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- Experience with Representing C++ Program Information
in an Object-oriented Database

Tamiya Onodera
IBM Research, Tokyo Research Laboratory

Two major issues related to storing program information in an OODB are sharing and clustering. The
former is important since it prevents the database from consuming excessive disk space, while the latter
is crucial, since it keeps clients running without thrashing. In our database, objects are shared across
multiple programs’ translation units, and are clustered by combining three techniques, namely, birth-
order, death-order, and sharing-oriented clusterings. An initial experiment shows that, for a medium-size
application, the database consumes 3.5 times less disk space than in a conventional environment, and that
the invocation of a client is almost instantaneous. ‘



1 Introduction

The growing size and complexity of software has in-
tensified the need for advanced programming environ-
ments that can reduce the burden on software devel-
opers. Such an environment should integrate tools, in-
cluding a compiler, a debugger, a source-code browser,
and a builder. Tool integration, in this narrow con-
text of lower CASE, means integration of presentation,
control, and data[l]. To build such an integrated énvi-
ronment, it is believed, the correct strategy is to use a

database management system.

Our attempt to represent C++ program information
by using an object-oriented database follows these lines,
but at the same time we have aimed to alleviate two
serious and pervasive problems in the development of
programs: bloated working storage and stalled invoca-
tion. In the first, a tremendously large amount of disk
space is used to store information for tools, and in the
second, an intolerably long time is spent before a tool
is ready to accept user interaction.

As an example, we present statistics on a Motif ap-
plication that is being developed at our laboratory by
using IBM C Set ++ for AIX/6000.
given below were all obtained under AIX 3.2.4 on an
RS/6000 Model 560. The application, which consists
of 300 source files and contains a total of 15,541 lines,

The numbers

consumes 3.03 megabytes of disk space, inclﬁding source
files, object files and an executable, when compiled and
linked without any specific options. To use a debug-
ger, we must build the executable with the debugger
option specified. This requires 16.86 megabytes more
disk space. When we invoked the dbx debugger against
the executable, it took 479 seconds of real time for the
debugger process to show its first prompt. To allow use
of a browser, we must build the executable with the
browser option specified. This, surprisingly, requires
76.92 megabytes more disk space. Moreover, the sys-
tem configuration did not allow us to use the source
code browser; the browser process failed to complete its
initialization, because of the heavy demand on paging

space.

The reason for bloated working storage is as follows.
The use of a library in a C/C++ program results in one
or more header files being included, and the inclusion
of a header file contributes to increased consumption of
disk space; information on types defined in the header
file is generated if the program is compiled with the
debugger option, while information on cross-references
that originate in the header file is produced if the pro-
When a
header file is included in many source files, the same

gram is compiled with the browser option.

number of duplicates result, and are simply left to oc-
cupy disk space. What really aggravates the duplica-
tion is that modern software tends to or is encouraged
to rely on more and more libraries, some of which are
very large. For instance, the source file in the Motif
application contains only 51.8 lines on average. How-
ever, after the file has been preprocessed, the average

number of lines rises to as many as 9,153, since all the

source files but one include Xm.h directly or indirectly.

On the other hand, the reason for stalling invocation
is simply that the dbx debugger and the source code
browser eagerly attempt to initialize a large number of
objects before they accept user interaction.

We can aimend “bloated working storage” by enhanc-
ing the compiler to allow it to populate a database with
objects, sharing as many objects as possible. When the
compiler is about to store an object.into a database, it
first checks whether the database already contains any
equivalent object and if not, adds it into the database.
On the other hand, we can solve “stalled invocation”
by somehow realizing lazy evaluation. For instance, it
may be promising to use memory mapping facilities if
they are available; actually, there is a debugger that
does not suffer from the problem. However, a much
simpler and cleaner way of realizing lazy evaluation is
to rely on a DBMS that allows objects to be fetched on
demand from the persistent storage. Fortunately, the
OODBMS used in our project, ObjectStore, is known
for its notable use of virtual memory mapping archi-
tecture [2, 3]; when a client accesses a database object
for the first time, the OODBMS brings the entire page

containing the object into the client’s virtual memory.



The following sections are organized as follows. Sec-
tion 2 overviews C++ program databases. Section 3
describes how and what objects are shared, primarily to
solve “bloated working storage.” Section 4 is on cluster-
ing, which is crucial to the database performance, even
if objects are fetched on demand. Section 5 gives initial
performance measurements, while Section 6 deals with
related work. Finally, Section 7 presents our conclu-
sions and discusses future work.

