Jurs v r-Gan - 16— 6
(1994. 3. 9

S AT L HREDTIREALIT I 2 He]
FTY 2 bbb ECOYML L LER RS

TAYL A NIF
HALENT TR
BT A v ZFR

LI T _E A 2003 H#

b5 F L KHTld, EFTEHRLARTAEORE LBNET 22 L - BAWTROEMICHALEE . K
HELRA 7V 27 MENAMER P ELLIELDIIC 20D LANVOEFVEEATS, E10OLNVIE, B
(79 R) OBHWEELHED, —FH. B2OLNVREY 2—NVOEEREI, MHO LNV TEDEEKE,
AT O —EH AR T 2 72010, HENLOBL BN OEES L2 EHT S, B EY 2 - VOBUE
BeREICT L2010, RARERDOBRIELZTIBTAAIFA T V20 V2 HVBY IV I F 4 ThET V2
BRI SE L AR L2, COEEIIBVWTHLEEY 2 - MIA TV 22V Th S,

MXF—7—F A7V xs MEMRRGGE, V7 by =78l WEE, €Ja—VE#K,)7Ly v ey, BIER

Dynamic Evolution of Distributed Systems Specifications

Specialization of Object Behaviors and Requirement Specifications

Issam A. Hamid
Tohoku University of Art & Design
Department of Information Design
200 Kamisakurada, Yamagata city, JAPAN

Abstract Given two behavior descriptions, the question whether one is a specialization of the other is important in
many situations. Sometimes it must be checked whether the behavior of an implementation is a specialization of the
specification. In this paper, we are concerned with formal description techniques that allow for the development and the
dynamic modification of executable specifications. A two-level model for the evolution of large object—oﬁented
specifications is introduced. The first level deals with the dynamic modifications of types (classes), while the second level
deals with modifications of modules. We define a set of structural and behavioral constraints to ensure the specification
consistency after its modification at both levels. To allow for dynamic modification of types and modules, we develope a
reflective object-oriented specification language which use meta-objects to support the modification operations.

F X key words object-oriented specifications, software evolution, modules compatibility, reflection, dynamic modifications.

1. Introduction

The implementation of an information system usually
goes through several steps of the software development
process, such as requirement analysis, functional
specification, detailed design, code generation and testing.
The system descriptions obtained during one of these steps
is usually obtained from the previous description by some
form of refinement. We may say, for instance, that the
detailed design description is a “specialization" of the
functional specification. Another kind of specialization
becomes important if a product must be adapted to several
different user requirements. In that case, a more general
"generic” system may be designed, and the design, as well
as the corresponding implementation, may be adapted to
each different user requirements. In this case, each of these
"specific" designs and implementations may be considered
as a "specialization” of the generic case. We are concerned
in this paper with these two kinds of "specializations".

In the context of object-oriented programming languages,
two kinds of "specializations” have been considered[Amer
87b]: (1) code-sharing, usually called "inheritance", which
is based on concept that a subclass inherits from its
superclass the operations (methods) and the procedural code
associated with them, and (2) inheritance of properties,
often called subtyping, which is based on the concept that
certain properties, in particular the interface, of the subclass
remain valid for the object instances of a subclass. In this
paper, we only consider the second aspect, since our
attention is more directed towards specification languages,
which define properties of object instances and classes.

Another important concept related to "specialization” is
sometimes called "conformance”, namely in the sense that a
class C' conforms with a class C if an object instance of
class C can be replaced, within the overall system, by an
instance of the class C' without invalidating certain
important system properties. Certain papers explore this
question in the context where the important property is type
checking [Blac 87][Card 88]. Other papers address the
comparison of object behaviors and their influence on the
overall system behavior [Cusa 89][Amer 89].

The purpose of this paper is to show that (1) a unified
concept of "specialization” can be used in all the above
contexts, and that (2) this concept corresponds to different
notions of "specialization" which have been introduced in
the context of different specification languages. These
notions include the following:

(a) In the context of classical programming languages, a
type is considered a set of values, and a subtype

("specialization") is a subset of such values.

(b) In the context of incompletely specified functions
(with "don't care" arguments), a specialization is a function
for which certain "don't care” situations obtain a specific
result.

(c) In the context of object-oriented languages, a class
with additional operations (methods) is a specialization.

