Tey5IV-BE-ER-EE 14—5
(1993. 10.29)

RS AVY v 2 ARBHET ¥y 7 ASHO
St 2 3R

SRR

HORARFEEN BRI
F 113 AR A 7-3-1
daiQis.s.u-tokyo.ac.jp

RYEA7 4 Xb () 7077 v 7oREELHRAEERLE G20 CLERERDO—DTH
3, Strachey tx £ % parametric b D& ad-hoc Ab DR LAko ThbE T 7T LEE BN
TIESAvbh TV 33, ERCEIHEHOZHEMAABTERRLALHFELAWDOT, 707 508HE
BEREIC XHUBR A U B, T4 12 parametric Z4H & ad-hoc ZH%Mii X T V= 7 MEAEEO LD O
LwiflTdH s F2 — F I subtyping, bounded qantification, coercion, merge DEREFEI L 2 b D
— ¥ KT 5 %—L"C\ CORERN, BIC X 32800, BURIEE, RIEREA Y OWE M T %
KT B, COHEROEBOF 7 V2 7 MEABE~D WL OhDIGRAAEE4 %,

A Calculus Integrating Parametric and Ad-hoc Polymorphism
Daisuke Suzuki

Department of Information Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, JAPAN
dai®is.s.u-tokyo.ac.jp

Polymorphism is one of the important tools for increasing programming flexibility and re-usability
of programs. Strachey distinguished between two kinds of polymorphism: parametric and ad-hoc. The
importance of both kinds of polymorphism is widely recognized, but existing programming languages
usually support only one kind of polymorphism, and conséquently we find restriction in re-using pro-
grams. In this paper, We propose a new framework named F< (an extension of F' with subtyping,
bounded quantification, coercion, and merge) for object-oriented programming languages with para-
metric and ad-hoc polymorphism, which enjoys the properties of Church-Rosser, Subject Reduction,
and Strong Normalization. Finally we show some examples of applications of this calculus to object-

oriented languages.

1 Introduction

1.1 Background — Parametric vs.
Ad-Hoc

Polymorphism is one of the important tools
for increasing programming efficiency and re-
usability of programs. Polymorphism has clas-
sification: “parametric v.s ad hoc” (see [11}).
A parametric polymorphic funclion is a function
which is defined uniformly over types. That is,
though a parametric polymorphic function be-
haves as a collection of monomorphic functions,
they have the shared procedure written as a sin-
gle lambda expression. System F{[7] enables us to
treat parametric polymorphic functions as first-
order objects. From the point of view of object-
oriented languages which support the notion of
subtypmg, F<([3, 4, 6] is presented by Ghelli. F¢
is a conservative extension of F, which allows us
to specify bounds on V- functxon types. In addi-
tion, there are many studies about characterizing
a parametric polymorphic function in model the-
ory and category theory. However, in F (and
F<), a polymorphic function whose behavior on
different types is unrelated cannot be written.

Such a polymorphic function is called an ad-hoc
polymorphic function. An example of such a
function is a function which is written by type
case. However, ad-hoc ‘polymorphism has not
received so much attention as parametric poly-
morphism. In [5], with the definition of the A&-
calculus, Castagna, Ghelli and Longo started a
theoretical analysis of ad-hoc polymorphism. In
A&, an overloaded function is represented by a
list of ordinary functions. When an overloaded
function is applied to an argument, it selects only
one function from the component functions ac-
cording to the type of the argument, and returns
its result. Therefore, in A&, an ad-hoc polymor-
phic function whose behavior on different argu-
ment types is entirely unrelated is easily written
as a first-class object. In [13, 14], Tsuiki proposed
a calculus), which is a simply typed A-calculus
enriched with subtyping, coercion and merge op-
erator. Merge operator is provided by general-
izing from record merge operator of extension of
ML type system with record[9, 15]. In A, the
notion of merge to functions is introduced and
corresponds to a message in object-oriented lan-
guages. It is good-natured in the sense that the
behavior on a subtype inherits those on its su-
pertypes. A merge of functions activates all of

appropriate functions and merges their effects.
Therefore, component functions work together to
calculate a result; and thus the behavior of a
function on each type is closely related. However,
in A& or An, since they are conservative exten-
sions of simply typed A-calculus, no parametric
polymorphic function cannot be written.

