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Abstract

One of the aspects neglected by a interleaving approach to concurrency is the spatial
distribution of the computation.

Approaches which have dealt so far with this problem assume the availability of an infinite
number of sites where to perform actions or suppose that the spatial structure of a process
is known before its execution. :

In this paper we present a model where, coherently with the reality of concurrency, processes
are extended with managers of finite sets of spatial resources (locations). The managers
assign locations to agents, if any is available, and collect locations which are eventually
released. Release of locations is modelled explicitly by a special action p (release ). An
operational semantics is proposed for this extension.

Also, we suggest that managers can ask for and receive locations from other managers. For
this purpose we introduce and discuss a lazy bidirectional location transfer policy.

Keywords: Process Algebra, Process Space, Locations, Operational Semantics, Location
Transfer Policy



1 Introduction

Process Algebra, as formalized, between the others,
by R.Milner in CCS [Mi89] and by C.A.R.Hoare in
CSP [Ho85], is a very influential model in the field
of the formal studies on the structure and on the
properties of concurrency. '

A key property of Process Algebra, besides re-
sorting to the algebraic formalism, is the assump-
tion of the Interleaving Hypothesis, which assimi-
lates concurrency to nondeterminism: actions per-
formed concurrently by different automata are con-
sidered equivalent to nondeterministic choices be-
tween sequences of actions performed by a single
automaton. Interleaving models lose information
on the causality relation between the subprocesses
of a process; also, they lose information on the spa-
tiality relation between the automata which execute
the subprocesses, in terms of amount of needed au-
tomata and their reciprocal connectivity relation.

Boudol et al. [BCHK92, BCHK91] have studied
the possibility to extend CCS to a language which
explicitly deals with spatial resources, and Kiehn,
between the proponents of that model, has studied
the difference between the spatiality relation and
the causality relation [Ki91],.

In that approach, elementary spatial resources
(locations), are added to CCS agents. Initially no
location is assigned to processes; when it is needed
to perform an action, let us say a, a location /is dy-
namically allocated; after that, the process p which
follows a is said to reside at L

In symbols, the representation of transitions is
enriched as follows:

where p aef a.p’, for processes p and p’ , action a
and location [.
The actions of p’ will be performed at “sub-

locations” of [; if p’ def b.p", we have:

lap %;Zlm = p.

Through a very simple example it is easy to un-

derstand the difference between classical CCS pro-

cesses and processes enriched with locations (from
now on, we will use the abbreviation CCS-L).
In fact, in the classical approach we have:

a.b.nil + b.a.nil = a.niljb.nil

but in the approach with locations we have:

a.b.nil + b.a.nil % a.nil|b.nil

because in the left-hand side process the two
actions are executed in physically separated loca-
tions, while in the right-hand side process, in each
of the two possible alternative branches the actions
are executed on contiguous locations.

[BCHK91, BCHK92] propose an operational se-
mantics, location bisimulation equivalence and its
axiomatisation for CCS-L.

CCS-L describes the ideal spatiality of the pro-
cess, independently from any constraint on the
amount and configuration of the spatial resources
held by the process. It is not possible to model
situations as deadlock as a consequence of lack of
locations; also, it is not possible to describe trans-
fers of spatial resources through the process, and
their influence on the performance.

In this work, we extend processes-with-
locations to processes with a finite number of avail-
able locations, i.e., processes with bounded loca-
tions. Through this extension, it is possible to
model a computational environment which is closer
to reality, where spatial deadlock and the need for
efficient management of spatial resources is often
observed.

In our approach, all agents are associated to
a finite, possibly empty, set of locations, which
is managed by a Spatial Resources Manager (SR-
manager). A SR-manager allocates a location to a
process which performs an action and at the same
time decreases by one the size of the location set.
When a process has only a finite number of loca-
tions, it becomes extremely important to be able
to “reuse” locations. By means of a special action
p (release) we allow the SR-manager to deallocate
locations from a process and increase by one the
size of the location set.