(d) In the context of sequential machines with
input/output behavior, a machine which restrains the
number of possible execution ftraces (sequences of
input/output events) is a specialization.

(¢) In the context of non-deterministic machines, a
number of different "specialization” relations have been
considered. Our notion of specialization corresponds to
reduction which means that a specialized process only
performs traces which are also performed by the more
general process, and only blocks in situations where the
more general process also may block.

In the following sections, we show that the above
concepts of specialization may be considered special cases
of the reduction relation. It is to be noted that the notion of
reduction includes two aspects:

(1) Safeness: the traces of the specialized process are

included in the traces of the more general one, and

(2) Non-blocking: the specialized process only blocks in

situations where the more general one may also
block.

These two aspects will be developed separately in this
paper. They intuitively ressemble the notions of "safeness"”
and "liveness” in[Alpe 87], although there are certain
differences, as discussed in Sec. 5.1.

2. Objects

We consider that a real system consists of a number of
objects (also called object instances). Each object has a
behavior, in the following also called "temporal behavior”,
which characterizes its interactions with other objects
within the system during its lifetime. There may be a large
number of object instances that have the same behavior.
Therefore we will discuss in the following mainly
behaviors and the comparison between different behaviors.

In the context of system specifications, one usually
defines for a given set of object instances certain
requirements which must be satisfied by the behavior of
these object instances. Sometimes, the requirement could be
the statement that the behavior of the object instances must
be equivalent to a given behavior. However, more freedom
is often allowed for the implementation. In such cases, it
seems convenient to define the requirement in terms of a set

of behaviors where the actual behavior of the specified
object instances must belong to this set. We use the term
"class" to denote a set of behaviors.

In general, the behavior offered by an object depends on
its past interactions. We also say that the past interactions
determine its “"state” and that its state determines its future
behavior. Those objects for which the offered behavior does
not depend on its past interactions are called "constant"
objects, and their behavior "constant behaviors". They form
an important class and are discussed in this sections. Object
behaviors involving state changes are discussed in Sec. 5.

Note: In some typed object-oriented languages one says
that each object instance has a type (which defines its
behavior). In this paper, we do not use the term "type";
however, it seems that our term "behavior" has a very
similar meaning. Our term "class" is simply a set of
behaviors and may be used to represent a set of related
behaviors, such as the different Integer values, or seemingly
unrelated behaviors, such as an Apple and a Car.

2.1. Constant objects

Definition (offered behavior): At each instance in time,
the behavior of an object is characterized by its offered
behavior (in the following also simply called behavior, if
there is no ambiguity). The offered behavior of an object is
aset of actions. An action is of the form f<i:0>, where f is

the name of an operation, i is an object (called effective
input parameter), and o is an object (called the result of the
operation). If a behavior contains more than one element
f<i,o> for a given operation f and given input i (and
different results o), we say that the operation has an
undeterminate result for this input parameter. If there is no
such element, we say that the operation blocks for this
input parameter.

Definition (trace): A trace is a sequence of executed
actions.

Definition (constant behavior): The temporal
behavior of an object is called constant iff the offered
behavior does not depend on its trace.

Definition: The alphabet of an object O is the set of
operation names that are explicitely used in the definition of
the object behavior.

Example: The objects T and F (representing a
simplified version of the boolean constants True and False,
respectively) are constants and have the alphabet {not, and}

non

(if we assume that the operations "or", "imply", etc. are
not used). The object T is a constant, and its behavior (in
this constant state, which we also denote by T) is

B(T) = { rot< :F>, and<F:F>, and<T:T> }

which means that "not(True)” is False, "and" of True and
False is False, and "and” of True and True is also True.

Note: In the above example, we have defined explicitely
the result of all operations for all possible input parameter
values. This is possible if the domain of the input
parameters is finite. However, this is often not the case.
For instance, we may consider the integer constants as
objects with the alphabet {+,-,*,/}. In this case, first of all,
the number of objects to be considered is not finite (there
is an infinite number of integers), and secondly, for each
integer constant, the input parameter considered by the
operations may, in turn, be any integer constant. In such
cases, the usual algebraic notation involving axioms about
the results of operations may be used to define the

semantics of such a class of objects.