From these reasons, we want to introduce a new
L4 . . .
calculus F2 ', which integrates parametric and

-ad-hoc polymorphism.

1.2 Integration of Two Kinds of
Polymorphism

Castagna introduced F%[2], which integrates

-parametric polymorphism and “explicit” ad-hoc

polymorphism. In F%, a function which performs
a dispatch on a type passed as an argument would
be written as: (X means type variables)

AX < Ty.ezpr &AX < Ty.exzpr&---AX < Ty.exp,

When a type V is applied this function to,
AX < T;.exp; which satisfies T; = min{T} |k =
1,...,n,V < Ti}! is selected and returns the
value ezp;{X V}. However, in F&%, types
permitted to be applied the sorts of functions to
are restricted to base types?, and when writing
an “explicit” ad-hoc polymorphic function whose
behavior on types is closely related, we cannot
write the “common” procedure for describing the
related behavior because of the same reason as in

the case of A&.

To solve those problems, we propose another cal-
culus integrating (explicit) parametric polymor-
phism and (implicit and explicit) ad-hoc poly-
morphism, by defining F72'.

1.3 Merge Operator

Merge is the notion. given by generalizing from
record merge operator. In A, the notion of
merge to functions is introduced. A merge of
functions activates several functions and merges
their effects. Therefore, component functions
work together to calculate a result; and thus the
behavior of a function on each type is closely re-
lated. In other words,, an ad-hoc function whose

Imin is defined over subtyping relation.
2] think this restriction will not be required.

behavior on each type is closely related can be
written as less procedures in A, than in A&, be-
cause, by virtue of merge of functions, we need
only to write a single “shared” procedure which
describes the closely related behavior on each
type in A, while, in A&, for each type, we must
write its own procedure instead.

Thus, it can be said that merge of functions
bridge the gap between parametric polymor-
phism and ad-hoc polymorphism but it does not
completely succeed yet in the sense that no com-
plete parametric polymorphic function can be
written. In this paper, by proposing F’Q', we try
extending the notion of merge to second-order
lambda calculus to remove entirely the gap.

1.4 Outline

The rest of this paper consists of two parts.

In the first part (Section 2,3,4), we define a new
calculus FZ" which integrates parametric and

ad-hoc polymorphism. F7Z’ is an extension of
F enriched with subtyping, coercion, bounded
polymorphism, and merge operator. In order to
dispatch appropriate functions depending on the
type of the arguments, '2‘ uses type informa-
tion at runtime in contrast to second-order lan-
guages. Therefore, the type of each expression
must be uniquely determined and preserved by
reduction (which is not impossible with the sub-
sumption rule).

In the second part (Section 5), we mainly discuss
the relation between FZ" and object-oriented
programming language. In F2°, a function
which performs a dispatch on atype passed as
an argument would written as:

Fun(X:Type) = X<T1 => exp_1
X<Tn => exp_n

This function can be written in F, but there
are a lot of differences: If this function is applied
to a type S, the function executes all ezp; such
that S < T; and merges all the effects into one
result. In F?", this function (to say the truth,
V-function term) is denoted by:

(AX < Ty.expy A...AX < Ty.ezp,)

and its type is VX{T1.51,...,75.S,} (where
exp;:S;). However this type is a rough approxi-
mation yet and therefore we need some restric-
tions on the S;’s and Tj’s, which is discussed
in section 2. That description can be done in
F%, but, as in the discussion about ad-hoc poly-
morphism, the behavior of a polymorphic func-
tion whose argument is a subtype and that of
the function whose argument is a supertype are
closely related in JA,,, we need write only one
“shared” procedure for describing the “related”
behavior because of the merge operator, while,
in F%, for each type, its own procedure need be
described. So, we believe that F'<". is better than
F‘gs‘ for re-using existing programs to write new
programs.