2 C++ Program Database

The program database we are attempting to build
This
includes build relationships of programs and cross-

stores static information on C++ programs.

references of symbols appearing in programs. An im-
portant feature is that a single database holds informa-
tion on multiple programs. This is essential to eliminate
the problem of bloated working storage; if we built a
database for each program, it would prevent informa-
tion originating in Xm.h from being shared among dif-
ferent Motif applications.

2.1 Basic Structure

Static information on C++ programs is represented
as graphs of objects, which are grouped into four cat-
egories: files, cross-references (abbreviated below as
xrefs), symbols, and iypes. A file object is constructed
for each of the operating system’s files that have par-
ticipated in building C++ programs. File objects form
graphs to represent build dependency, or relationships
showing which files are linked into which file and which
file includes which files.

A primary ingredient of the program database is an
zref graph, namely an xref object pointing to a sym-
bol object that may point to a type graph; the symbol
points to a type graph only if it has a type. This xref
graph denotes which symbol optionally having which
type is defined or declared or used in which location;
logically, the location is a triple of file object, line num-
ber, and column number, but physically, it is squeezed

into a pair, as we will see in Section 3. These xref graphs
are then organized according to the block structure of
a C++ program.

Consider the following source file as an example. Its
compilation results in the population of objects shown
in Figure 2. The block structure of the translation unit
is represented as a graph formed by three objects: a
file object corresponding to a.o, an xref object cor-
responding to the class definition, and an xref object
corresponding to the function definition. Each of these
has a pointer member to an array of the pointers to the
xref graphs. All the xrefs of the translation unit, in-
cluding those for the class and function definitions, are
organized into the arrays. Note that not all the objects
are shown in the figure; the database is also populated
with special cross-references, which are introduced be-
low. Not all the pointers are drawn in the figure, either;
backward pointers, which allow fast climbing-up traver-

sal, are also present.

2.2 Intended Clients

The intended tools are initially a debugger, a source-
code browser, a builder, which is similar to the make
utility, and a profiler. Actually, the information we
stored in a database reflects this. First, the database
stores code-static information as used by a debugger.
Symbol objects have members for relative addresses, off-
sets within stack frames, or offsets within data layouts
of classes. Special xrefs are provided for storing infor-
mation on breakpoints. Second, the database does not
contain parse trees, such as those generated by a com-
piler’s front-end, since it is not intended for code gener-
ation and program transformation. Note, however, that
enough information is stored for incremental compila-
tion or program slicing. Finally, although the database
contains sufficient information to instrument code for
execution profiling, it is not supposed to contain the
results of profiling per se. This does not necessarily
exclude the population of such profiling results; we be-
lieve that static and dynamic program information can
be separate islands in a database, and this paper simply



focuses on the population of static information.

The only intended populator is a compiler. To facili-
tate turning a conventional compiler into a populating
compiler, we define a population interface, or a collec-
tion of methods encapsuldted into a class. Following
the definition of the interface, calls to the methods are
inserted at appropriate locations in an existing com-
piler’s source code. Linked with an implementation of
the interface class, it is made a populating compiler.

3 Sharing

One purpose of sharing is to alleviate the problem
of “bloated working space,” and xrefs from commonly
included header files must be shared. Sharing xrefs im-
plies sharing symbols pointed to by them. Putting it
another way, sharing symbols is considered to facilitate
the sharing of xrefs. Obviously, sharing symbols can
and should be based on the C++ semantics of linkage.
However, storing multiple programs’ information in a
single database presents a significant challenge to this,

as we will discuss.

3.1 Objects Shared

The entities that can be shared among translation
units in our program database are global symbols, global
types, and global zrefs. A symbol is said to be global
if it is not a member or local. For a global symbol
to be shared, it must represent what is common across
translation units. For comparison, assume that the data
structure of a function symbol is defined to have a mem-
ber that points to a graph representing its definition.
This is often the case in internal data structures of a
conventional compiler, since at most one definition is
legally given to a function symbol in a translation unit.
However, this is no longer allowed in our database set-
ting, and thus the function symbol shown in Figure 2
results. An alternative would be to have a function
symbol’s member point not to a definition but to a list
of definitions. However, doing so might slightly degrade
performance, since inserting a new definition results in

the updating of an existing object, such as a list node; in
general, modifying existing objects is more costly than
simply constructing new objects.