2.2. Specializing behaviors: discussion

We assume that we have to compare two behaviors B and
B'. We say that B' is a specialization of B if the behavior
B'is more "precisely” defined than B. For instance, B may
leave certain aspects undefined, so-called "don't care”
situations; if B' defines these aspects we say that B' is a
specialization of B. In the subsequent subsection we define
two relations which define more precisely our notion of
"specialization”. The following discussion and examples
are given as an introduction to those definitions.

In the following we define different versions of boolean
constants "True" which have different behaviors. The first
two constants T1 and T2 below are generalizations of the
constant T discussed above. We consider that the alphabet
of all this different constants is {not, and}, and we write
B(Ti) to denote the behavior of the object Ti.

T1 is a constant "True" accepting arbitrary input
parameters: B(T1) = B(T) union
{ not<i:o> } union {and<
where the i are arbitrary objects, except instances of the
True and False constants, and the o are arbitrary objects.
The second term, for instance, means that the operation
"not" with an input parameter different from True and False

:0> } union {and<i:o>}

(which is not allowed according to the usual definition of
the "not" operator) yields a "don't care” result.

T2 is a constant "True" accepting arbitrary operations:
B(T2) = B(T1) union {x<i,0>! x not in alpha(T), and any i
and o}

where the second term means that any operation not
explicitely defined (not included in the alphabet) is accepted
by the object and yields a "don't care” result.

Even more "general" objects may be defined, such as the

following object which behaves like the True constant,
except that the result for "and" is undeterminate (although
the result still
constants).

T3 is a constant "True" with undeterminate result for the
"and" with False: B(T3) = B(T2) union {and<F:T>}

A more realistic example of an undeterminate behavior is
a sorting module which is defined as follows: It accepts as
input a sequence of pairs and provides as output a sequence
which contains the same pairs, but sorted by ascending
values of the first elements of the pairs. This specification
does not determine the order of pairs in the output which
have the same value for their first element.

Another important concept is blocking. We say that the
offered behavior of an object blocks for an operation x with
input parameter i if there is no element of the form x<i:o>
(for arbitrary o) in the behavior. For example, the
following version of "True" blocks for the operation "and”
with parameter F:T4 is a constant "True" blocking for "and"
with False: B(T4) = B(T2) minus {and<F:F>}.

2.3. Specializing behaviors: Definitions

Definition (constraining): Given two behaviors B' and B,
we say that B' is constrained by B (written B' <c B) iff
each x<i:o>in B' is also included in B.

Definition (domain of operation): The
(non-blocking) domain of an operation x for a given
behavior B is the set of all i for which B contains at least
one x<i:o> (with an arbitrary o).

Definition (domain of behavior): The domain D
of a behavior B, written Dom(B), is the set of those pairs
(x,i), of operations x and input parameters i, such that B
contains at least one x<i:o> (with an arbitrary 0). We say
that an operation x with input i blocks iff the pair (x,i) is

remains within the class of boolean

not in the domain.

Definition (domain coverage): Given two
behaviors B' and B, we say that B' covers the domain of B
(written B' >d B) iff the domain of B is included in the
domain of B, i.e., iff Dom(B) included in Dom(B").

Note: Any set of pairs (x,i) which has an empty
intersection with Dom(B) may be considered a "refusal set"
(in the sense of CSP [Hoar 85]) since all the pairs (x,i) in
such a set, block with the given behavior.

Examples: The object behavior that contains no action
blocks for all operations and is called "Stop". The other
extreme is the behavior that allows "don't care” results for
all actions. We call this behavior "Arbitrary”. Figure 1
shows the relations between the different kinds of "True"

behaviors defined above.

When writing down the definition of a behavior, one
usually only wants to consider certain operations which are
of particular interest. We assume in the following that
these operations are those that are included in the alphabet
of the behavior. For the other possible operations, some
"default" behavior is assumed. It is important that these
default assumptions correspond naturally to the semantic
relations of specialization.

In the context of several well-known description methods
(e.g. CSP, LOTOS, finite state machines, Petri nets) it is
often assumed that actions that are not explicitely defined
are not possible. For instance, the environment trying an
action which is not defined would be blocked in CSP [Hoar
85] or LOTOS [Loto 89]. We
"blocking by default”. As an example, we consider the
behavior denoted by the expression "B = a; b; stop c; stop”
in LOTOS, which offers (initially) the operations a and c
and blocks for all other operations that the environment
may wish to execute. Note that the alphabet of this

call this convention

expression is {a, b, c}.