2 Type

In this section we describe the type system of
FZ . In our paper we assume that there is no
subtype relation between base types.

We use a following notation when no specific no-
tation is declared.

| Notation | Metavariables |
[Type Variables | X,Y,...
Type Constants | A, B,...
Type C,ST,U,...
Term Variables | z,y,...
Term Constants | a,b,...
Term e, f,...

2.1 Raw Types

Let I,J be finite (countable) sets. Rdw types are
defined as follows:

S X type variables

A basic type constants
Top

[Si— Tilier
VX A{S:. T Yier
(X ¢ FV(s)

(—-)function type
V-function type

When I is {1,...,n}, [Si — Ti)ics denotes a
multiset of function type [S;, — Ti,...,S, —
Ty}, and VX.{S;.T; }ics denotes a multiset of V-
function type VX.{S:.T1,..., S, T}

2.2 Type Environments

In F?" (asin F¢), all type variables have upper
bounds, and, therefore, a (1ype) environment is
defined as a list of pairs of free type variable and
its “upper bound”.

(@ env) Oenv

Tenv I'FStype X¢T
X <Senv

(< env)

2.3 Judgements

We have four kinds of type judgement: for type
good-formation (T' - S type), for the subtyping
relation (I' = § < T), for the “merge”-ability
relation (I' - S 1 T) and for the type assignment
(T Fe:S). We also call the first three kinds
of judgements type judgements. All kinds of type
judgements are mutually defined.

2.3.1 Types Good-Formation (T I- S type)
We define the judgement of type “good-
formation”.

(Top Form)
Lenv
T+ Top type

(X Form)
T'+ S type X doesnotoccurin T

T''X <SHF X type

(— Form)
'+ S; type (1€ 1)
THT; type (€ 1)
For i,j € I. such that T+ S; T 5; holds
{ LHT; 1T
Tk [S, — T,'],'Ej type

(V Form)
I'FS; type (1€ 1)

For i,j € I. such that '+ 5; T S; holds
{ F,XSS,‘/\ij‘T,'TI}'

T FVYX.{5:.T:}ier type

2.3.2 Subtyping Relation (' S <T)

The definitions of subtype relation is listed as
below:

'+ S type
(Refl <) TFS<S
THS<T THTLU
(Trans <) r-S<U
. X <S,T env
(Taut <) TLXLSI'FXKLS
Tk S type
(Top <) 'k S < Top

The definitions of subtyping relation between
function types and V-function types are slightly
complicated and postponed.

2.3.3 “Merge”-ability Relation (I' + SAT)

Before defining subtype relation between func-
tion types and V-function types, we need to define
the notion of merge and “merge”-ability relation.

Merge of two type S and T is written as S AT.

We can define SAT as an abbreviation for a type
expression as follows:

XAX

=X

XAS (T'+ X < S holds)

= X

SATop = TopA S

[S1 =T, .., S = TRIA[S, = TY,..., S, — T}]
= [51—>T1,..‘,Sn -—*Tn,Si—*T{,‘..,S,'n—*T,'n]
VX AS1. T, ., Sn TR} AVX {S]. T} ..‘.,S,’,,,.T,'n}
= VX.{.S'l.Tl,.. SnT0n, 8114, ..., S0 T}

It should be noted that, under an environment T',
S AT can be defined only when “merge”-ability
relation S T T holds.

(A ReflVar)
Xel
FrEXTX

(A SubVar)
THFX <A

FTFXTA

TFX<A
TFATX

(A RefilConst)
r-cic (C is a base type.)
(r—)
Fori€1,j € J such that I'F S; T S} holds,
FET 1T

LHI[Si = Tilier 1S} — Tiljes

(A-{}
Forie€I,j € J such thatI‘l-S;TS} holds,
LXSSAS;FTTT]

r&vx{&lﬂszVX{S’T?mJ

Lemma 1

1.TFSTS
2 THSTT impliesTHT TS
3. TS 1T is decidable.

Note that T is symmetric and reflexive, but not
a transitive relation.