In this new computational environment, it is
possible to observe a spatial deadlock, a behaviour
which at our knowledge has not been described yet
in the Process Algebra framework.

Fzample. 1 Let us consider the transition
1@a.b 0@! :: b, where a,b are actions, [ is a loca-

tion. n@ denotes an SR-manager by means of the size



of its location set.
The intuitive meaning is that action a is been performed
on location a. We need now another location for action

b, but, as the SR-manager has no available locations, -

the computation suspends.

Notice that it is possible to modify the initial agent,
using the release operator, such that the process can
successfully terminate:

1@a.p.b ?—>0@l zpb Z—d@l =b %O@m :mil
O

Another interesting aspect is the possibility to
describe the siructure of the spatiality of the pro-
cess by means of the configuration of the SR-
managers.

For example, the two processes:

P Y s@(Bap|cag|Der)
P, " Po(Qap|(Ke(MagNor))

independently by the size of the SR-managers, dif-
fer in their configurations.

Generally, the same agent will be in the scope
of more than one SR-manager: q is in the scope
of AQ@ and CQ@ in process P, and in the scope of
HQ,LQ@ and M@ in P,.

It is natural to think of the SR-manager
“closer” to an agent as its “local” SR-manager;
at first, the agent will use locations from this
SR-manager and later locations from farer, more
“global” SR-managers. This suggests the possi-
bility of location transfers between SR-managers
and the need to specify a location transfer policy to
avoid misbehaviours, as potentially infinite useless
exchanges of locations between SR-managers.

In the following, we detail the model here
sketched, which we call BL-CCS (CCS with
Bounded Locations). We will define an operational
semantics, based on a “lazy bidirectional” location
transfer protocol, which avoids meaningless trans-
fers (Section 2). In Section 3 we give an example
to illustrate the model’s behaviour and in Section
4 we give indications for future work.

2 Syntax and Operational Se-
mantics
CCS-L extends CCS with locations and operators

like location prefixing and action-with-location pre-
fixing. CCS operational semantics is modified to

keep in account the effects of the existence of loca-
tions on the behaviour of a process.

In BL-CCS, processes with locations are aug-
mented with SR-managers and the release special
action. The operational semantics is extended not
only with rules that deal with these new objects,
but should also describe, according to the obser-
vations developed in the introduction, a location
transfer policy.

In BL-CCS there are three syntactic objects:
agents, locations and SR-managers.

We suppose that the locations Locs = {u,v,...}
are built by concatenation from a set of elementary
locations E1Locs = {{,m,...} plus an infinite set of
location variables Lvar = {z,¥,...}. € € ElLocs
denotes the empty location, which we also use as a
dummy location. SR-Managers SrMan = {5,7,..}
are completely specified by a finite natural number
or by a symbol, which belongs to-a set of reserved
symbols Xrrp. Agents are defined using a set of ac-
tions E1Ag = {p,v, ...} = Act UAStU {r,p}UALTP,
a set of agent variables Avar = {X,¥,...} plus Locs
and SrMan. Act = {q,b,...} is a set of elementary
actions, Act = {@,b,...} is a set of actions dual to
Act, Aprp is a set of reserved actions, 7 is the silent
action and p is the release action. Yrrp and Arrp
are introduced for the sake of the location trans-
fer policy. As alternative policies might be defined,
these sets are specified together with the policy.

Then the agents’grammar is the following:

pua= nil | pplp+p|p|plp| @]
[P\e| X | (recX.p)|
luszp| <patue> .p|
| 5@p

Here o denotes a set of elementary actions and
® a renaming function defined on the elementary
actions. The operators in the first two lines are the
classical CCS operators: nil,prefixing, choice, la-
belling, communication, restriction,and recursion.
In the second line we have written the CCS-with-
locations operators: location prefizing,(the agent p
resides at location u) and action-location prefizing,
which bounds location variables as the recursive op-
erator binds process variables. Finally, in the third
line is the new BL-CCS operator: @ binds an agent
to a SR-manager. The priority between operators
( from the highest to the lowest) is specified as fol-
lows: ., <at>, \,[J,rec, @, |, +.

