Turs iy r-SE-AREER- 16-10
(1994. 3. 9

p-calculus 2 & 2 FIF 770 2 AR
KA Bidt, =8 &, BE R
RIERFBREEHEN
T 980 MW HFEX A F 2-1-1

Email : {kimura,togashi,norio}@shiratori.riec.tohoku.ac.jp

H5FL BW 70 AGBE 7O FaVRWfT 70t AORBRCKRIEMER LIS ATY
%. TONHE, TORBOES ERPTRIECIPRENHD. COMBLHRRT 2FSPY L LT,
AT, 7o 2A0MEBEE5 X2, FRLR2ETHAT /O A AR T AT NTY XA BET
5. 7O ADHEERT DI p-calculus 2V 2, CORBHEBTFON, FAHREEZPFo
VEpEEFEEOCRERNSERSRHES 20, HRPLBRALTVE, 85, ToT7rTY X
APBRICBVT, BRILAT7OERA L EROFMOT TR OP L2 W T O X ICET B &
2R,

MY *—7—F p-calculus , CCS, 70t 2%, InMHH

Synthesis Algorithm for Recursive Processes by u-calculus
Shigetomo Kimura, Atsushi Togashi and Norio Shiratori
Research Institute of Electrical Communication, Tohoku University.
2-1-1 Katahira, Aoba-ku, Sendai 980, JAPAN

Email : {kimura,togashi,norio}@shiratori.riec.tohoku.ac.jp

Abstract Algebraic calculation method are used to describe communication protocol and con-
current programs etc., and applied to verification problem. On the other hand, it is not easy to
describe processes or understand these applications. As a clue to solve the problem, this paper
proposes synthesis algorithm of algebraic process using the enumeration of facts, which must be
satisfied by the process. We adopt p-calculus to represent facts of a process. However it is too
difficult to synthesize a process from formulae with any operators of p-calculus . To simplify the
problem, we exclude V and p operators. The validity of the proposed algorithm can be stated
that it synthesizes a process in the limit, which cannot be distinguished from the target one under
the above restriction.

key words p-calculus , CCS, process algebra, inductive inference

VAR, JERSTRE, HMAREHRTAMDEC L 2B YR Tv D,

1 Introduction

The theoretical study of the inductive inference was
started by the identification of sequential machines by
Moore in 1950°s. It then developed into the theories
of identification for systems, language grammars, and
computer programs [1, 11].

The studies of process algebras started from the
latter half of 1970’s to give mathematical semantics
for concurrent systems. Typical systems are CSP by
Hoare[6] and CCS by Milner[10]. In Feb. 1990, ISO
adopted LOTOS[3] as the international standard for
OSI specification description language. Those algebraic
formalization techniques are utilized as the descriptive
languages for communicating processes and concurrent
programs. They are also applied to the verification
problem, by virtue of the mathematical formality. The
processes, however, have the features of such as non-
determinacy and concurrency, so their operational se-
mantics are completely different from those of the tra-
ditional automata and formal languages.

The inductive inference of the processes forms a
basis for the automatic synthesis of the highly reli-
able communicating protocols and concurrent programs
from the examples. However, little has been investi-
gated for inductive inference of concurrent processes,
due to the difficulties arising from those situations.

From such a viewpoint, we have already pre-
sented the algorithm that inductively synthesizes a ba-
sic process in a subclass of CCS, from concrete exam-
ples, modal formulae describing the properties of the
process[7]. The validity and improvement of the ap-
proach have been demonstrated. However the expres-
sive power of basic processes is weak, they cannot ex-
press recursive behavior of a system. Thus, it is too
difficult for synthesis of recursive processes from the
modal formulae within finite steps.

This paper presents a synthesis algorithm for re-
cursive processes by p-calculus . The p-calculus [4, 9,
12] is too strong as a expressive language of properties
for a process. To simplify this problem, we exclude V
and p operators. The validity of the proposed algorithm
can be stated that it synthesizes a process in the limit,
which cannot be distinguished from the target one by a
given enumeration of facts under the above restriction.

