Tursivr-gane AR 167
(1994. 3. 9)

Catamorphism (Z&ED S 7077 A D%H
#H RILT HG R R EEAT

TRE RS LEH s TSR
RS XA 7-3-1

IREAE BEHREREY 7 —
R R X4 2-11-16

5 % L: Accumulation L%, BEERFOF— 7 W T5EE2, EHREELEELoDEDT
WS HETHY, BR- B EMDLT, HEORNWTO 75 208%E - TBICICHAVLO NS,
AF X TIX, Accumulation 2 ER LT 572012, KD Catamorphism O F 2 % HIE L 7= HR
Catamorphism ##%E$ 5. F/2, B Caramorphism 2 W TRB E N 707 5 ADETHES
HETHO0, BERAYLERER (TuEs—Ya VEH) 277, &612, BANLRERFIEE, »
KODDBIL & HITRT.

¥—T7—F: BSOS 5A, TUS T L%EH, Accumulation, #F¥ Catamorphism, YOE— g ¥

Catamorphism Based Transformation of Functional Programs
Zhenjiang Hut Hideya Iwasakif Masato Takeichit
{Department of Mathematical Engineering and Information Physics,

Faculty of Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 Japan

{Educational Computer Centre, University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113 Japan

Abstract: Accumulations are operators on structured object that proceed their computation on
each element of the object keeping some intermediate results. Accumulations are widely used in
the design of efficient sequential and parallel programs. The purpose of this paper is to deal with
the transformation on accumulations so that more efficient programs can be derived. We formu-
late accumulations by means of higher order catamorphisms and propose a promotion theorem for
accumulations. Some examples are given to explain our method.

keywords: Functional Programs, Program transformation, Accumulation, Higher order catamorphism,
Promotion

1 Introduction

Accumulations are operators on structured object
that proceed their computation on each element of
the object keeping some intermediate results.

Accumulations have gained a wide interest in the
design of both sequential programs [1, 2] and paral-
lel programs [4]. Especially in parallel programming,
accumulations are considered as one of basic parallel
operators [3], and a special hardware for scan accu-
mulations has been installed in CM5 [5] recently.

The purpose of this paper is to deal with the trans-
formation on accumulations so that more efficient
programs can be derived. We have two problems
here: one is how to formulate accumulations and the
other is how to perform transformation on such ac-
cumulations.

For the first problem, it has been suggested that
an accumulation can be efficiently described by the
parameter accumulation whereby a specification is
generalized by the inclusion of an extra argument
[1, 8, 9]. Because such parameter accumulations can
be of any style, it follows that the promotion strat-
egy for parameter accumulations seems difficult to
find. To overcome this shortcoming, we make re-
striction on the style of parameter accumulations,
requiring that parameter accumulations be specified
by function-valued catamorphisms (i.e. higher or-
der catamorphisms). With this restriction, the pro-
motion on accumulations can be well done while the
descriptive power of higher order catamorphisms for
accumulations is not decreased.

After settling the first problem, the second prob-
lem only needs to find a proper and powerful pro-
motion strategy for the transformation of accumu-
lations. Thanks to the uniform style of our accu-
mulations, the promotion theorem can be naturally
derived.

We adopt Bird-Meertens Formalism (BMF) as our
algebraic framework. The BMF was firstly a calcu-
lus for the derivation of programs developed by Bird
and Meertens[2, 11], and then extended to be a more
general theory on structured data types based on cat-
egory theory[10]. Besides its conciseness and higher
degree of abstraction, it places a heavy emphasis on
the algebraic properties of data types, resulting in a
rich and powerful body of laws which show the close
correspondence between data structures and control
structures. In BMF, there are two important con-
cepts: catamorphism and promotion. A catamor-
phism is, put simply, a unique homomorphism from

the specified structured data type to another sim-
ilar type, while the promotion theorem is a general
transformation strategy for the manipulation of cata-
If we could describe an accumulation
by a catamorphism, manipulation on accumulations
would be reduced to that on catamorphisms. Unfor-
tunately, there are few study on the transformation of
accumulations as well as higher order catamorphisms
in BMF.