We introduce the following definitions.



Def. 1 A BL-CCS agent p is well-formed iff any
action which appears in the agent is in the scope of
a SR-manager operator.

Given two SR-managers S@ and T@, such that
T@ is in the scope of 5@, 5@ (T@) is said to be
more global (local) than T@ (5@). The local
SR-manager of an agent p is (if it exists) the most
local SR-manager S@ such that p is in the scope of
S@.

An agent p is initial if no location symbol oc-
curs in it.

The operational semantics is given in the famil-
iar SOS (Structured Operational Semantics) style,
typical of Process Algebra.

The transition relation is of type Ag X Act X
Loc — Ag and the generic rule will be written as:

pha
According to the role played by the locations,
rules may be divided broadly in three groups:

o rules which allocate and release locations (for
example, action prefixing);

e rules which are only indirectly influenced by
locations (the modified rules inherited by
CCS and CCS-with-locations);

e rules which describe the location transfer pro-
tocol.

The first two groups of rules are summarized
in Table.1. Particular attention is paid to the last
group of rules, which will be discussed in detail in
a separate section.

The rules for action and action-location prefix-
ing simply modify the CCS-L rules, requiring that
the local SR-managers have available locations. In
LPR and LAC the SR-manager loses a location,
which is used to execute an action and is allocated
to an agent. So the application of the rule is possi-
ble only if locations are available. When the actions
are performed on the dummy location, according to
the intuition, no location is consumed and no loca-
tion is prefixed to the agent. Notice that LOC is
applicable also when u = ¢; in this case, ve = v. In
RELL, only a location is released per-time. The
rule is applicable only in the restricted case when
the operator is immediately preceded by a location

and a SR-manager. REL2 applies when there is
no location to be released.

The second group of rules are identical to CCS-
L rules, with the exception of the rules which de-
scribe the behaviour of SR-managers(MAN) and
the synchronization between two processes(PA3).
MAN states the possibility of performing actions
using SR-managers local to subagents.

In the case of synchronization, we notice that it
is not important “where” the paired actions {a, @}
in the premise are performed, because the net re-
sult of the synchronization is the silent action on
the empty location. In CCS-L, it is possible to per-
form a and @ on on “real” locations because we have
an infinite number of locations and we do not need
to look for locations on the SR-managers. If we
would adopt the same policy in BL-CCS, we would
modify unnecessarily SR-managers and agents and
we could also prevent synchronizations, which in-
stead should be always possible. For this reason we
perform the actions on the empty location.

2.1 Communication Protocols for SR-
Managers

When a pattern of connectivity is specified between
SR-managers, we might add flexibility to the lan-
guage allowing, under some circumstances, the mi-
gration of locations from a SR-manager to another.
We adopt a scheme where an SR-manager is con-
nected to its direct sub-agents. An exception to this
“yertical” connectivity is made for parallel opera-
tors, which can exchange locations “horizontally”.
The connectivity scheme is expressed by the rules
in Table.2.a. (SC rules). Notice rules SCPA2
and SCPA3 which implement the “horizontal” lo-
cation transfer between parallel operators.

Location transfers might be performed between
adjacent SR-managers. Several alternative policies
can be implemented, according to the directionality
and modality of the transfer.

We call unidirectional a policy where locations
only go from more global SR-managers to more lo-
cal SR-managers. However, unidirectional policy
is not enough powerful to avoid deadlock, caused
by lack of locations (spatial deadlock), for a class
of agents, which would benefit by a more general,
bidirectional, policy. In a bidirectional policy, we
allow also transfers from a more local SR-manager

to a more global one.
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The modality of a transfer specifies when it can
be performed. First of all, it is clear that trans-
fers should be allowed only when a SR-manager is
empty, because otherwise a pair of SR-managers
could always engage in an useless, infinite, ex-

change of locations. This risk remains if we allow
SR-managers to be eager, i.e., allow them to ask
locations whenever they are empty, even if they do
not need them. To avoid it, we introduce a differ-
ent, lazy, modality.