In the following part of this paper, we take another
default approach by assuming that operations that are not
in the alphabet are "dont' care", that is, they are possible.
However, their results are undeterminate, and in the case of
objects with state changes, the behavior in the next state
would be completely "don't care" as well (see Section 4.2).
We call this convention "undefined by default". In the case
of the expression "B = a; b; stop c; stop” the denoted
semantics is different than in the case of LOTOS, since the
"undefined by default" convention denotes a behavior which
offers a and ¢, and blocks for b. And for all other
operations, which are not included in the alphabet, the
denoted behavior makes an offer with undeterminate result
and "don't care” next behavior.

3. Classes of objects

In this section we consider object classes which are
characterized by a set of behaviors. While most examples
relate to sets of constant behaviors, the definitions given in
this section are also valid for the more complex temporal
behaviors discussed in Section 4.

Definition (class): A class is a set of behaviors.

Notation: In the following, we use the convention that
variables representing sets of behaviors are written in bold.

3.1. Examples of Class Constructions

In practice, one is usually interested in particular classes
of behaviors. In the following we discuss the most
common approaches to defining useful behavior classes.

Class construction by enumeration of behaviors: A

simple method of describing a class is by enumerating the
behaviors which are included in the class. For example,
using the convention "undefined by default”, we may define
the class Boolean to be the set of object behaviors T2 and
F2 (as defined in Section 2.2).

Class construction by constructor operations
and associated axioms: In many cases, the number of
object behaviors within a class are too large to take the
enumeration approach to class definition. The approach
followed for algebraic specifications of abstract data types
descibes a class by defining a certain number of basic
constants with one or more constructor operations and
the
constructor and other operations on the basic constants and

associated axioms about the results retumed by

(recursively) on the results of the operations. A well-known
example is the class of Integers with the basic constant
"zero" and the constructor operations "succ” and "pred”..

Note: The above approaches to class definition
correspond to the standard view in programming langugages
that a class (also called "type") is a set of constants (also
called "values").

Once a certain number of base classes are already defined,
it is possible to define other classes by stating the
properties satisfied by all behaviors within that class. The
following definitions are examples of such class
definitions.

Class construction by functional range: The set
of behaviors for which the results of the operation x are
confined to the class R is defined as { B | x<i:0> contained
in B implies o contained in R}. This set of behaviors can
also be defined as the set of behaviors that are constrained
by the behavior Range(x, R) (formally {B| B <c Range(x,
R)}), where Range(x, R) is the behavior which includes for
all inputs i and all outputs o included in R the action
x<i:0> (and which is "don't care” for all other operations).

Class construction by functional domain: The
set of behaviors including an operation with a given name x
and covering a given domain of input parameter behaviors
D, written "Domain(x, D)", is defined as { B | for each i
contained in D, there exists o such that x<i:0> contained
in B }. This set of behaviors can also be defined as the set
of behaviors that cover the domain of the behavior
Domain(x, D) (formally {B|B >d Domain(x, D)}), where
Domain(x, D) is the behavior which includes for all
outputs o and all inputs i included in D the action x<i:0o>
(and which is "don't care" for all other operations).

Note: The above definition implies that a behavior of

this class will never block for the operation x with an

input parameter in D.

Class construction by functional signature:
We call a functional signature x<D,R> the definition
of an operation name x, the class D of explicitely foreseen
input object behaviors for the input parameter, and the
class R of the foreseen results. For a given functional
signature, we define the class of offered behaviors that
satisfy the functional signature to be the class
FunSig(x<D, R>) = {B | B <c Range(x, R) and B >d
Domain(x,D)}, which is the intersection of the above two
classes.

