TETT L S A Sk
(1993. 3. 1)

A Timed Process Calculus
Based on Distributed Time

Ichiro Satoh Tokoro Mario

satoh@mt.cs.keio.ac.jp mario@mt.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

This paper proposes a formalism for reasoning about the notion of local time in distributed
systems. The formalism is an extension of CCS with local time and behavior depending the
passage of time. It can explicitly represent local time measured by clocks having different
time granularities and precisions. It can also model processes with different local times. Also,
we define a timed bisimulation over processes with local clocks. It equates processes only if
their behaviors are completely matched and their timing and clocks are slightly different. In
this paper we present the basic construction of the formalism and some illustrative examples.

SEHRIREMEICE S e e XFHEBICHOWT

Yk —ER BT EEE
BIERBAYE BTN FHERHEEL

R TR FEEHEIC BT 2 BN GELEN) LR AR AR R T e e XFHE
(RE) KESOTEHETI, chid, 7o XFHEOKRRD—2TH 5 CCS i BTN B
DOEFM: ¢ REICEE L ABWEORBE 2 MR L AR TH 5, Zhick Y, BIEEECH
EBENFREIBEHEI DT oty ¥ Lo v 20BEe, TRALOROHEEERICE T2
BVE Rt B RICER CE 3 51K B, & b, BB (Bisimulation) O#f& %4k
RILz iy, BEMAREEEERL L7 v v 0% ML LT3, KBTI,
ZOBAROEL L EHRREEEL, ToiCr0iBAis 53,

-7

1 Introduction

In distributed systems, processors do not
share a primary memory and are loosely cou-
pled by communication networks with inher-
ent delay. Processors cannot share any unique
global view, such as a reference clock among
them, because the delay forces processors to
give only past information to other proces-
sors. However, in many real distributed sys-
tems, processors need real-time clocks to be
used for detection of failures and for time-
critical responses, and must cooperate with
each other according to their own local clocks
instead of a global clock. However, the preci-
sions and granularities of different local clocks
do not always coincide. In this case, if the dif-
ferences of time precisions and granularities
cannot be ignored, the cooperation may lead
to failure. In order to develop correct dis-
tributed systems and correct program for the
systems, we must take the difference between
the processors’ local clocks into consideration.
It is very useful to support a computing model
for describing and verifying such local time
properties and functional logical behaviors in
distributed computing.

However, most computing models for dis-
tributed systems are diverted from computing
models for concurrent computing and cannot
essentially represent local time properties in
distributed systems. Some researchers have
explored methods and algorithms for agree-
ment on processes’ time, such as virtual time
[7] and clock synchronization [8, 5]. Unfor-
tunately these are not intended to model the
functional behavior as well as the time prop-
erties of distributed computing. Also, in [2]
the authors present how to deal with different
time granularities based on a temporal logic
with object-oriented structure [11] but they
cannot deal with different time precisions.

The goal of this paper is to investigate a for-
malism for reasoning about distributed com-
puting, especially local time properties of dis-
tributed computing. The formalism is based
on a timed extended process calculus, RtCCS
[13] which is an extension of CCS [9] with the

notion of global time.

However, RtCCS is essentially based on
a global time so that it cannot represent
the notion of local time in distributed sys-
tems. Also, other timed extended process
calculi cannot represent local time properties
[3, 10, 17]. There have been some models for
distributed computing based on process cal-
culi (1, 4, 6], but they are extended CCS with
the concept of process locality and not local
time. In this paper, we extend RtCCS with
the notion of local time and then introduce
a process calculus for distributed systems,
called DiCCS (Distributed timed Calculus of
Communicating Systems). Furthermore, we
develop a theoretical proof technique for dis-
tributed systems based on DtCCS.