LPR $@a.p ;1—:(3 —1D@lup

& /
LOC P ;f P
vip w7 U p
REL1 S@ul :: p§(5+1)@v ip

REL2 5Qp.p %S@p

pas ” Ly,q¢ Ly
(plg) (v'ld")
14 /
LAB P - P
plo] 21 plo]
woo
RES — & ©
e B pha
u
[recP.p/P] &
RE
recPp K, P

if§>1;

LAC S@ < aat uz > .p f—ﬁ(s - 1)@p[l/z] ifS>1;

if S € Xrrp;

a. Rules which allocate or release locations

b. The new rule for SR-managers

ifudaua;

LPRea.pg Lluyp

LACe < aat uz > .p Lple/z]

B,

p 5P

(¢+p) > P

p Ly
paz
(glp) % (alp")

ol

c. Rules

“inherited” by CCS and CCS-L

Table 1 BL-CCS Rules - (First part)
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Together with bidirectionality, the lazy modal-
ity defines a location transfer protocol, based on
a set of reserved actions Arprp = {A?7,Al}, and a

set of reserved symbols ¥rrp = {?7,w,!} which are
allowed to appear on the SR-managers.

S@recP.p %_) s'ap
A2,
LTpr 0Q@u.p £47Qu.p
A7
LT10Q?@p £+7Q@w@p
LT3 205@p 241a(S — 1)@p
A
LT5 wQ!@p £+!1Q0Qp

LTREL1 @0l p.p £1Q0 2 p

2001 :p

LPR: !Qa.p ]

s@p H, s'ap
vip o vip
sap B s'ap sap £, s'ap
SCcHi1 U SCch2 P g r
SQ(p+q) L sy SG(g+p) £ S'@p
sap H, s'ap s@p K, g'ap
SCpai i SCpa2 L
50(plg) £ S'0(]q) S@(qlp) £ 5'0(qlp)
sc 5@q /ui, S'@q’ sc SQgq % 5'@q’
PA3 PA4 N
(s@p)lg L. (s'@p)lq’ d(s@p) L. ¢|(5'ap)
sap KB, s'ap
SCras z (1,17 d
sople] 201 s'ape]
i @, &}
RES So L Sapa n{a,a}
S@plrecP.p/P] £ s'ap
SCREC L

a. Rules based on the SR-Managers’ connectivity

LTpac 0@ < aat uz > .p E_Z?@ <aatuz >.p
A?

LT2 7Q0Qp £+w@T@p

LT4 $@7@p 2(5 - 1)aep

LT6 law@p 2oalap

b. Rules for Location Transfers
LAC 1@ <aatuz > .p %O@p[l/x]

c. Rules for Action and Action-Location Prefizing with ! symbol

A

{

Table 2. BL-CCS Rules (Second Part)
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The presence of 7 on the SR-manager means a
request of a location, and is generated by a failed
attempt to perform an action, unsuccessful because
the SR-manager was empty. Location transfers are
allowed only to SR-managers marked by this sym-
bol.

Symbol w is left on a SR-manager that has re-
ceived a request of a location (i.e., has assumed
the 7 state) and has transmitted the request to a
connected SR-manager. The SR—manager remains
w-aiting for the location.

If the current symbol on the SR-manager is
!, the SR-manager holds a single location which
should be mandatorily used to perform an action,
and can not be transferred if not to SR-managers
marked by w.

Reserved actions A7 and X! are used when ? and
! are generated and communicated in the process.

This protocol prevents in the major part of the
cases spatial deadlock or divergence because of the
SR-manager’s behaviour. Its rules are summarized
in Table.2.b (rules LT). Between the others, tule
LTRrEL; complete the description of the behaviour
of the release action ; implicitly a ! symbol on the
SR-manager temporarily suspends a release action.

Finally rules LPR, and LAC) make explicit the
use of ! as a “borrowed” location.