The outline of this paper is as follows: Section 2
presents the algebraic formulation of processes, to-
gether with p-calculus . Section 3 gives an algorithm
that synthesizes a process satisfying a given enumera-
tion of formulae. Since the sequence of formulae is in
general of infinite length, the algorithm does not ter-
minate. Hence, the concept of the convergence in the
limit is provided. The validity of the algorithm is con-
cluded by showing that the infered sequence algorithm
converges in the limit to a process which cannot be

distinguished to the intended process by a given enu-
meration of facts under the above restriction.

2 Preliminaries

In this section, we briefly review the preliminary no-
tions such as algebraic processes and p-calculus . See
[4, 5, 6, 9, 10, 12], for more detailed discussions.

2.1 Algebraic Processes

Let A be an alphabet, a finite set of symbols. Its ele-
ment is called an action. This corresponds to a prim-
itive event of a process and this is assumed to be ex-
ternally observable and controllable from the environ-
ment. Throughout this paper, it is assumed that we
have a denumerable set C of process constants.

Definition 1 Recursive terms are defined inductively
as follows.

1. An inaction 0 and a process constant ¢ € C are
recursive terms.

2. If p is a recursive term, an action prefiz a.p is a
recursive term where a € A.

3. I and p, are recursive terms, their summation
1 2 s
p1 + pa2 is a recursive term.

. . . def
4. A process constant ¢ with a defining equation ¢ =
p, denoted as recc.p is a recursive term, where p

is a recursive term. [m]

In a recursive term rec c.p, every occurrence of c in
pis called closed. If every occurrence of any process con-
stant in p is closed, p is called closed. Closed terms are
called processes. By renaming process constants, every
term p is converted to a term p’ such that if rece;.p;
and rec c3.py are subterms in p’ then ¢; # c3. This con-
version is exactly same as the one in « conversion in A
calculus. Thus, a term p can be represented as p with a
set {c1 ¥ p1,...,¢n = pn} of defining equations, where
every subterm of the form recc.g in p is replaced by c.

Semantics of processes is given by a labeled tran-
sition system with actions as labels.

Definition 2 A labeled transition system is a triple
< S, A,—>, where S is a set of states and — is a
transition relation defined as —C Sx Ax S. 0O

For (s,a,s') €—, we normally write s 2 s'. Thus,
the transition relation can be written as —= {—+| a €
A}. s 5 s’ may be interpreted as “in the state s an
action @ can be performed and after the action the
state moves to s”. We use the usual abbreviations
aseg. s > for 3s' € Sst. s > ¢ and s A for
-3s' € Sst. s 58

Definition 3 A transition relation on processes is
given by the following transition rules:

a 1
p=p
pte>p

ap>p
a1
recc.p — p

Py

Definition 4 ¢ is guarded in p if every free occurrence
of ¢ is within some sublerm a.q of p. p is guarded if
every constant is guarded in p. [m}

Based on the operational semantics given by the
transition system, several equivalences and preorders
have been proposed in order to capture various aspects
of the observational behavior of processes. One of those
is the equivalence induced by the notion of a bisimula-
tion [10].

Definition 5 A relation R over processes is a sirong
bisimulation if (p,q) € R implies, for all a € A,

1. whenever p > p', then there ezists q' such thal
¢S ¢ and (p,¢') €R;

2. whenever ¢ -5 ¢’, then there exists p/ such that
pSp and (¢',¢') € R. [m]

Processes p and q are strongly equivalentiff (p, q) €
R for some strong bisimulation R. p ~ q denotes that p
and ¢ are strongly equivalent. Clearly, ~ is the largest
strong bisimulation and an equivalence relation.

2.2 p-calculus

The alternative characterization of equivalence on pro-
cesses depends on the identification of a process with
the properties it enjoys. Then we can say that two pro-
cesses are equivalent if and only if they enjoy exactly
same properties. In other words, two processes are in-
equivalent if one enjoys a property that the other does
not enjoy. For this purpose, in this paper we adopt the
p-calculus [4, 9, 12], which have a modality concerning
actions, in order to describe properties of processes.

Definition 6 Formulae in p-calculus are defined in-
ductively as follows.