Note: The class of mathematical functions, named x,
from domain D to subset of

FunSig(x<D,R>); namely those elements of this set

range R is a

which are determinate for all elements of the domain. The
concept of "partial functions”, which have no defined result
for certain elements of the domain, may be interpreted in
several different manners. Using the "undefined be default”
approach, we could say that for the undefined cases all
results would be possible. The approach "blocking by
default” would imply that the function blocks for those
cases. In other occasions, a special constant written O may
be introduced in order to represent an "undefined” result.
Proposition (functional subtyping): Given two
functional signatures x<D,R> and x<D',R'> for the same
operation name X, the relations "R’ is subset of R" and "D
is subset of D™ imply that the set of behaviors satisfying
x<D',R'> also satisfy x<D,R>, that is, FunSig(x<D',
R'>) is a subset of FunSig(x<D, R>).
Class construction by object As

usual in object- oriented languages, we define an object

signature:

signature to be a set of functional signature definitions
with disjoint operation names. The set of operation names
is called the alphabet of the object signature. For a given
object signature s, we define the class of behaviors that
satisfy the signature, written "Sig(s)", to be the
intersection of all the FunSig(x<D,R>) where x<D,R> are
the functional signatures included in s.

This definition implies the following theorem which
the convention of

object-oriented languages that by adding a new operation to

corresponds to well-known
a given object signature one obtains a corresponding class
of behaviors which is a subclass of the original one. This
can be stated as follows.

Proposition (object-oriented subtyping): (Note:
This shows a relation between signatures and corresponding
classes of behaviors.) If the object signature s' is obtained

from a signature s by the addition of the functional

signature x<D,R>, then Sig(s') is subclass of Sig(s).

3.2. Comparison of Classes

As discussed in 2, offered behaviors may be compared by
relations such as constrainment (corresponding to the
notion of subset of possible actions) and domain coverage.
These concepts may also be used to compare classes of
offered behaviors. In addition, we may compare classes in
contain (as in the

"subtyping".

terms of the set of behaviors they
theorems above). We call this comparison
Based on this latter view, we may also construct new
classes, using such operators as choice (union) among
several disjoint classes, and multiple inheritance
(intersection of behaviors) of several given classes.

Definition (subclass): Given two classes (i.e. sets)
B and B' of behaviors, we say that B'is a subclass of B iff
B'is subset of B .

Definition
classes B and B' of offered behaviors, we say that B' is
constrained by B (written B' <c B) iff for each B' [B’
there exists B [B such that B' <c B.

Note: It is clear that subtying implies constrainment.

Definition (domain coverage): Given two classes
B and B’ of offered behaviors, we say that B' covers the
domain of B (written B' >d B) iff for each B' [B' there
exists B[Bsuch that B >dB.

Note: If a class of behaviors B' covers the domain of a
class B then an element of B' may only block for a given
operation and input parameter if there is an element of B

(constraint relation): Given two

that may block for the same situation.

Examples: We call Arbitrary the class which
contains one behavior, namely Arbitrary. We call Stop
the class which constains one behavior, namely Stop. We
call Empty the class containing no behavior. We note
that all classes of behaviors constrain the class Empty, and
are constrained by the class Arbitrary. And the class
Stop is constrained by all classes, except by Empty. We
also note that Arbitrary and Empty cover the domain of
all classes. Another example is the class Chaos which
contains all subsets of the behavior Arbitrary. We note that
all classes are constraint by Chaos and cover the domain of
Chaos. An overview of these relationships is given in

Fig. 2.

4. Object behavior with state changes

4.1. Deterministic behavior

Definition: We say that an object behavior is
deterministic if after each trace t of executed actions, the
object is in a determined state with offered behavior B.

(Note: This does not preclude a nondeterminate result).

Notation: We define a deterministic object behavior in
terms of a set D of tuples <t,B> where t is a trace of
actions and B is the offered behavior of the object after the
execution of the trace t. It is noted that the set D of tuples
must satisfy the following consistency condition: If
<t,B> is included in D and x<i:o> is included in B, then
there is a <t',B'> included in D where t' is equal to t
concatenated with the action x<i:o>. Therefore, the "B" in
the tuplets of D are redundant, and it is sufficient to
consider only the set of possible traces.

Definition: Given two object behaviors D and D', we
say that D' is constrained by D (written D' <c D) iff for
each <t,B'> included in D' there is a <t,B> included in D
with B' <c B.

Definition: Given two object behaviors D and D', we
say that D' covers the domain of D (written D'>d D) iff
for any trace t,<t,B> included in D and <t,B"> included in
D' implies B>d B.