The organization of this paper is as follows:
in the next section, we informally introduce
our approach to represent processes with lo-
cal clocks. In Section 3, we define the syntax
and the operational semantics of DtCCS. Sec-
tion 4 presents the concept of timed bisimilar-
ity based on local time and studies its basic
properties. The final section contains some
concluding remarks. However, this paper is
an abbreviated version of [15] and we leave the
further details on DtCCS and all the proofs
to [15]. ‘

2 Distributed Timed CCS

In this section, we describe our basic idea of
time in distributed computing and a brief in-
troduction to our formalism, and then we for-
mally define the formalism.

First, we present our two assumptions for
time in distributed computing.

e All processors in a distributed system
share a global time.

o A clock in each processor may measure
the global time according to its own time
granularity ! and precision.

This is because, if the relative motion of the
processors is negligible, then all the proces-

1The interval of consecutive time instants.

sors must share the same physical global time.
Actual clocks read their own current time by
translations from the physical global time into
their own time coordinate. Consequently, the
instantaneous values of different processors’
clocks are different from one another. The
processors with clocks may not have the same
time although they share the same global
time.

We develop our formalism based on the
above assumptions. We first introduce a con-
ceptual global time and then give processes lo-
cal clocks which can measure the global time
in their own time granularities and precisions.

In developing our formalism, called DtCCS,
we first take up a timed extended process cal-
culus RtCCS [13] as a semantic framework to
represent the notion of global time. Second,
in order to represent the above notion of local
time, we extend it with the ability of repre-
senting clocks with different granularities and
precisions. Therefore, we introduce a local
evaluating function to the clock in RtCCS.
The function is given in each local proces-
sor and translates local time which local pro-
cessors’ clocks measure into a corresponding
global time. By using the function, processes
on local times are translated into processes on
a global time.

2.1 Time Domain

In our formalism, time is represented as a
time domain. A time domain is a set of time
instantaneous values and is formally defined
as follows:

Definition 2.1 Let 7 denote the set of the
positive integers including 0. We call T a time
domain.

T = NU{0}
1

We assume a special time domain which can
be measured by a conceptual perfect and
finest clock. It is called a global time domain
and is denoted as 7g and will sometimes be
written as 7.

The time of any instant time in all local
time domains can correspond to the time of
an instant time in the global time domain.
The linkages between the local time domains
and the global time domain are related by a
mapping, called a clock mapping, or simply a
clock. The mapping shows how the length of
the time interval of the local time domain is
measured on the global time domain.

Definition 2.2 Let 7; be a local time do-
main. A clock mapping 0 : 7; — 7 is defined
recursively by the following mapping. For all
t € 727

def 0 iftyp=0
o) = {G(te—1)+6g ift,>0

where Smin, bmaz, 61 € g, bmin < 8 <
bmaz- We will sometimes abbreviate the def-
inition of 6 as 0(t) % 64ty if bmin = Smas.
]

g corresponds to an interval of the local time
domain mapped into the global time domain.
bmin 1s the lower bound of that interval and
bmae the upper bound of that interval. As
a result, in the local time domain of an ac-
curate clock, the clock mapping is injective,
whereas in the local time domain of an inac-
curate clock the clock mapping is not.

In this formalism, we assume that any events
which are executed between two consecutive
time instants are treated as events which are
executed at the faster time instant. Here, we
present the inverse of clock mapping.

Definiticn 2.3 The inverse mapping of 6:
Ty — Tg is defined as follows:

07 (tc)
= {t | min {6(t))} < tc < max {8(t, + 1)} }

where ¢ € Ty, tg € Tg, and {0(t)} = { g €
Te | 6(t) = tg } I

{6(#)} means the whole time values can be
evaluated in 6(t). Note that the meaning of
this definition is different from that of math-
ematical inverse function.

2.2 The DtCCS Language

In this subsection, we present the syntax of
DtCCS by using that of RtCCS. First we in-
formally introduce RtCCS before the defini-
tion of the syntax. ’

RtCCS is an extension of Milner’s CCS [9]
by introducing a tick action and a timeout
operator. The tick action is described as
and is a synchronous broadcast message over
all processes. It corresponds to the passage
of one time unit. The advance of time can be
represented as a sequence of tick actions and
is viewed as discrete time. The timeout oper-
ator described as (Fi, Eq):. (Ey, Eq): denotes
a process that after ¢ time units becomes Ej,
unless E3 performs any actions prior to that.
Intuitively (B4, E2); behaves as process Ey if
FE) can execute an initial transition within ¢
units of time, whereas (Ej, E;); behaves as
process Ey if Fy does not perform any action
within ¢ units of time.