1. T (true) is a formula.

2. A variable z € X is a formula, where X is a de-
numerable set of logical variables.

3. If f and f' are formulae,f V f', =f are formulae.
4. If f is a formula, (a)f is a formula, where a € A.

5. If x is a variable and f is a formula with positive
occurrence of £ — x occurs within scopes of posi-
tive number of negations — pzx.f is a formula. O

The set of all formulae is written as £. In the
following, we regard formulae as properties of processes.
When a process p satisfies formula f, it is written as

PE S

Definition 7 Satisfaction relation of formulae is de-
fined as follows:

1. For any processp, pE=T.
2. pEAIVAy, ifplE Al orpE As.

3. pE-A, ifplt A, where p = A means that p does
not salisfy A.

4. p = (a)A, if there exists some q such that p = g
and g = A.

5. p k= pz.f(z), if for any g such that f(g) D g(—
~fle)ve), rkEg

Definition 8 The following logical notations are used
for convenience.

1. FE-T.

2. Ay A Ay E =(-A; V-4y).

3. [a]A L ~(a)-A.

4. ve.f(2) ¥ —pz~f(-z). o

For a set of formulae L(L C L) and a process p,
L(p) is defined as follows.

Lp)={AecL|pk A}

Definition 9 A variable z in a formula f is guarded,
if every occurrence of x is within some scope of {a). A
formula f is guarded if every variable in f is guarded.
m]

Lemma 10 Any formula can be equivalently converted
to a formula without negation, i.e. a formula built up
with T, F, A, V, (a), [a], p, and v. o

In the following, we will consider closed formulae
without negation.

Proposition 11 [§] Let f(z) be a guarded formula.
Then the followings are satisfied:

1 pz.f(x) ‘EVk>0fk(F),
2 ve.f(z)= /\k>0fk(T) =

Proposition 12 [{] Processes p and q are strongly
equivalent, i.e. p~ g, iff L(p) = L(q). u]

Now, we focus on the formulae built from the
propositions T, F', the modal operators (a}, [a] for a € A
and the logical connective A. Let L4 be a set of formu-
lae defined as

Az:=T|F|z|(a)A|[a]A| A1 AAz vz A

where z € X,a € A. A relation <4 on processes is
defined by p <4 q iff p = f implies ¢ | f, for all
formulae f € £4. Obviously, < is a preorder and the
resulting relation ~4, defined by p ~4 ¢ iff p <4 ¢ and
q <4 p, is an equivalence relation. So, <4 turns out to
be a partial order on the equivalence classes of processes
with respect to ~g4, ie. [p] <4 [q] iff p <q ¢, where

[pl={q1p~aq}
Lemma 13 p ~ ¢ implies p ~4 q. But not vice versa.

proof The implication is straightforward by the defi-
nition. The proper implication can be proved by the
counter examples, e.g. p = a.(b.0 + b.a.0 + b.a.b.0) +
a.a.0 and ¢ = a.(b.0+b.a.0+ b.a.b.0)+a.a.0+a.(b.0+
b.a.0). a]

Definition 14 A relation R over processes is a simu-
lation if (p,q) € R implies, for alla € A, if p A7,
then there exists ¢' such that ¢ = ¢’ and (¢, ¢') € R.
a

Let < be the union of all simulations.

To compare the expressive power of this relation
<4, we have the following results for simulation pre-
order < [10], testing preorder CyrysT [5] and 2/3
bisimulation preorder <43 [3].

Lemma 15 p <4 ¢ implies p < q. But not vice versa.

proof The implication is an easy routine application of
the definition. Properness is proved by the examples
p2 = a.b.0, g3 = a.0 + a.b.0. Clearly, we have p; < ga.
But, p2 4 ¢2. =

Lemma 16 <4 and C g are mutually incompara-
ble. a

proof When p; = a.a.0+a.b.0 and q; = ¢..0+a.b.0+

a.(a.0 + b.0), we have p; <q q1, but p1 ZpqysT 01-
On the other hand, when p; = @¢.¢.0 and ¢ = a.(a.0 +

b.0) + a.a.0, we have p2 CyjysT 92, but p2 £agz. O

Lemma 17 p <4 q implies p <g/3 q. Butl not vice
versa. m]

proof The implication is immediately from definition of
2/3 bisimulation preorder. Its reverse direction has the
following counter example. When p = a.(b.c.0 + b.d.0)
and ¢ = a.(b.c.0 + b.d.0) + a.b.c.0, then p <4 ¢ but
P <93¢ »

We have also the following relation which is more
distinguish than <4.