A type is said to be global if it is not locally defined
or a derived type constructed from a locally defined
type. We attempt to share derived types as well as
fundamental types. Thus, only a single representation
exists in a database for each of int, char*, double
(float), int (*[])(int, char#*), and so forth.

. An xref is said to be global if it occurs with file
scope. Xrefs are our primary targets for sharing, since
this eliminates duplicated objects due to commonly in-
cluded header files. Though the preprocessor’s condi-
tional commands might cause the compiler to attempt
to store different sets of objects for different inclusions of
a header file, only objects corresponding to the delta are
added. Note, however, that the granularity of sharing
is a global xref; when a conditional compilation elim-

inates the text of a declaration of a member, the xref

graph representing the definition of the member’s class
is newly stored in its entirety.

The compilations of two translation units in Figure 3
populate a database with objects as in Figure 4. We
assume that a.o and b.o are compiled in this order.

3.2 Computing the Hash Values of
Graphs

Whenever the compiler is about to add an object, it
looks for any structurally equivalent object. Obviously,
the database maintains hash tables for these lookups.
Precisely, the population of an object involves the fol-
lowing steps. The compiler first constructs an object
in the transient heap. For each of the candidate per-
sistent objects in the hash table, the compiler performs
the structural equivalence test. If this succeeds for some
candidate, the compiler subsequently uses the persistent
object and discards the transient object. Otherwise, it
makes a persistent copy of the transient object, inserts
it into the hash table, and discards the transient object.

It might be interesting to compute a hash value for
a graph. To facilitate this, the compiler maintains an



invariant specifying that, when it attempts to store an
object, only the root of that object is transient and
its siblings or subgfaphs have already been made per-
sistent, or stored into a database. The hash value of
a graph is computed by ising one or more values of
fundamental types in the root object and one or more
direct siblings’ persistent addresses. The computation
- is very fast, since it does not involve traversal of the
graph, but it still effectively takes into account all the
objects contained in the entire graph.

3.3 Overlinking

The object files resulting from the compilation of two
translation units, shown in Figure 4, are not necessar-
ily linked into the same program. If they are not, the
symbol object for int x actually represents two differ-
ent symbolic entities; this is inevitable, since it is not
necessarily known in advance which executable a par-
ticular object file is eventually linked into, especially if
it is a member of an archive. Similarly, even within a
single program a single symbol for a class may be used
to represent different C++ classic entities of the same
name, since they may have internal linkages. In short,
overlinking occurs.

Overlinking is much easier to cope with than “under-
linking.” For this purpose, the coverage of an object is
defined to be a subset of database objects that can be
reached from the object by tracing pointers. Though
a symbol object does not necessarily uniquely identify
a C4++ symbolic entity, it really does if paired with an
appropriate coverage. For instance, a pair of the sym-
bol denoting int x and the coverage of the file 5bjec!;
into which the file a.o is linked uniquely identifies the
symbolic ehtity declared in a.c. This pairing effectively
means that a database client limits its interest to the
specified coverage when dealing with queries.

4 Clustering

Clustering is a technique of populating together ob-

Jects that are referenced together, thereby improving

reference locality. The client of a poorly clustered
database is very likely to cause thrashing, which effec-
tively prevents it from running any further. Reference
locality, however, totally depends on clients’ access pat-
terns. In particular, burst access made by clients is of
great concern.

Obviously, we cannot list all the clients in advance,
and access patterns of clients may impose conflicting
demands on clustering. What we can do at best is to
prepare for major, known clients. This section first con-
siders burst access that expected clients are likely to
make. It then summarizes three methods of clustering
applicable to our program database, and describes the
clustering actually used. Finally, it presents further ef-
fects of the clustering, one of which contributes to a

substantial reduction in the size of a database.

4.1 Burst Access

Expected clients that heavily access a program
database are a compiler, a scavenger, a source-code
browser, and a debugger. Though a compiler is first
emphasized as a populator, it is also a heavy accessor;
it does a large number of lookups for sharing, which is
likely to cause burst access.

A scavenger is a tool for reclaiming database ob-
jects that are no longer referenced; this tool is needed
because ObjectStore leaves it up to users to garbage-
collect database objects. Since the C++ convention
is to call the delete operator for each unused object,
burst access is likely to result. '

A browser does not madly access a database as long
as it is processing such requests as “show members of
a class” and “show all the breakpointable locations of
a function.” However, burst access may happen when
it attempts to show the entire inheritance graph, the
entire call graph, all the cross-references of a symbol,
or all the functions and global variables defined in a
program.