This paper is organized as follows. We introduce
briefly some BMF notational conventions in Section
2. In section 3, we use some examples to show that
higher order catamorphisms can describe accumula-
tions effectively. Section 4 proposes a promotion the-
orem for our transformation. Two applications are

morphisms.

given in Section 5, and finally some discussions are
described in Section 6.

2 Basic Notational Conventions

The notation we use is based on that of Bird [2, 10].
We denote the application of function f to argument
a with f @, and denote the functional composition
with an infix dot (.) as (f.g) z = f (g z).

We often use the symbols such as @, ®,--- to de-
note infix binary operators. These operators can be
turned into unary functions by sectioning or partial
application:

(@) b=a®b= () a

A data type is constructed as the least solution
of a recursive type equation and determined by a
type functor F with some type constructors 7; (z =
1,---,n). A type functor is a function from types to
types that has a corresponding action on functions
which respects identity and composition. For exam-
ple, the type of the cons list with elements of type a
is defined by

Consa:=[]]a:(Cons a),

and according to this type equation, F is defined as

FX =
Ff

14+lax X
id+id x f

For object:
For function:

where 1 is the terminal object, ! is a constant functor,
x is the product and + is the sum. In this case, there
are two type constructors ([] and :).

Central to this paper is the notion of catamor-
phisms which form important functions over a given
data type. They are the functions that promote

through the type constructors. The consequence of
the definition of a type as the least solution of a type
equation is the unique existence of the catamorphism.
For example, for the cons list, given e and @ , there
exists a unique catamorphism, say cata, satisfying
the following equations.

cata [| = e
cata (¢ :zs) = z & (cata z5)

In essence, this solution is a relabeling: it replaces
every occurrence of [] with e and every occurrence of
: with @ in the cons list. Since e and @ uniquely de-
termine a catamorphism, we are likely to use special
braces to denote this catamorphism:

cata = (e, ®))

The catamorphisms are manipulatable in the sense
that they obey a number of promotion or distributiv-
ity laws that are useful for transformation.

3 Specification with Higher Order Cata-
morphisms

The higher order catamorphism on a specified data
type T is a catamorphism whose result of its appli-
cation to a data of type 7 is still a function. Higher
order catamorphisms are more powerful than first or-
der ones in that many accumulations which cannot
be described or cannot be efficiently described by first
order catamorphisms can be efficiently described by
higher order catamorphisms.

The procedure to specify accumulations by higher
order catamorphisms is similar to the accumulational
transformation [1]. The difference is that the final re-
sult we obtain is of the style of higher order catamor-
phisms. Suppose that the initial algorithm is speci-
fied naively by

cc: T — C,

where 7 is determined by functor F with construc-
tors 71, -, T,. The accumulational specification us-
ing higher order catamorphisms is derived by the fol-
lowing three steps:

1. Define a function acc’ by including a new param-
eter ac:
acc zs = acc xs ac
2. Find all g;’s satisfying
acd .1y =g; . (F acd) (i=1,---,n)

To see clearly about the above equation, we give
an example of cons lists. It turns out that

e T =Consa
hd T1=[],7'2=
e Facd =id + id x acc

What we want to find are g (= ¢g1) and & (= go)
that satisfy the following equations.

acc [] =g
acd (z:28) = z @ zs
3. Re-express acc as
acczs = (g1,"-*,9n) zs ac

The correctness of the above transformation can be
easily proved by induction on the construction of the
type 7 based on the theory of Malcolm [10] and
Hagino [7].

The difficulty for such transformation is to find
those g;’s that meet the requirement. In BMF, this
can be done by calculation. Let us see some exam-
ples.