Notation and Syntax

We presuppose that A is a set of communica-
tion action names and A the set of co-names.
Let ab,... range over A4 and @J,... over A.
An action @ is the complementary action of
a,and @ = a. Let £ = AU A be the set of ac-
tion labels and £,',. . . range over A. Let 7 de-
note a silent action which is considered to be
unobservable outside a system. Let v/ denote
a tick action which represents the passage of
one time unit. Finally let Act = AU AU {7}
ranged over by o,0,..., and Acty = ActU{y}
ranged over by g, v,. ...

Definition 2.4 The set £ of RtCCS process
expressions, ranged over by E, Ey, E,,... is
the smallest set which contains the following
expressions.

E == 0 (Deadlock Process)
I X (Process Variable)
| a.F (Action Prefix)
| Ei1+ E; (Summation)
| Ei|E; (Composition)
| E[f] (Relabeling)
| E\L (Restriction)
| recX:E (Recursion)
| (B1, E2)y (Timeout)

where t € T, f € Act — Act and L C Act.
We assume that f(7) = 7, f(v) = v, and that
X is always guarded 2. We shall often use the

more readable notation X & E instead of
recX: F. [

In the following, in order to clarity our ex-
position, we will divide process expressions
€ into two groups: expressions describing
behavior of a processor and expressions de-
scribing interaction among processors with
different clocks. We restrict the syntax of
the former group to a subset of £ which
does not allow process expressions with paral-
lelism. This is because concurrent executions
on the same clocks can be reduced to non-
deterministically sequential executions by us-
ing the expansion rules ® for RtCCS. The syn-
tax of the latter group consists of parallel, re-
striction, relabeling operator, and a special
operator, [S]g, to represent the dependency
of local time.

Definition 2.5 The set S of sequential pro-
cess expression ranged over by S, .97, 92 is the
subset of process expressions £ is generated
by the following grammar:

S = 0] aS | X | S+
| recX:S | (51,5):

where ¢t is an element of a local time domain.
|

A process executed on a local clock § is rep-
resented as a sequential process expression

X is guarded in E if each occurrence of X is only
within some subexpressions a.E' in E; c.f. unguarded
expressions, e.g. recX : X orrecX : X + E.

3See Corollary 1 in [13]

supplied with a clock translation mapping
[15- The syntax of expressions for interaction
among processors with different local clocks
are defined by the following grammar:

Definition 2.6 The set P of process expres-
sions on local clocks, ranged over by P, P;, P,
is defined by the following grammar:

P u= [Sly | AP | P[f] | P\L

where S is an element of the set of closed
expressions in § and § is a clock mapping
(0 : Ty — Tg). Process expressions on P
will sometimes be called DtCCS process ex-
pressions. i

[S]g allows sequential process expressions on
local clock 8 to be translated into RtCCS ex-
pressions on global time domain 7g. In the
above definition, we could give [-] as a high
order function, i.e. [P]g instead of [S]p.
However, to simplify our formalism, we re-
strict [-]y to a first order function in this pa-
per.

2.3 Semantics

As we noted already, the semantics of DtCCS
is given in two steps. First, DtCCS processes
are translated into RtCCS process expressions
based on a global clock. Second, the seman-
tics of the RtCCS expressions are given by
structural transition rules in Figure 1.

The semantics of RtCCS

In order to define the semantics of DtCCS,
we should first define the semantics of
RtCCS. RtCCS is a labeled transition system
(&, Actr, { X5 | p € Actr }) where -5 is
a transition relation (<-C € x &). The tran-
sition relation — is defined by structural in-
duction and is the smallest relations satisfying
the rules in Figure 1.