Note: The statement saying that D' is constrained by
D is equivalent to saying that the traces of D' are a subset
of the traces of D. However, the statement saying that D'
covers the domain of D does not imply that the traces of D'
include those of D, since the traces of D' may have different
results as output compared to those of D.

4.2. Non-deterministic behaviors

Definition: An object behavior is non-deterministic if
there exists a trace t such that after the execution of the
actions of t, the object may be in one of several states, each
characterized by a different offered behavior.

Notation: We define a non-deterministic behavior in
terms of a set N of tuplets <t,B> where t is a trace of
actions and B is the set of potential offered behaviors that
may apply after the execution of the trace t.

We can adapt the relations for comparing behaviors
described above as follows to the case of non-deterministic

object behaviors.

Definition: Given two object behaviors N and N', we
say that N' is constrained by N (written N' <c N) iff for
each <t,P'> included in N' there is a <t,P> included in N
with P' <c P, where the latter relation is the same as
defined for classes of offered behaviors in Section 3.2.

Definition: Given two object behaviors N and N', we
say that N' covers the domain of N (written N' >d N) iff for
any trace t, <t,P> included in N and <t,P"> included in N

implies P' >d P, where the latter relation is the same as
defined for classes of behaviors in Sections 3.2.

Note: If we ignore the input parameters and results of
operations then the statement saying that N' covers the
domain of N is equivalent to saying that N' conforms to N,
as defined in [Brin 86].

Note: For the classes of constant behavior Chaos,
Arbitrary, Stop and Empty,
temporal object behaviors with the same names. We note
that the behaviors Stop and Empty allow only for the
empty trace (no possible action). The temporal behaviors
Arbitrary and Stop are deterministic (for instance Arbitrary
admits, after any trace of executed actions, the set of all
the behavior Chaos is
non-deterministic and may, after any sequence of executed

we have corresponding

actions), while temporal
actions, block or offer arbitrary sets of actions (see also
[Hoar 85]).

Note: The definitions for constrainment and domain
coverage given in the previous sections of this paper are
the
non-deterministic objects.

Definition (reduction): Given two object behaviors
N and N', we say that N' is a reduction of N (written N' red
N) iff N' is constrained by N and N' covers the domain of
N.

Note: If we ignore the input parameters and results of
operations, then the above definition of "reduction” is the

special cases of definition given here for

same as the one given in [Brin 86].

5. Specifications and Conformance Relations

5.1. Specification of requirements

In the context of temporal logic, it is customary to
distinguish between safeness and liveness.[Alpe 87]
Safeness states that "nothing bad can happen”, while
liveness states that "certain good things will eventually
happen". Using the constrainment and domain coverage
relations introduced above, we can state the following
requirements for the behavior IA of an implementation of a
module A :

(a) IA shall be constrained by a given behavior Bc.

(b) IA shall cover the domain of a given behavior Bd.

In many situations, the two behaviors Bc and Bd may be
the same. In general, however, these two behaviors may be
distinct. The distinction between these two aspects
(constainment and domain coverage) is related to the
predicates MAY and MUST described by Larson which are
used to distinguish between transitions that may be
implemented and those that must be implemented in a

given transition system. There is also much similarity
between constrainment and safeness. However, in the case
of non-deterministic behaviors, the constrainment relation
is finer than trace semantics [Boch 91c] while the latter
corresponds to safeness. On the other hand, the domain
coverage requirement has some similarity with liveness, in
the sense that it states the absense of certain deadlocks. We
therefore adopt the following definition for the specification
of a module.

Definition (specification):
object A is a pair (Bc,Bd) of two behaviors. We say that an
implementation IA is conform to the specification (Bc,Bd)
iff the behavior B of the implementation satisfies the

A specification for an

following two conditions:

(a) Constrainment condition: B <c Bc

(b) Domain coverage condition: B >d Bd

Note: In the case that the two specified behaviors are
equal (Bc = Bd = B) then an implementation conforms to
the specification iff its behavior is a reduction of B.

In the context of strongly typed programming languages,
the
input parameters for which the function must be defined
and the range of
type-checks a function definition,

signature of a function indicates the domain of the

the results. When the compiler
it verifies that the
function definition satisfies the signature (although in
practice, the domain coverage is often not completely
checked). Therefore, the type declaration of a function is a
specification, where the given behaviors B¢ and Bd are the
behaviors Range and Domain, respectively, as introduced in
Section 3. The type checking of object-oriented programs
[Blac 87] follows the same principles.

