for an assignment @ € {0,1}" drawn randomly according
to P.

We call that a Boolean function is learnable by a
class X of concepts iff there is a learning algorithm that
runs in polynomial time and outputs, with probability at
least 1 — 4§, a hypothesis that approximates the unknown
Boolean function with error at most e.

From Theorem 1 and 2, we can make the same dis-
cussion as [11] on the learnability of k-width BDD and
k-node BDD. If there is a polynomial time learning algo-
we can solve GRAPH K-COLORABILITY using

the learning algorithm and the examples shown in the

rithm,

reduction, which implies NP =RP.

Corollary 1 k-width BDD and k-node BDD are not

learnable under PAC-learning model unless NP = RP.
We note that k-decision tree, a tree representation of

a Boolean function, is learnable in polynomial time.

4 Conclusion

In this paper, we proved the NP-completeness of iden-
tifying the minimum BDD. The results also imply the
hardness of learning k-width BDD and k-node BDD. It
is our future work to consider the case when we allow to
change the variable ordering because the size of a BDD

greatly varies according to the variable ordering.
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