The semantics of DtCCS

All the syntactical constructions of P except
[S]y are included in £ and can be directly

ACTy:

ACT, :

ACT, :

SUMgp :

SUM; :

SUM, :

COMj :

COM; :

COM; :

COM3 :

RESy :

RES; :

REL:

REC:

TIMEy :

TIME; :

TIME2 .

Figure 1:

a.F -2 F
LE L LE

0-%0

ESE
E+F 2% F
_EL’—FI
E+F S F

ELE FLF
E+F L E+F

E - E
E\F -5 E'\F
F F
E|F = E|F'
E-SE, FXLF
E|F L E'|F

E-LE, F-LF, EF />

E|F -5 E'|F

E-5SE u¢ Lul
E\NL-L E\L

E-% E
E\L-LE\L
ELH B
Bl 1 By

E{recX :E/X} - F'
recX : E/X - B

E-SE ,t>0

(E,F)y = E'
E-LE >0
(B,F); % (B, F);4

F-E R
<E’F>0LF,

Inference Rules of RtCCS

translated into RtCCS. We will give the rules
to map [S]y into RtCCS process expressions
according to the syntactic structure of S. The
rules allow all DtCCS process expressions in
P to be translated into RtCCS process ex-
pressions. The rules are defined by the syn-
tactic mapping shown below.

Before describing the definition of []4, we
present the key idea of the mapping. In our
formalism, the only primitive which can mea-
sure elapse time, a clock, is only the deadline
time of the timeout operator. The deadline
represents the time before the timeout opera-
tor goes into a timeout state, and is reduced
by one whenever a unit time passes. The
mapping rules translate the deadline time on
a local time domain into a deadline time on
the global time domain by evaluating clock
mapping 8.

Definition 2.7 Let 7; be a local time do-
main. The mapping []g from § x (T — 7g)
to £ is recursively defined by the following
syntactic rewriting rules. We assume that 4
is a clock mapping from 7; to 7g.

g — o
Xl = X
[a.5lg — «ofSly
14 80y — [Sig, +[S:ls,
[recX: 5] — recX:[S]y

[(S1,5:0:g — ne{6:(t)}: (5119, [S2]gr)n

where 6,6,,0; are clock mappings from 7;
to 7 and satisfy {6} = {6}, and {6,}, {62}
and Vg € Ty : 01(ty) = 02(2). 1

We explain the intuitive meaning of some
mapping rules. In [0.E]y — a.[E]y an un-
predictable synchronization time for o is di-
rectly translated into an unpredictable time
on the global time domain. The mapping rule
for the summation shows that all alternative
processes in a processor share the same clock.

The above mapping rules and the transi-
tion relations in Figure 1 provide the basic
mechanism of computation in our formalism.
We will give some examples of translation by
the mapping rules.

Example 2.8 Ezamples of mapping g
Consider process (a.P,b.Q)2. We show its
mapping in two cases: when executed in a
processor with an accurate clock and when
executed in a processor with an inaccurate
clock.

(1) Mapping with an accurate clock

Consider the execution of (a.P, 5.Q)2 on a
clock whose time granularity is always three
time units. The clock is given as 8(t) = 3¢ and
a computation of the process is as follows:

[(e.P,0.Q)2]y — ([a.Ply,[6.Qlp)s
— (a.[P]g,[6-Qlg)s

(5)° [b-Qlg

— b[Q]p

(i) Mapping with an inaccurate clock
Consider the execution of (a.P, 5.Q)2 on a

clock whose time granularity may nondeter-

mimisitically be evaluated as either one of

2 or 3, 4. The clock is given by 6(t) &
0 ift=0

{ B(t—1)+6 ift>0 "hered € {2,3,4}

and the computation of the process is as fol-

lows:

[(a.P,5.Q)2]g (—)* (a.[Plg, b.[Qlg)n
where n € {4,5,6,7,8)}

The clock 6 in (ii) corresponds to a clock hav-
ing the granularity of 3 time units and the
error of +1 time units. Thus, the nonder-
mimism in the definition of clock mapping 6
allows us to represent non perfect clocks, such
as physical clocks which may essentially drift.