5.2. Conformance relation between
specifications
The idea of conformance is the following [Blac 87] [Cusa
89] : We assume that a system is designed as a
composition of several "modules”, and that the specification
of module A is SA. We say that
specification SA' conforms to SA in the context of this

another module

system iff an implementation conforming to SA' may be
used for the module A without affecting the behavior of the
overall system. In general, this conformance relation is
dependent on the environment in which the module is
supposed to operate [Gotz 91]. In the following we ignore
this the case of an
environment with an arbitrary behavior.

dependency and consider only

Definition (conformance between
specifications): Given two specifications (Bc, Bd) and

(Bc', Bd"), we say that (B¢', Bd') conforms to (Bc, Bd) iff
Bc' <c Bc and Bd' >d Bd.

Proposition: If (Bc', Bd) conforms to (Bc, Bd) then
any behavior B conforming to (Bc', Bd) also conforms to
(Bc, Bd).

5.3. Multiple inheritance

In the design of complex systems, it may occur that one
a module A which should satisfy several
requirements, for instance the ideal professor in a
university should be a good teacher, a good researcher and a
good public relations manager. These different requirements
may be specified separately in terms of different
specifications. The specification of module A is then the
"conjunction” of the three requirements. Sometimes the
different requirements may be contradictory. In that case no
behavior exists that satisfies them all.

At the level of object signatures, the issues of multiple
inheritance (also called subtyping relations) have been
discussed in the literature on object-oriented programming
languages. However, these issues are much less explored at
the level of temporal behavior. Ignoring the requirements
on domain coverage, it can be shown that, in the context of

identifies

non-deterministic transition systems, the most general
behavior satisfying the constrainment requirements of
specifications can be obtained by parallel
composition of the behaviors Bs of every specification.

several

6. Conclusions

A unified approach can be used for the comparison of
object behaviors from the context of predefined constants,
such as Integers or Booleans, through user-defined functions
and object signatures, to the consideration of temporal
behaviors which may involve state dependencies and
non-determinism. The approach considers two relations for
the comparison of object behaviors and classes: (a)
constrainment, which is based on the notion of actions
offered by an object as a function of the trace of actions
executed in the past, and (b) domain coverage, which is
based on the notion of absense of blocking for certain kinds
of actions.

This unified approach provides a framework for the
definition of requirement specifications, the conformance
between implementations and specifications, as well as the
comparison between specifications which is important for
managing the multiple inheritance subtyping lattice of
and for questions of

object-oriented specifications

replacement and reutilisation.

Notation:
B' is constrained by B: B 4\p
B' covers the domain of B: B' 228

Arbitrary

O

Fig. 2: Relationship
between various classes of

Fig. 1: Relationship
between the behaviors
of "True" constants of contant behaviors.

varrious types.

References

[Alpe 87]B. Alpern and F. B. Schneider, Recognizing safety
and liveness, Distributed Computing 2 (1987), pp.
117-126.

[Amer 87b] P. America, Inheritance and subtyping in a
Parallel Object-Oriented Language, in Proc. of Europ. Conf.
on Object-Oriented Progr. (AFCET), 1987, pp. 281-289.

[Amer 89] P. America, A behavioural approach to subtyping
in object-oriented programming languages, Philips I. Res.
(Netherlands), Vol. 44, Nos. 2-3, pp.365-383, 1989.

[Card 88] L. Cardelli, A semantics of multiple inheritance,
Information and Computation 76 (1988), pp. 138-164.

[Cusa 89] E. Cusack, Refinement,
inheritance, Workshop on Theory
Refinement, Open Univ., UK, Jan. 1989.

[Gotz 91]R. Gotzhein, On Conformance in the Context of

12th Int. Conf. Computing
Systems, Japan June 92.

[Hoar 85] C. A. R. Hoare, Communicating Sequential

conformance and

and Practice of

Open Systems, on Dist.

Processes, Prentice Hall, 1985,

[Loto 89] ISO, 1S8807 (1989), LOTOS: a formal description
technique,

[DeNi 87] R. D. Nicola, Extensional Equivalences for
Transition Systems, Acta Informatica, 24 (1987), 211-237.