Definition 18 A binary relation T4 over processes is
a mazimum relation which satisfy the following. If p Ca
q, for all a € Act,

1. whenever p = P/, then there exists ¢’ such that
¢S ¢ andp Cad;

2. whenever ¢ = ¢, then there exists p' such that
PSPy, p > py and py +---p) Ca ¢, where
n>1. [m}

Lemma 19 p T4 q implies p <q ¢. But not vice versa.

proof The implication is straightforward by the def-

inition of C4. A counter example for reverse direc-

tion is p = a.(a.0 + b.0) + a.(c.0 + d.0) and ¢ =

a.(a.0 +5.0) + a.(c.0 + d.0) + a.(a.0 + c.0). o
After all, we have the following relation.

<D<g3D%adLa

3 Synthesis algorithm for a re-
cursive process

This section describes the algorithm that synthesizes a
recursive process. For synthesis, formulae of p-calculus
are being regarded as specific properties of the synthe-
sized process.

3.1 Enumeration of facts

An algorithm we will propose now is an inductive one.
It generates an process which satisfies given facts, the
properties of the target process, represented as formu-
lae in g calculus. Thus, input to the algorithm is an
enumeration of formulae to be satisfied by the target
process. Let p, be the intended target process to be
generated from its concrete properties. It should be
noted that p, is neither known initially nor given in a
precise mannar.

Definition 20 Let U be a set of pairs a formula A €
L and + (or —), i.e. (A, +)(or (A,=)). S ={A]
(A, +) € UYU{=A|({A,—) € U} is an enumeration of
facts, if either (A, +) or (A,—) always belong to U, and
S is consistent over the deductive system STL{A)'[4].
A element of S is also called an enumeration of facts.
[w]

1STL(A) is sound but unfortunately not complete. A com-
plete deductive system for p-calculus is not found yet.

Using p,, the enumeration of facts may be defined
as follows.

U= {(A7+)]po I: AA E‘C}U{<Av _) |p0 %A)AE [:}

Since p, is not known a priori, we must consider U as
in Definition 20.

3.2 Synthesis algorithm

The algorithm generates a process which satisfies given
facts. A fact of disjunctive form, e.g. AV B, or pz.f(z),
has a non-determinacy, so we can not avoid reconstruc-
tion of processes for such formulae. To remedy the dif-
ficulty, we forcus on the restricted set L4 of formulae.

Note that a formula with v operator also have
nondeterminacy uncertain information how many times
loops of process branches unfold.

Given an enumeration of facts, the algorithm syn-
thesize a process satisfying those facts. In the algo-
rithm, a process is represented as a set of process def-
initions. Each process definition recec.p is associated
with a set C of formulae, denoted as ¢:C, which must
be satisfied by the corresponding process constant. C
can be omitted when it is not important.

To describe the algorithm, we adopt a language
like PROLOG](2], where I/O predicates can backtrack
as well. For brief description, let ¢; denote process con-
stants associating with the process definitions ¢; = p;
or¢;:C; & pi where C; is a set of formulae. The initial
state of a process is always fixed to co.

For the fact of the form va.f(z), it is important

. from which process constant is applied to the formula.
In the case that it applied from ¢;, it express by chang-
ing its variable z to z;. Since the variable z is a bound
variable, the meaning of the formula is not changed.
And we assume further that we can identify the original
formula vz;. f(x;) from 2;. Also we adopt the following
abbreviations.

Sle1:Cr = py, -, e:C = pi] ¢ replacing the pro-
cess definitions of ¢;,---,¢; in S to ¢:C; E
p1y -0+, Ck:Ch o Pk, or adding ¢;:C; = pi to S if
C; g S

S{x/y} : substituting z to a free variable y in S.