3 Local Timed Bisimulation

In this section, in order to establish a proof
technique for distributed systems, we define a
local timed bisimulation. In the earlier pa-
per [13], the author provided timed equiv-
alences in which timed equivalent processes
must completely match their time properties

as well as their functional behaviors. How-
ever, in distributed systems any two dis-
tributed processes may not temporally match
one another because the clocks of the pro-
cessors never run at exactly the same rate.
It is natural that two processes on differ-
ent processors can be treated as equivalent
processes only if their behaviors are com-
pletely matched and their timing are slightly
different. We develop such an appropriate
experimenting technique for distributed pro-
cesses by extending RtCCS’s timed bisimula-
tion with the notion of rough time.

In order to formulate the observational bisim-
ulation for our calculus, we first define the two
following transition relations due to the unob-
servability of 7.

Definition 3.1
M) P Q¥ P() L (T)Q
(i) P Q¥ Py £ (L) Qif
7 and otherwise P(—)*Q. 1

Definition 3.2 A binary relation R is a local
timed bisimulation if (P,Q) € Ry implies, for
all a € Act,

(1) Vm € T, VP': P(=5)™ =2 P! 5 3n ¢
T, 3Q: Q(=5)" =% Q' A {#7'(m)} N
{671 ()} #0 A (P, Q') € Ry

(2 VneT, ¥Q': Q(=5)" =2 Q' >3Ime
T, 3P": P(=%)™ =% P' A {6~1(m)} N
{671 (n)} #0 A (P',Q') € Re.

We let “~p” denote the largest local timed

bisimulation, and call P and Q local timed

bisimilar if P =y Q. Also if 6(t) def t, we let

~;q (or simply =7) denote . i

Intuitively, if two processes P and Q are local
timed bisimilar, they cannot be distinguished
from one another in their visible behaviors
and in the timing of their behaviors, by an
external observer having clock 6.

Proposition 3.3 Let S1,5, € S, then
[Silg ~g [S2]g if S1mi4q S2

This proposition shows a relationship between
that the local time bisimilarity on a clock and
the clock translation mapping of the clock.

Proposition 3.4 Let P,,P, € P: P ~g
Py, then

(1) a.P; =y a.P,
(2) A\L =g P\L
() Af] =y Pf]
(4) AlQ =y R|Q

where Q) € P contains no timeout operator.

Thus, the bisimilarity is not preserved by the
parallel operator because Q is restricted to an
untimed process. However, only if we restrict
the clock of the bisimilarity to a clock with

. no drift, the parallel operator preserves the

bisimilarity. ¢

Proposition 3.5 Let clock 8 is an accurate
clock (without drift), If VP, P, € P,VS € S:
Py 7] Py, then

P1|[STp =g P2I[S1g

This proposition states that if a process with
an accurate clock cannot distinguish between
two processes, the process never notices the
difference of the cooperation with either pro-
cesses.

4 Examples

In order to illustrate how to describe and ver-
ify distributed systems in our formalism, we
present a simple example

Example 4.1 Interaction between
distributed processes

We describe the cooperation between a client
process and a server process on different pro-

Cessors.

e The client sends a request message (727)
and then waits for a return message (ret).
If the return message cannot be received
within 6 time units, then it sends the re-
quest message again.

e Upon reception of a request message
(req), the server process sends a return
message (ret) after an internal execution
for 5 time units.

These processes are denoted as follows:

Client & 7éq.(ret.0, Client)s

Server req.{0, rel.Server)s

The cooperation between the processes is de-
scribed as the parallel composition of Client
and Server.

(i) First, we assume that both the pro-
cesses are executed on the same processor
with a clock. In this case, the cooperation
is described as [Client]y|[Server]y (where

0(t) & 54) and its computation is described
as below:

[Client]g (—)* Teg.(ret.0,[Client]g)1s
[Serverly (—)* req.(0,7el.[Server]y)is

([Client]g|[Server]y) \ {req,ret}

7(req) (=L)18 T(ret) (0|[Server]g) \ {req, ret}

In the above interaction, the client can receive
the return message before it goes to timeout.