From these definitions, function type and V-
function type can be constructed as merged or-
dinary function types and as merged ordinary V-
function types, respectively.

2.3.4 Subtyping Relation (continued)

After notions of merge and “merge”-ability are
introduced, the subtype relation about function
type and V-function type is defined as follows:

Definition 1 Under an environment T, let F' be
[Si — Tilier and I' be {i € I | C < 5;}. Define
AT(F,C), AP(F,C), and M(F) as follows:

AT(F,C) = Aier'S:

AP(F, C) = NerT;

M(F) = {[A—=B]| A=NesSi,
B = AP(F,A)
0£JCI

(Foralli,j € J, T+ S; 15;.)}

The subtyping rule between function types (—
— <) is defined in figure 1.

Definition 2 Under an environment T, let F be
VX.[Si, Tilier and I' be {i € I' | C < S;}. Define
AT2(F,C), AP2'(F, C) AP2(F, C') and M2(F)

as follows:

AT?(F, C) = /\,'51/5,'

AP2'(F,C) = NerT;

AP2(F,C) = AP?’(F,C)[X ~ (]
= NesTi[X —C]

MQ(F) = {(/\,-EIIS,-) I@ 9’1 JCI

(Foralli,# € J ,TF S; 1S)}
The subtyping rule between V-function types
(V= <) is defined in Figure 1.

We write '+ S = T when both of ' F S < T
and '+ T < S hold.

We call Sy, ...,Sn (pairwise) compatible'under an
environment T' when I' F S; T S; holds for any
,,j=1,...,n

From these definitions, some properties as listed
below are satisfied.
Lemma 2 1. WhenT'F S 1T, T F SAT type.
2.SANS5=S
3. TH(EAT)1 S and TH(SAT)TT

4. When (SAS’') and T are compatible, S 1T,
S'1T, and (SAS)YAT =SA(S'AT)

5. When 51,...,S8, and T are compatible,
Ai=1,..,nSi and T are compatible

6.IfI‘I-S<TthenI‘I~Stypeand[‘l—
T type

7 THFSL<T andTHFST1S impliesTF S 1
T. Especially, TS < T impliesT+STT.

8 THFSLST, THS <T,andT+HSTS
impliesTHFT 1T and THFSAS' KTAT.
Especially T S < Tand T F S T
impliesT’FT 1T and THFS<TAT.

9. T S <T is decidable

3 Term

Let F be [S; — Tilier

Under an environment T, for any [S — T) € M(F), there exists AT(G, S)
such that T+ S < AT(G, S) and also T' = AP(G,AT(G,S)) < T

(=3

Let F be VX.[S:, Tilier

TFG<F

Under an environment T, for all $ € M2(F), there exists AT2(G,S)
such that T', X < S+ AP2/(G,AT2(G, 5))) < AP2(F,S)

v <)

Figure 1: lSubtype relation about function typel

In this section, we describe the terms of F72". We
start by the definition of raw terms, among which

we distinguish the terms, i.e. those raw terms’

possessing types. Raw terms are divided into five
classes: variables and constants, function terms
(functions), V-function terms, coerced terms, and
merged terms. Coercion is introduced to hold
unicity of type and subject reduction. A merged

term is represented by a list of ordinary function:

terms or V-function terms, i.e., A merged term is
a merged function (term) or a merged V-function
term. The A’s are their connectives for describing
merged terms.

3.1 Raw Terms

e = =z variable

| ¢ constant

| top only constant term of Top
| AzS.e A-abstraction
| ef A-application
| AX < S.e A-abstraction
| - e{S} A-application
| els coercion
| A€ merged term

3.2 Type Assignment (I'Fe:S5)

TFG<F

We use one meta notation: e[z — f],e[X «—
S],T[X « S] for substitutions. Terms are se-
lected by the rules below; since term variables
are indexed by their type, the rules do not needed
assumptions of the term (z : T):