Algorithm 21 (Synthesis algorithm)

Input: Enumeration of facts Ay, Ay,.--. It is an enu-
meration of formulae to be satisfied a synthe-
sized process. The order of them is arbitrary.

Output: Sequence of processes py,p,---. Each py sat-

isfies whole inputled formulae A; to Ag.

mpstart - mp({co{T} £ 0}).
% Set an initial process to 0.

mp(S) - % S is a set of process definitions.
read-formula(A), % Input a formula.
makeproc(cg, S, A, X), % Synthesize a process
from A.
write-process(X), % Output above resull.
mp(X). % Go io next step.

% makeproc(c, S, A, X)

% c is a current process constant.

% S is a set of process definitions.

% A is a formula applied to c.

% X 1is a synthesized process, set of process definitions.

% T : Return S since T is satisfied any processes.
makeproc(c;, S, T, S).
% F : Since F means inputled formulae are
% inconsistent, backtrack.
% x;j : This is a variable of va;.f(z;)
makeproc(c;, S, z;, S).
% No action if there is already a loop.
makeproc(c;, S, zj, X) - % When i # j.
S — (S[Cj ,‘Cj &f pi -{—pi]—
{ei:Ci = pi){ej/2ziHci /e, % ci become to ¢
makeproc(c;, S, A{p : p € Ci}, X).
% Apply every formula in C; to c;. (a)
makeproc(c;, S, z;, X) :-
% When the above predicate occurs inconsistent.
is-remake,
% Judge whether backtraking is allowed or not.
makeproc(c;, S,vz;. f(z;), X).
% Apply vz . f(x;) to ;. (b)
% (a)B : Make a branch labeled a, and add a process
% satisfying B after it.
makeproc(c;, S, (a)B, X) :-
A(e; > ¢;) such that makeproc(c;, S, B, X).
% Let c; satisfy B.
makeproc(c;, S, (a) B, X) :-
get-new-process-constant(cj),
% Get a fresh process constant c;.
makeproc(cj, Sle;:Ci = p; + a.cj,c;:{T} ¥ 0],BA
(M fx : [alfr € Ci}), X).
% where AD ET. (c)
% [a]B : Let every processes after acting a satisfy B
makeproc(c;, S, [a] B, S) :-
E AC; D [a]B
% No action if [a]B have already satisfied.
makeproc(c;, S, [a] B, Sle;:C; U {[a]B} ¥ p;]) -
¢i 7. % Only add [a]B in C; if ¢; cannot act a.
makeproc(c;, S, [a] B, X) -
Vej.ci LN cj,
makeproc(c;, S[e;:C; U {[a)B} ¥ pi], B, X).
% Let cj satisfy B.
% B1 A By : Apply By in first and then do B,.

T T
<a>T Vo <a>xo
—— a —
T
©
[bl<a>xo
T @

[bllalla]F

—_—

(5=

b
T
©

vxo [bl<a>xo
a b
T
{[bl<a>xo,
[bllalla]F}
back track

{{bl<a>xs,
[a]F}

Figure 1: Some action sequences are possible since a loop is constructed.

makeproc(c;, S, By A By, X) :-

makeproc(c;, S, B1,Y),

makeproc(c;,Y, Ba, X).

% v.f(z) : Modify bound variable x to x; to adjust it
% to c;.
makeproc(c;, S,ve.f(z), X) -

makeproc(c;, S, f(x:), X).

% is-remake : Judge whether backtraking is allowed
or not.
is-remake :-

The predicate makeproc makes as a short loop as pos-
sible from a formula ve.f(z). A shorter loop makes in-
consistent in the following cases. Thus, the loop may
be extended for suitable times by backiracking. Unless
the following, extending loop may arise that makeproc
do not terminate. This is-remake decide whether back-
tracking is allowed or not. In fact, only either the cases
of Fig.1 or 2 can be allowed. In these figures, each cir-
cle labeled ¢; represents process constant ¢;. A set of
formulae labeled each process definition is described al
a corner of each circle. We omit brackets when the set
has only one element. Between circles, there are ar-
rows labeled an action. These mean transition relation
between them. Vartical arrows mean state transition of
the algorithm when each labeled formula is entered.