(ii) Next we assume that the two processes are
allocated to different processors. The client
process is executed by a processor with clock
6., whose time granularity is from 4 to 6 time
units and the server process by one with clock
0,, whose time granularity is from 3 to 5 time
units. 8, and 6, are defined as follows:
ift=0

bc(2) ¢ { gc(t—1)+6c ift>0
where 6. € {4,5,6}

def { 0 ift=0

- B,(t—1)+6, ift>0
where 6, € {3,4,5}

0,(t)

The cooperation between the server and client
process is constructed by the following paral-
lel composition:

(][Client]]gCH[Server]]gs) \L
where I & {req, ret}

This means that the processes are located on
different processors because the clock map-
ping 8. and §, are independent from one an-
other. By [-]y mapping rules, the client and
the server are mapped into the global time
domain as follows:

[[C’lient]]gc (—)* 7eg.(ret.0, [[Client]]gc)tc
where t. = {6.(6)} (= {24, 25,... 36})

[[Server]]es (—)* req.(O,m.[Server]]gs)ta
where ¢, = {6,(5)} (= {15, 16,... 25})

From the definition of 6, and 6,, there are
mutliple results for 6,(6) and 6,(5). For ex-
ample, we present the computation in the case
of t. = 24 and t, = 25.

([IClient]]ecH[Serverﬂas) \L 7lreq) (_\/_,)24
(]IClientﬂocKO,Fc?.[Serverﬂas)l) \L
(failure)

In the above case, the client goes to timeout
before receiving a return message ret because
of t. < t,.

Example 4.2
Bisimulation
We consider two server processes, Server4
and Serverp, and a client process, Client.
The behavior of the server and client pro-
cesses are already described in Example 4.1
but we assume that the execution time of
Servery is 4 time units and that of Serverpg
5 time units. These processes are described

Example of Local Timed

as follows:
Servery def req.(0, rei.Serverp)y
Serverp def req.(0, Tet.Serverp)s
Client & 7€g.(ret.0, Client);

(i) By using the local timed bisimilarity which
depends on an accurate clock 8(t) o 6t, we
verify the behaviors and time properties of

the two servers.

Servery gy Serverp

(cf. Servers #;q Serverp)

The above relation means that an observer
dependent on a clock whose time granular-
ity is six time units, cannot detect any time
difference within six time units. As a result,
the observer cannot distinguish the two server
processes although they are different.

(ii) Let the client be performed on a proces-
sor with clock #. Then, from Proposition 3.5
the cooperation between the client and the
servers is given as follows:

Server4|[Client]y ~y Serverp| [Client]y

This example means that if observer on a pro-
cessor having clock # cannot detect the dif-
ference between two server, the client on the
processor cannot detect the difference.

The above example shows that the bisimilar-
ity can ignore slight temporal differences be-
tween two functionally equivalent processes so
that it can equate two distributed processes
whose time properties are not matched by the
existence of the difference in the local clocks
of the processes and it can equate real-time
processes whose temporal requirement are not
strict.

5 Concluding Remarks

We introduced a formalism to describe and
verify distributed systems. In our earlier pa-
per [13] we introduced RtCCS. However, since
RtCCS was developed based on the global
time, it cannot represent computations based
on local time, such as distributed computing.
In this paper we extended RtCCS with the
notion of local time and developed a new for-
malism, called DtCCS. It can represent lo-
cal time measured by clocks having differ-
ent time granularities and precisions. It can

also model the functional and temporal be-
haviors of processes on the same local time
and interactions between processes on differ-
ent local time. Therefore, it provide a for-
mal framework for describing and analyzing
distributed computing which consisted of dis-
tributed processes with different local times.
We also presented a local timed bisimulation
which defines an equivalent relation between
processes whose functional behaviors are com-
pletely matched and whose timing are slightly
different. Therefore, it can ignore the slight
difference of local clocks and can equate pro-
cesses on different local clocks. For further
details the readers are referred to the full ver-
sion of this paper [15].