(Top) Tt top:Top
THS type
(Var) . TF25:8
'te:T THFTLS
(Coerce) Ttels: S
T'ke:T
(—=I) TFASe:[S—T)
The :F:[Sg—-’Ti]iEI
f:S AT(F,S) exists
(—E) TFef:AP(F,C)
rxX<Ste:T
(I) TFAX<Se:VX(ST}
Tk f:F=VX{SiTi}ier
'S type AT2(F,S) exists
(V-E) T+ f{S}: AP2(F,S)
Foralli=1,...,n, Tk e; : 5; holds
(Merge) TheA...Aen:S1A...AS, '

Az5.e is a function abstraction and ef is a func-

(Appl) (Az°.e)f = e[z — fls]

(App2) (AX <Se){T} = eX ~T] (Tr<S9)

(Appcl) (e|r)f = (eflarrs))lapirsy (f:S)

(Appc2) (e|r){S} = (e{Shlarxr.s)
(AppLl) (Asere:)f = Ner(ef) (e::[Si =T, f: C

I'={iel|C<S})

(AppLz) (Aielei){C} = /\.'GII(C,'{S}) (e,- : VX{S.T,})

(Merl) eAf = f e and f have the same type
(Mer2) eAf(orfAe) = f e : Top ~
(Corl) els > e e:S

(Cor2) elop = top

Figure 2:

tion application. AX < S.e is a V-function ab-
straction and e{S} is a V-function application.

Theorem 3 IfTFe:S then T+ S type

Theorem 4 (Unicity of Type) If T Fe: S
andThHe:T then S=T

4 Reduction System

The reduction rules in F2” are listed in Figure
2: -

(Appl) is the rule of function application. From
this rule, the coercion operator occur after re-
duction. (App2) is the B-reduction rule for V-
function terms.

(AppL1) ((AppL2)) is the rule of an application
of a merged function (a merged V-function term).
The application of a merged function (a merged
V-function term) is the merge of the result of ap-
plicable functions (V-function terms).

(Appcl) and (Appc2) are the rules for applying a
function defined by coercing another function. In
{Appcl), first, an argument is essentially applied
a coerced function to after it is coerced into the
appropriate argument type, and then the result
is coerced into the appropriate type. In (Appc2),
the argument type is applied to, then the result
is coerced similarly.

(Merl) says that the merge of the two value re-
duces to “right” value®. It enables to implement,
for example, record type with replacement func-
tion.

’2' satisfies some good properties as follows: the
proof of these theorems will appear in [12)]

Theorem 5 (Subject Reduction) The abdve
reduction rule is well-defined. That is, when e-is
reduced 1o ¢’ and e has type S, then €' also has
type S.

Theorem 6 (Church-Rosser) When an ez-
pression e reduces to e; and ey, there is an ex-
pression f such that e; —* f and ey —* f

Theorem 7 (Strong Normalization) In FZ“)
all expressions are strongly normalizing. -

5 Object-Oriented
Programming Languages

We discuss the relation between object-oriehted
languages and FZ more deeply.

Firstly, we show that records can be implemented
in F'<’", and secondly we propose an example
of an application of F'<'“ to object-oriented lan-
guages. Before discussing these topics, it should
be noted that recursive types (Int, List, etc.) are
easily defined because FZ? is an extension of F.

3In A [13], only the merge of the same constant can be
reduced. This idea of selection of right value is abstracted

from A& [5] and F‘S‘ [2]

Subtyping relation

Foralli=1,...,k,TFV, < U;

TH(IL:Vi . etV s ..

“Merge”-ability relation

N Ik+j:Vk+_,'» < ((11:U1 ;.-

3 Uk

Foralli=1,...,k, TF Vi 1 U;

TV eVies oo begi Vi) T {005 ..
Type assignment rule

Foralli=1,...,n,TF M;:V;

S leUs s b1 Uktien, o leam Uk em)

(Record) Tk (I = Mq,...,ln = Mp):{{(li:V4, ...
T M:{(I1:V, .., 1V
(Dot) THMI: V
Reduction rule
h=M;...;lh=M,)
(=M ;.. ln=M, ;g1 =My conilogy =
Ali=Ny;. o il = Na s lagisr = Nogjeas .-

Figure 3: [Rules of Record Type]

5.1 Records

In various approaches to object-oriented pro-
gramming, records play an important role.
In particular, current functional treatments of
object-oriented features formalize objects di-
rectly as records. Moreover, if records are not
included in a calculus, the subtyping relation may
be quite trivial. In our system, records can be en-
coded in two straightforward ways asin [2, 5, i.e.,
in terms of implicit ad-hoc polymorphism and in
terms of explicit ad-hoc polymorphism.