Example 3.1 Considering a function computing the
initial sum of a list, we can define it naively as follows.

isum | | = []
tsum (z:zs8) = z:(map (z+) (isum zs))

It is not efficient because “map (z+)” costs much,
even though it is a catamorphism on cons lists.
Rather than perform transformation from the ini-
tial inefficient definition, we are likely to rewrite it
first into accumulational form and then perform other
transformation. Let
isum x5 = isum’ xs 0
and we find g; = € and g9 == ® where

Ae.[]
Ae.((e+z): (p (e+1)))

It is not difficult to check that

€
TDp

I

isum'. 7 = g; . (F isum’) (i =1,2)

holds, where 7'1 =[] and 79 = :. To this end, the
function isum’ can be specified by (e, @), a hlgher
order catamorphism.

As the result, the new program becomes as follows.

tsum/ [] = del]
isum/ (z:3s) = z® (isum’ zs)
where

z®p=2Aele+z): (ple+z)))

It should be noted that a program written by a
higher order catamorphism is not always efficient, be-
cause it depends much on how to accumulate. To
define an efficient program by means of higher order
catamorphisms, we need to find a suitable accumula-
tion method. It will be seen later that accumulational
parameters can be of anything such as simple data or
even functions depending on problems.

Another example is somewhat different in that the
initial specification can not be written directly with-
out an accumulational parameter.

Example 3.2 Define a function 7sub that computes
the initial subtraction of a list, e.g.

isub [5,2,1,4]
= [5,5-2,5-2—-1,5—2~1-14]
= [5,3,2,-2]

In fact,
first class catamorphism on cons list because the sub-
traction is not commutative. In other words, there
exists no such a binary operation @ that makes

the function isub can not be specified by a

isub (z:2s8) = z @ (isub zs)

hold. However, with higher order catamorphisms it
can be effectively specified.

We show the result below, omitting the derivation
procedure.

isud = (§,®)
where
6=Af[]
z@®p=Af((f z): (p ((f 2)-)))

It is interesting to see that functions are used for
accumulation.

It has been shown by the above two examples that
higher order catamorphisms are fit to specify accu-
mulations. More formal discussions on this topic will
be done in the future. -

4 Manipulating Accumulations

As we have seen that many accumulational algo-
rithms can be specified by higher order catamor-
phisms, transformation on accumulations is reduced
to that on catamorphisms.

In the world of first order catamorphisms, the pro-
motion theorem tells us that the composition of a
homomorphism with a catamorphism is again a cata-
morphism.

Theorem 4.1 (First Order Promotion[10})
Assume that (f1,---, fs) is a first order catamor-
phism with respect to the type functor F. For a
given h, if there exist g1, - -, g, satisfying

h.fi=g.(Fh) (i=1,---,n)

then
h-([fla"',fn]) = ([gla"";gn])

As to our higher order catamorphisms, we have the
similar promotion theorem.

Theorem 4.2 (Higher Order Promotion)

Let (¢1,-"+,¢n) 2L — (A — B) be a higher order
catamorphism on type L with respect to the functor
F. If there exists 91, -, ¥, satisfying

(h.).¢i=%:i.F(h.) (i=1,---,n)

then

h'(([¢1a"'a¢n])a’s)= ([¢1y""¢n])03

Based on our promotion theorem together with
other transformational rules, many efficient programs
can be derived. To express the process of transfor-
mation, we use Feijen’s proof format that provides a
clear method of laying out a calculation. The calcu-
lation is displayed in the form of

P

= { hintsastowhy P=@Q }
Q

= { hintsastowhy Q=R }
R

Let us see an example.

Example 4.1 Consider that we want to simplify the
expression

ex x5 = f * (isum’ zs 0).

Since

(fx.e)a

= { def. ofe }
Fx(Qel]) o)

= { application }
AN

= { def. of map }

[]

= { abstraction }

(el]) a
= { def ofe }

and

(f*.(z®p))a
= { definition of & in isum’ }
fr(a+z:(p(a+tz))
{ by the definition of * }
fla+z):f+(p(a+2z))
{let(z®p)a=f(a+z):pla+tz) }
(z@(f*.p)a

hold, we change the above two equations to those in
variable free notation:

(fx.).le=e.id=e.F(f*.)
(f*). ®@=0.3dx (f*.) =®.F(f*.)

Based on the promotion theorem, we can simplify the
original expression.