In the case of Fig.1, is-remake irace the path
which is passed by a formula occurring inconsistent.
And backtracking is allowed if the path has one or more
loops and dose not end on these loops. In the case of
Fig.2, is-remake trace the path same as the previous
case. And 1t is allowed if the path enters the begging of
a loop, but dose not go to body of the loop, and exits the
loop directly. In each case, the information about which
formula made each branch is needed.

a

Theorem 22 Assume there exists a process p, salis-
fying the initial segment Ay, ---, A, of an enumeration
of fact, where n > 1. Assume also Algorithm 21 out-
puts a set of process definitions Sp_y for the n—1 facts
Ay, An_1. For the n-th fact A,, we have the fol-
lowings.

1. Algorithm 21 terminates and returns an output, a
set of process definitions S,, with a process constant
co, the initial state of S,.

2. ¢y with S, satisfies Ay,---,A,. [m}

proof 1. The predicate makeproc call itself recursively.
Only in the cases of definitions (a) to (c) of Algorithm
21, the size of a inputted formula — the number of
operators constructing the formula — may be greater

T T
vxo <a>[bjw @ laj<c>T
a - b
(bl [b]x

[c]F

[aj<e>T

laJ<c>T

{laJ<c>T,
[c]F}

a C

©

back track

- - . -

Figure 2: Some action sequences are possible since a branch modified to a loop.

than the size of the formula which is used in the recur-
sive call. Therefore, the algorithm terminate necessar-
ily when a process is synthesized without using these
definitions. In the following, we consider of the defini-
tions (a) to (c). Intuitionally, what the algorithm may
not terminate by (a) to (c) have the following meaning.

(i) Sets of process definitions are applied as if chain
reaction. (corresponding to (c)).
When the algorithm add a new branch from a pro-
cess definition, the process after the branch must
satisfy formulae of the set of formulae labeled the
process definition. It is solved in (c) by applying
A{fe : [a]fi € C;} to ¢;. From this process, an-
other process definition is added a new branch, and
then the algorithm may arrive at (c) again. If these
arise continuously, the predicate makeproc will not
terminate.

(ii) Process reconstructing arise infinitely many times.
(corresponding to (a) and (b)).
The definition (a) makes a loop to satisfy a for-
mula with a v operator. It makes as short loop as
possible, but may arise inconsistent. In this case,
the loop must be extended for suitable times by
backtrack. This process may arise infinite many
times, that is, a branch which have infinite depth
are synthesized.

Firstly, when every inputted formulae has no v op-
erators, both of definitions (a) and (b) are not called.
The definition (c) get a new process constant, and then
a process are synthesized from the process constant.

Since each inputted formula has no process variable,
the algorithm dose not make a loop to existing node
for it. Therefore each size of formulae used by recur-
sive call after (c) less than the size of the formula. Con-
sequently, the algorithm will terminate when formulae
without » are inputted only.

Next, we assume that there exist more than one
formulae with v in inputted formulae. It is enough that
we consider the above (i) and (ii). In first, we assume
one of (i) or (ii) will arise, and the other will not.

¢ Only (i) arise.
The predicate makeproc may call itself recursively.
We show this recursive call terminate in finite
times.

Since the size of each inputted formulae is finite,
the size of each elements of a set of formulae la-
beled each process definitions is also finite. From
the previous lemma, makeproc make neither new
branches nor process definitions from a already in-
putted formula. Then a set of formulae can trans-
mit within only finite range. Therefore transmition
of formulae will be saturated, and then the recur-
sive call of makeproc terminate.

o Only (ii) arise.
The definition (c) unwind a loop once. For (i1), it
need that there exists some formulae which negate
the loop infinite many times and satisfy the con-
dition of is-remark. If these formulae have no v
operators, they can not negate infinitely. Though
they have, the part of formulae which negate the

loop, i.e. the formula F', occur periodically. There-
fore they can not negate only the loop. After all,
makeproc will terminate.

e Both (i) and (ii) arise.