(Using implicit ad-hoc polymorphism)

Let Ly, Lo, ... be base types. Assume that they
are isolated (i.e., for any type V, if L; T V, then
V = L; or V = Top) to each other, and intro-
duce, for each L;, a unique constant I;:L;. It is
now possible to encode record types, record val-
ues, overwriting, and selection, as follows:

An:Vo))
= M;
n+j) = <11=M1/\N1;...;1n=Mnl\Nn
3 ln+k = Mn+lc) H 1n+1 = Mpg1 5005 ln+j = Mn4j
g1 Nagisr o5 lnsk = Mnyr)
(Ve 1 Vi)

= [Li —=W,...,Ln, — V;] (Record Type)

—
~—

1=My; .l = My)
Azl My A LA Az M,
(z% ¢ FV(M;)) (Record Term)

—

M« 1;=N)
M AXz%i N (Overwriting)

d

I x

M1 (Selection)

(Using explicit ad-hoc polymorphism)

The way of implementing records using explicit
ad-hoc polymorphism is quite similar to that us-
ing implicit ad-hoc polymorphism. Let Ly, L, ...
be base types. Assume that they are isolated to
each other.

(L Ve, o 1ns V)
= VX AL1.W,...,L,.Va} (Record Type)
(X € Uiz1, . n FV(T}))

(11 =M ;---;[n=Mn)
= AXSLiMiA.. ANAX<L,M,
(X ¢ FV(M)) (Record Term)

(M — 1,' = N)
= MAAX < L;N (Overwriting)

A
ML;

o

(Selection)

Some Properties of Record Type

Since Li,...,L, are isolated, regardless of the
implementation of records applied, we can easily
derive the subtyping and “merge”-able rule, the
type assignment rule, and the reduction rules for
records from those of merged types and merged
terms.

Note that two implementations of records have no
compatibility to each other. Therefore, we should
write programs taking care that two implemen-
tations of records do not exist simultaneously.

All the rules are listed in figure 3.

5.2 Applications of FZ' to Object-
Oriented Languages

We use the name class to type the objects of that
class. Then, a message is (an identifier of) a
merged function whose branches are the meth-
ods associated to that message. The methods to
be executed are selected according to the type
(the class-name) passed as an argument.

In F4[2], because all class names are basic types,
subtype relation must be defined in the frame-
work. However, in F'?™, these restrictions are not
required, and when we write programs, we must
describe less procedures in F'<’“ than in F&<‘.

We will provide an example, and, in this section,
we assume that there is no type variable, i.e., the
environment is @ (empty).

Let these types defined as follows using record
types:

pointlD = {(z:Int)

point2D = {(z:Int; y:Int))
point3D = ((z:Int; y:Int ; z:Int))
color = ({c:Str)
point!D+color = ((z:Int; c:Str))
poini2D+color = ((z:Int; y:Int ; c:Str))
point3D+color = ((z:Int; y:Int; z:Int

; €:Str))

From these definitions, for example, + point3D <
point2D, and F pointlD+color < pointlD hold.
We can define a message Norm working on these

types:

Norm = (
AMytype < poi1zt1D.AseLfMytype.\/.;Lf._a:1’-
AAMytype < point.?D./\seIfMytype‘
Vselfz? + selfy?
AAMytype < pointBD./\sclfMytype.
Vself.x? + self.y? + self.2?
)

The type of this message is:

V Mytype{pointlD.[Mytype — Real]
, point2D.[Mytype — Real)
, point3D.[Mytype — Real]}

We have used the variable self to denote the re-
ceiver of the message, and, following the notation
of [1], the type variable Mytype to denote the type
of the receiver.