Finally, we would like to point out some fur-
ther issues. Although, in distributed comput-
ing asynchronous communication may seem
more appropriate, the current formalism is
based on synchronous communication. We
are interested in extending DtCCS with asyn-
chronous communication. Particularly, we
believe that the study of the time properties
for asynchronous communications will pro-
vide us with the concepts of programming
languages for distributed systems. We are
also interested in investigating whether our
calculus and local timed bisimulation can
be mathematically formulated in topological
metric space.

The concept of our mapping local time into
global time is independent on our formalism
and RtCCS and The concept of our mapping
local time into global time can be naturally
adopted into other formalism based on the
concept of global time, such as real-time tem-
poral logic and timed Petri net.

References

[1] Castellani, H., Hennessy, M., Distributed
Bisimulation, Journal of ACM, Vol.36, No.4,
1989.

[2] Corsetti, E., Montanari, A., and Ratto, E.,
Dealing with Different Granularities in For-
mal Specifications of Real-Time Systems,

[5

—

(6

—

[7

[8

=

[o

(10]

{11]

[12]

(13]

(14]

[15]

Journal of Real-Time Systems. Vol.3, No.2,
May, 1991..

Hansson, H. and Jonsson, B., 4 Cualculus
of Commaunicating Systems with Time and
Probabilities, Proc. IEEE 11th Real-Time
Systems Symposium, 1990.

Kieln, A., Castellani, I., Hennessy, M.,
and Boudol, G., Observing Localities, Proc.
Symposium on Mathematical Foundations of
Computer Science, LNCS 520, 1991.

Kopetz, H., Interval Measurements in Dis-
tributed Real-Time Systems, Proc. IEEE 9th
Conference on Distributed Computing Sys-
tems, June, 1987.

Krishnan, P., Distributed CCS, Proc. CON-
CUR’91, LNCS 527, August, 1991.

Lamport, L., Time, Clocks, and the Ordering
of Events in a Distributed System Communi-
cation of the ACM, Vol.21, No.7. July, 1978,
pp.558-565.

Lamport, L., and Smith,M., Synchronizing
Clocks in the Presence of Faults, Journal of
ACM, Vol.32. No.1, 1985.

Milner, R., Communication and Concur-
rency, Prentice Hall, 1989.

Moller, F., and Tofts, C., A Temporal Calcu-
lus of Communicating Systems, Proc. CON-
CUR’90, LNCS 458, 1990.

Morzenti, A., and Pietro, S. P.. An Object-
Oriented Logic Language for Modular System.
Specification, Proc. ECOOP’91, LNCS 512.
June, 1991.

Park, D., Concurrency and Automata on In-
finite Sequences, Proc. ICALP, LNCS 104,
1981.

Satoh, I, and Tokoro, M., A Formalism
for Real-Time Concurrent Object-Oriented
Computing, Proc. ACM Object-Oriented
Programming Systems. Language, and Ap-
plications (OOPSLA’92), October, 1992.

Satoh, I, and Tokoro, M., A Formal Descrip-
tion for Parallel Processes with Time Prop-
erties, To appear in Transactions on Infor-
mation Processing Society of Japan, Vol.34,
No.4, 1993. (in Japanese)

Satoh, I, A Timed Calculus for Distributed
Objects with Clocks, To appear in Proc. Eu-
ropean Conference on Object-Oriented Pro-
gramming (ECOOP'93), LNCS, July, 1993.

[16] Tokoro, M., and Satoh, L., Asynchrony and

real-time in distributed systems, US/Japan
Seminar on Parallel Symbolic Computing,
Cambridge, MA., October, 1992,

[17] Yi, W., CCS + Time = an Interleaving

Model for Real Time Systems, Proc. Au-
tomata, Languages and Programming’91,
LNCS 510, 1991.