£ * (isum’ zs 0)
= { composition and application }
(f*.(tsum/ zs)) 0
{ the derived result and promotion theorem }
((F+.). (& &) z5 0
= { promote f* into catamorphism }

(e, ®) zs 0

i

The derived program is as follows.

ex xs = ex' zs 0

ez’ []=Xe[]
ez’ (z:25) =1z ® (ex’ xs)
where

z@p=Xe.((f (e+2)): (p (e+2)))

The example shows that transformations on higher
order catamorphisms are as direct as those on first
order ones. One of the benefits of our method is
its convenience for hierarchical optimization, i.e. we
perform simple local optimization with higher order
catamorphisms, and then combine them to a big effi-
cient higher order catamorphism based on the promo-
tion theorem. By repetition of this procedure, many
efficient programs can be systematically derived from
much more complicated initial specification.

5 Some Applications

5.1 Downwards tree accumulations

The initial motivation for us to associate higher or-
der catamorphisms with accumulations is to find
a method to formulate downwards tree accumula-
tions which are both efficient and manipulatable.
Gibbons[6] proposed this problem and claimed that

some restrictions on the initial downwards tree ac-
cumulations are necessary. However, his complicated
discussion leaded us to seek another simpler and more
concise method. Using higher order catamorphisms
to specify downwards tree accumulations, we not only
solve the problem, but also make Gibbons’ restric-
tions unnecessary.

Downwards tree accumulations, depending on
three operations f, @ and ®, are defined on the tree
type of

Tree a := Leaf a | Node a (T'ree a) (T'ree a)
as:

da(se.e) (Leaf a)=f a
da(se.g) (Node a z y)

= Node (f a) (da((sa)@),0,0)) (da((fa)e).0.0)Y)-

Many tree algorithms are described by them. For
example, the application of daiq,+4) to the tree of

Node 1 (Leaf 2 (Node 3 (Leaf 4) (Leaf 5)))
will produce the tree of
Node 1 (Leaf 3 (Node 4 (Leaf 8) (Leaf 9)))

as shown below.

It is clear that da(;g @) may be implemented in
parallel by allocating one processor for each node in
the tree. Unfortunately, such definition is not manip-
ulatable, because it is not a catamorphism.

Gibbons claimed that only under some conditions
could downwards tree accumulation be expressed as a
catamorphism. In fact, the catamorphism he referred
to is first order catamorphism. If we use higher order
catamorphisms for description, many problems can
be solved.

As usual, we rewrite downwards tree accumula-
tions into a higher order catamorphism. Let

da(f,@@) tr = dazf@,@) ir f

and we get

d“?ﬁea,@) = (Ag. Leaf (g a), dnode)

where

dnode a u v

=Ag-Node (g a) (u (g a)®)) (v (9 a)®))
The new definition of the downwards tree accumula-
tion may also be efficiently implemented both in se-
quential and parallel. Moreover, based on our promo-
tion theorem, transformation on such accumulation
can be performed, and as the result, many efficient
parallel tree algorithms are derived.

5.2 Finding palindromic words

Consider that we want to derive an efficient program
for the problem of finding all the words that are palin-
dromes in a given character list.

5.2.1 The specification

The problem can be solved by three steps:

1. Define the function fields to break up a line
(represented as a list of character) into a list of
words. It may be defined as follows.

fields [] =]
frelds (c:1)
= fields I, if ¢ == Space
= word [c] |, otherwise
word w (c: 1)
= word (w ++]c]) I, if ¢ # Space
word w 1
=w : (fields l), otherwise

2. Construct another word list in which all words
obtained in step 1 are reversed.

reversex. fields

3. Compare two word lists in step 1 and 2 and select
the words that have the same spelling.

€S = Tik.eqw<.2ip

where
eqw [][]=True
eqw (z:zs) (y:ys)
= False, if z #y
= eq.w zs ys, otherwise
and
zip ([1,[D =[]
zip(z:zs,y:ys) = (z,y):zip (zs,ys)
pal] =[]
p<(z:xs) = z:(p<zs),ifpz
= pdzs, otherwise
™1 (z,y) =z

To summarize, the initial specification for the prob-
lem is
pw zs = (cs.pl) zs

where
pl zs = (fields xs, (reversex . fields) xs).