From the previous arguments, we know that only
ether (i) or (ii) can not arise. Thus we assume both
(i) and (ii) arise alternatively. Since the loop is un-
wound infinitely, the process which is made from
the formulae has a branch with infinite length.
For the assumption, it need that there exist a for-
mula which negate the loop with the top of the
branch.Remember that a set of formulae can trans-
mit within only finite range if they have no v oper-
ators. From this fact, there exist a formula which
have one or more v operators and negate the loop.
Thus this argument conclude the previous one, and
then we show that the algorithm terminate.

2. Omitted.]

The algorithm is a non terminating procedure.
Therefore, we show its validity by using concept of con-
vergence in the limit, which is often used in inductive
learning theory.

Definition 23 Assume an algorithm inputs an enu-
meration of facts, and oulpuis processes sequentially.
After some time if the output process is always p, then
the inferred sequence by this algorithm converges in the
limit to p over the enumeralion of facts. m}

The validity of Algorithm 21 is also shown by the
following theorem.

Theorem 24 Under the assumption of algorithm 21,
if there exists a process p salisfying an enumeration of
facts, the inferred sequence of processes by Algorithm 21
converges in the limit to . process p’ such that p <4 p'.
[m]

4 Conclusion

This paper presented the synthesis algorithm for a
recursive process based on the enumeration of facts,
which must be satisfied by the process. And its valid-
ity is also discussed.

The algorithm, however, restrict formulae within
Lg. Tobe a complete algorithm, whose infered sequence
of processes converges in the limit to a process which
is equivalent to a target one, we must remove the re-
striction. As we mentioned, a formula with ether V or
1t operator have uncertain information. For example,
consider a formula such as {(a)T V (b)T. The synthesis
algorithm is uncertain which formula is a really needed
fact. Suppose that the algorithm trust one of them
(e.g. {a)T) and output a process p which satisfy the

formula. And after some times, [a]F'(= —{a)T) may
be inputted. Then, it must return at the point before
p was synthesized, and adopt the other formula (i.e.
(b)T). Especially, a formula with mu operator has in-
finite many V operators (see Propositionll). Thus it
may cause to backtrack infinitely. To solve this prob-
lem, the predicate is-satis fied will be more complicate.
And the time or space complexity of the algorithm is
not discussed, which is left for a future study.

References

[1} Angluin D.: “Learning Regular Sets from Queries
and Counterexamples”, Inf. and Comput, 75,
pp.87-106(1987).

[2] Clocksin W.F., Mellish C.S.: “Programming in
Prolog”, Springer-Verlag(1981).

[3] Fantechi A., Gnesi S., Ristori G.: “Composi-
tional Logic Semantics and LOTOS”, Protocol
Specification, Testing and Verification, XL., IFIP,
pp-365-378

[4] Graf S., Sifakis J.: “A Logic for the Description
of Non-deterministic Programs and Their Prop-
erties”, Inf. and contr., 68, pp.254-270(1986)

[5] Hennessy M.: “Algebraic Theory of Processes”,
J. ACM,, 32, 1, pp.137-161(1985).

[6] Hoare C.A.R.: “Communicating Sequential Pro-
cess”, Prentice Hall(1985).

[7] Kimura S., Togashi A., Noguchi S.: “A Synthe-
sis Algorithm of Basic Processes by Modal For-
mulas” (in Japanese), Trans. IEICE, J75-D-I,
pp.1048-1061(1992).

[8] Kimura S., Togashi A., Noguchi S.: “Synthesis
of Algebraic Processes Based on Process Enu-
meration” (in Japanese), Trans. IEICE, J75-D-I,
pp.1132-1143(1992).

[9] Kozen D.: “Results on the Propositional p-
calculus ”, Theoret. Comput. Sci., 27, pp.333—
354(1983).

[10] Milner R.: “Communication and Concurrency”,
Prentice-Hall(1989).

[11] Shapiro E.Y.: “Inductive Inference of Theo-
ries From Facts”, Tef;hnical Report 192, Yale
Univ(1981).

[12] Stirling C.: “An Introduction to Modal and Tem-
poral Logics for CCS”, Lecture Notes in Comput.
Sci. 491, Springer-Verlag, pp.2-20(1991).