3 An Example

We would like now to illustrate, through an exam-
ple, the behaviour of the transition system. The
context in which a rule is applied should justify its

definition.
Let us consider the agent:

1@(a.c.b|(2@nil + ¢.d)[1@(a.c + a.b.c.d))

N

1e

Its connectivity pattern is illustrated in Fig-
ure.l. Here is a possible computation. The sub-
agent on which the action is reduced is underlined.

10(a.2.6](20mil + c.d)|18(a.c + whed)) & (1)
1@(a.2.b|(2@nil + ¢.d)|0@L :: b.c.d)) X7 (2)
1Q(a.2.b{(2@nil + c.d)|7Q/; :: b.c.d)) 1‘* (3)
0Q(a.2.b|(2@nil + ¢.d)|!@l :: b.c.d)) Az (4)
2@(a.2.b|(2@nil + c.d)['@/; :: b.c.d)) ; (5)
1Q(a.2.b|1Qnil[1@1, :: b.c.d)) L (6)
0@(m :: £.b|1@nil!@/ :: b.c.d)) g’— (7)
0Q(m :: £.0/1@nil|0QL [ :: e.d)) Z (8)
0@(m :: b19nil|0@1 1, :: d)) 52 (9)
0@(m :: b[1@nil|?@1 1, == d)) ; (10)
0@(m :: b1@nil[!81 1, :: d)) ;l;» (11)

0@(m :: b0@nil|0@(; [rl3 :: nil))

Here are some short comments. (1) is a stan-
dard action execution. In (3) there is a “vertical”
location transfer between a “father” SR-manager
and one of its “children” SR-managers. The re-
quest of location in (4) provokes the solution of
a non-deterministic choice(5). At this point the
connectivity pattern allows “horizontal” location
transfers, as shown in Figure.2. Notice that it is
not possible for the “father” to acquire back the lo-
cation previously ceased to the child SR-manager.
It is easy to see that it would be possible for the
two SR-managers to engage in a potentially infinite
exchange of locations.

(8) solves in favour of synchronization the al-
ternative with a request of location. Without the
dummy location, it would be quite involved to de-
fine the correct behaviour, which should leave un-
touched the other parts of the agents.

/

ie

a.c.b 2@nil+c.d he(a.cra.b.c.q)

a.C.b 2enil ‘el::b.c.d

Figure.1. Initial connections in the agent

Figure.2. Connections after step.5
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Finally in (10) we have an “horizontal” loca-
tion transfer between two sibling agents. However,
as the leftmost parallel operand can not be com-
pleted, because there is no location available, there
is spatial deadlock.

Clearly the equivalent CCS agent, without SR-
managers and locations, is not in deadlock; also the
equivalent CCS-L agent, without SR-managers, can
supply always locations and here also no deadlock
would be observed.

4 Future Work

The research which has been introduced in this pa-
per can continue along various thematic lines.

In concurrent languages, it is often observed
the need to combine the functionality of a program
with the management of its resource requirements.
It would be interesting to test in a more practical
setting the expressiveness of BL-CCS, where these
two aspects are combined in the same framework.

We have proposed a definition of BL-CCS which
is parametric to the location transfer policy,and
we have consequently defined the lazy bidirectional
policy. Other policies can be defined to capture
alternative desired behaviours.

Process equivalences and axiomatizations are
very important and thoroughly studied in process-
algebraic models. The standard bisimulation tech-
nique, which make equivalent two programs when
they have the same set of possibile sequential com-
putations has been applied to CCS-L, together
with suitable techniques to deal with locations. At
the moment we are studying an analogous equiv-
alence(and partial order) for BL-CCS. An alterna-
tive, finer, equivalence(and partial order) can be
defined to compare the efficiency of the processes
in terms of number and length of performed loca-
tion trasfers.

As a closing observation, we would like to notice
that BL-CCS completes the separation between
spatial contiguity and causal dependency. Such
separation exists already in CCS-L, but the two no-
tions still remain connected for sequence of actions,
which will always lie in adjacent locations. Insert-
ing a release action between two actions, we allow
them to be performed on non-contiguous locations
in spite of being causal dependent.
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