It is a quadratic program, which is not so efficient.

5.2.2 The derivation

The derivation starts from the local optimization of
fields, and then performs promotional transforma-
tion repetitly to find the optimized program for the
whole specification.

For simplicity, we assume that each word ‘in the
given character list is followed by a single space.

Making fields linear

As usual, by adding an extra accumulational param-
eter, we transform fields into fields’ to be a higher
order catamorphism. At the first glance, the accumu-
lational parameter might be defined as a list hold-
ing parts of the scanning word and being concate-
nated to its end with the currently scanning char-
acter. But this is not enough because the concate-
nating operation (#-) costs too much. Therefore,
we use Hughes’ idea [9], which represents the list
zs = [x1,Z9,"*+, Tn_1,%,] by the following function
composition.

f=(z1) . (z2:). . (Tn_1:) . (zp2)

To get zs from f, we have only to apply the empty
list to f. By this representation, concatenating a
character to the end of a list can be performed in
constant time.
The following is the result of rewriting fields into
an efficient higher order catamorphism. Let
fields zs = fields' s id

and define fields’ in which w is for the use of the
word accumulation.

fields' = (o, 0)

where

aw = []

(zep)w = p(w.(z:)), if = # Space
= (w[]): (pid), otherwise

The transformed fields is a linear program.

Promoting reverse * into fields Now expressing pl by ||, we have

Since we have got an efficient program for fields,
we hope to derive an efficient program for reversesx
. fields by promoting reverse % into fields. With the
similar procedure as in Exercise 4.1, B and ® can be

derived satisfying pl' zs = ((a,0) zs | (8,®) zs).

pl xs = pl' zs (id, id)

where

(reversex.).a =

S . ism £
(reversex). = ®. (id x (reversex) The derivation of a higher order catamorphism for

pl, say (v, ©)), is shown below.

where : First, we find ~.
ﬁw = [] pl'[](wl,wg)
(z@p)w = p((e:).w), if z+# Space = { def. of pl' }
= @[] (pid), otherwise. (T @D 11l (B, 8D[]) (ur,ws)
. . e = { def of catamorphism }
The details of this derivation are not addressed (@1 B) (wy,ws)

here, but it should be noted that during the deriva-
tion we have to use the following property.

{ define 7= (a]|8) }
7 (w1, wp)

reverse ((ws.w) []) = (w.reverse.ws) [] Next we find ©.
Based on the promotion theorem, we get pl' (z:28) (wy,wy)
' = { def ofpl' }
reversex . (fields' zs) = (Aw.[], ®) zs ([, ®) (z: zs) || (B,Q) (z : x5)) (wr,ws)
= { def of catamorphism }

(z & ((@8)29)) || (z® ((8,8]) 25))) (w1, ws)

So the whole transformation becomes:

(reversex . fields) zs = { || and def. of © and ® }
= { new definition of fields } (e, ©) zs (w1.(z2)), (B,Q) zs ((z:).wsq)),
reversex (fields' zs id) tfz # Space
= { functional composition } (wil]: ((a,8) s id), (wa]] : ({8, Q) zs id)))
(reversex . (fields' zs)) id otherwise
= { result above } = {]|}
(Aw.[], ®) zsid ((e,0]) s || (8,®) zs) (wr.(z2), (z:).w9),
ifz # Space
The derived program is an efficient linear program. unzip ((wi]], wol]) :
(((e,8) =5 || (B,®) ws) (id,id))),
Making pl as a catamorphism otherwise
!
According to the above transformation, the definition E‘j}h(;épl 28)) (w1, w2)
! .
of pl becomes as follows (z ®p) (wr,ws)
pl 25 = (o, ©) zs id, (8, ®) zs id) - =), (@), ifz 5 Space

=unzip ((wi]], wa[]) : p (id,id)), otherwise
It will be shown that p/ can be transformed into a To this end b hed 1
higher order catamorphism. This transformation will ~° ™18 énd; we have reached our result,
make it easier for the next step of transformation.