Here is an another message that sets the internal
state of an object to zero (or “white”):

Erase = (

AMytype < Top./\seIfMytype.seIf
AAMytype < point]D‘/\selfMytype.(:c =0
AAMytype < point2D Aself MYWPE (1 — o)
AAMytype < point3D.AseIfMytype.<(z =0)
AAMytype < coIor.AselfMytype.(c = “White”)

)

In F‘é‘, we need 7 components corresponding to
color,pointlD, ..., point3D+color, but, in F’<"',
we need only 5 components. -

6 Conclusion

We proposed a new calculus F7? integrat-
ing parametric and ad-hoc polymorphism, and
showed its fundamental properties of Church-
Rosser, Subject Reductien and Strong Normal-
ization. We also discussed the relation between

’2' and object-oriented programming by pro-
viding some examples.

As future works, we try constructing a new cal-
culus by restricting rules of F?" such that transi-
tivity of coercion operator is always satisfied. We
also plan to restrict rules of subtyping when coer-
cion operator is replaced by subsumption in such
a calculus so that some decidable type-checking
algorithms may exist, as in F&T[2] which is an
alternative of F¥ and where a decidable type-
checking algorithm exists.

References

[1] Bruce, K. B., A paradigmatic object-
oriented programming language: Design,
static typing and semantics. Technical Re-
port CS-92-01, Williams College, 1992.

[2) Castagna, G.,F¥ : integrating paramet-
ric and “ad hoc” second order polymor-
phism, Proc., the {th International Work-
shop on Database Programming Languages,
1993. Full version titled “Integration of para-
metric and ”ad hoc” second order polymor-
-phism in a calculus with subtyping” is sub-
mitted.

[3] Curien, P. L., and G. Ghelli, Coherence of
subsumption, minimum typing and the type
checking in F¢, Mathematical Structures in
Computer Science, vol. 2, 1992.

[4] Curien, P. L., and G. Ghelli, Confluence and
decidability of Sntop < reduction in F<. In-
formation and Computaiion, To appear.

[5) Castagna, G.,G. Ghelli, and G. Longo, A
calculus for overloaded functions with sub-
typing, Proc., ACM Conference on Lisp and
Functional Programming, pp. 182-192,1992.
Full version will appear in Information and
Computation.

[6] Ghelli, G., Proof Theoretic Studies about a
Minimal Type System Integrating Inclusion

and Parametric Polymorphism, PhD Thesis,
Dipartimento di Informatica, Universita di

Pisa, 1990.

[7] Girard, J. Y., Interprétation fonctionnelle et
élimination des coupures de l’arithmétique
d’ordre supérieur, Thése d’Etat, Université
Paris VII (1972).

[8] Girard, J. Y., Y. Lafont, and P. Tay-
lor. Proof and Types. Cambridge University
Press, 1989.

[9] Ohori, A., and P. Buneman, Static type in-
ference for parametric classes, ACM confer-
ence on Object Oriented Programming Sys-
tems, Languages, and Applications, pp. 445~
455, 1989.

(10] Pierce, B., Bounded quantification is unde-
cidable, In Proc., ACM Conference on Prin-
ciples of Programming Languages, 1992.

[11] Strachey, C., Fundamental concepts in pro-
gramming languages, Lecture notes for In-
ternational Summer School in Computer
Programming, Copenhagen, 1967.

[12] Suzuki, D., F?" — Another Calculus In-
tegrating Parametric and Ad-hoc Polymor-
phism, In preparation.

[13] Tsuiki, H., A Record Calculus with a Merge
Operator. PhD Thesis, Keio University,
1992.

[14] Tsuiki, H., A record calculus with a merge
operator (in Japanese). Journal of Informa-
tion Processing Society, vol. 34, No. 5, pp.
954-962, 1993. :

[15] Wand, M., Type inference for record con-
catenation and multiple inheritance, Proc,
Fourth IEEE Annal Symposium on Logic in
Computer Science, pp. 92-97, 1989.