. . [=
For notational convenience, we define plas=(7,0) zs (wi,wy)

(Fllg) () =(fz, gy Promoting cs into pl
and unzip which is an inversion of zip, e.g. The last step of our derivation is to promote ¢s into
pl to get a tight program. We show only the final
unzip [(1,a),(2,b), (3,c)] = ([1,2,3].[a, b,c]) result, because the derivation procedure is similar to

that discussed already.

{cs.pl) zs
= { def. of cs and pl }
((m1 . eqw <. zip).(pl' z8)) (w1, w2)
{ promote m.eq-w <.zip into pl’ }
(%,Q) zs (w1, w2)
where
kE=Xw]]
(z@p) (w1,w2)
=p (wi.(z:), (z:).we), ifz # Space
=wi[]:p (id,id), if eqw (wi[]) (wo[])
= p (id,1d), otherwise

The last derived result is linear. This ends our whole
derivation.

6 Discussions

As shown in this paper, higher order catamorphisms
are powerful for both specification and transforma-
tion. But our work is just started. Many further
investigations are needed.

One of our future work is to apply our method to
the derivation of correct parallel programs. It has
been shown that accumulations are becoming more
and more important in parallel programs. Blelloch
[3] and many others argued that the accumulations
could be regarded as a basic parallel operators and
many useful parallel programs can be constructed by
them. We hope that our study will be useful for the
development of efficient parallel programs based on
accumulations.

Another future work that seems interesting is to
find how to derive efficient parallel programs by ma-
nipulating accumulations of parallel data structures
(e.g. trees, arrays and etc.). It is said that paral-
lel data structures are of great important in parallel
programming. It has been shown in the paper that
the downwards tree accumulation becomes manipu-
latable by using higher order catamorphism without
losing its efficiency in parallel implementation. Based
on this result, we will undertake to derive efficient
parallel programs for tree problems.

Acknowledgement

The authors would like to thank Oege de Moor for
many enjoyable discussions and also for his kindness
to introduce us much related work. We would also
like to thank Mr. Xu Liangwei for a lot of his sug-

gestions.

References

[1] R.S. Bird: The Promotion and Accumulation
Strategies in Transformational Programming,
ACM Trans. Prog. Lang. Syst. Vol 6, No.4,
pp-487-504 (1984).

[2] R.S. Bird: An Introduction to the Theory of
List, Logic of Programming and Calculi of Dis-
crete Design, pp. 542, Springer-Verlag (1987).

[3] G.E. Blelloch: Scans as Primitive Parallel Oper-
ations, Proc. International Conference on Par-
allel Processing, pp.355-362 (1987).

[4] G.E. Blelloch: Vector Models for Data-parallel
Computing, MIT Press (1990).

[5] C.E. Leiserson et al: The Network Architecture
of the Connection Machine CM-5, Technique Re-
port, Thinking Machine Corporation (1992).

[6] J. Gibbons: Upwards and Downwards Accumu-
lations on Trees, Mathematics of Program Con-
struction (LNCS 669), pp.122-138, Springer-
Verlag (1992).

[7] T. Hagino: A Typed Lambda Calculus with
Categorical Type Constructors, Category The-
ory and Computer Science (LNCS 283), pp.140-
157, Springer-Verlag {1988).

[8] P. Henderson: Functional programming: Apph-
cation and implementation, Prentice Hall Inter-
national (1980).

[9] R. J. M. Hughes: A Noval Representation of
Lists and its Application to the Function of Re-
verse, Inf. Process. Lett., Vol.22, No.3, pp.141-
144 (1986).

[10] G. Malcolm: Homomorphism and Promota-
bility, Mathematics of Program Construction
(LNCS 375), pp. 335-347, Springer-Verlag

(1989).

[11] L.G.L.T. Meertens: Algorithmics — Towards
Programming as a Mathematical Activity, Proc.
CWI Symposium on Mathematics and Computer

Science, pp.289-334, North-Holland (1986).