A debugger is also a modest client as long as it han-
dles such requests as “set a breakpoint here” and “print

an automatic variable’s value.” Burst access may result



for a request such as “show the call stack’s contents”
for a long stack and “show all the values of global vari-
ables.”

Our observation is that coping with burst access by a
compiler and a scavenger should have top priority. The
reason is that both lookups and deletes may touch pages
in the persistent storage scattered in the database-wide,
while access by a browser or a debugger is limited to
pages that contain objects representing a program.

4.2 Methods for Clustering

Three methods of clustering are considered promising
for C++ program databases. First, birth-order cluster-
ing simply stores objects in the order in which they are
created. Since a populator easily follows the order, it is
used widely, even unconsciously. Not surprisingly, it can
be observed that the birth order is respected by many
access patterns; objects are never created in a random
order, and the order reflects the logical structure of a
program.

Death-order clustering stores together objects that
die more or less at the same time. This method of clus-
tering is very beneficial for a scavenger or, more gen-
erally, in terms of memory management, although we
cannot always know the death times of objects. Fur-
thermore, if a database management system allows us
to delete a cluster, we can delete a bunch of database
objects at the cost of a single function call, as is often
done in implementing a customized memory manage-
ment system for C and C++.

Finally, sharing-oriented clustering stores together
objects that are shared among translation units, in or-
der to prepare for lookup operations. As mentioned ear-
lier, what are shared in a program database are global
objects. If we simply follow the birth-order clustering,
lookups may cause thrashing, since the method inter-

leaves global objects with objects from inner blocks. In

short, where there is sharing, there must be clustering.

4.3 Our Clustering

Objects are clustered in a C++ program database
as shown in Figure 5. First, we apply sharing-oriented
clustering, following the prioritization mentioned ear-
lier. Global symbols are clustered together with the
hash table, as are global types.

As can be seen in the figure, objects that originate in
the same file form a cluster, or what we call a file cluster.
This file-based clustering is a combination of sharing-
oriented and death-order c]usferings. It is sharing-
oriented because it clusters globals xrefs, which comes
from the same file, together with the hash table. It is
not acceptable to put all the global xrefs into a single
cluster, since the cluster would grow gigantic; dividing
them among files suppresses this. On the other hand, it
is also a death-order clustering, since objects from the
same file tend to become unused simultaneously; this
demographic fact reflects the current way of developing
a C++ program, namely, on a file basis.

Finally, birth-order clustering is applied within each

cluster, and file objects form their own cluster.

4.4 Further Effects

File-based clustering also helps to reduce the size of a
database. It allows us to squeeze the location of an xref
object into a pair, instead of a triple of the source file,
line number, and column numbet, by clusler-lagging,
which is very similar to the page-tagging used in many
Lisp interpreters. Given a virtual address of an xref,
ObjectStore allows us to obtain the persistent address.
In other words, we can know in which cluster (or seg-
ment in ObjectStore terminology) the xref is allocated.
If we build a table that maps clusters to files, we can
eventually obtain the file in which the xref originates.
The source file of an xref’s location thus becomes a
computable attribute. Notice that xref objects are by
far the most dominant objects in a program database;
squeezing a word from an xref leads to ‘a substantial
reduction in the database size.

Finally, we touch on the garbage collection of
database objects. Owing to death-order clustering, in-



dividual objects do not have to be deleted; we simply
delete a cluster. File clusters themselves are maintained
by applying the reference-counting technique; we be-
lieve that reference counting on the granularity of clus-
ters is quite acceptable. The clusters for shared symbols
and types are never reclaimed by using reference count-
ing. However, shared objects within the clusters are
garbage-collected by using the mark-and-sweep tech-

nique, which is much less frequently invoked.

5 Performance Measurements

‘We have currently completed two important compo-
nents. The first, called pd, defines the scheme of the
C++ program database, and must be linked into every
client. It is also responsible for sharing and cluster-
ing, though such functions are only used by a popula-
tor. The other component, dop, defines the population
methods mentioned in Section 2, and is intended to be
linked with a populating compiler. The dop component
fields calls made by the populating compiler proper, and
stores objects by using the pd component. The dop and
pd components are both written in C++, and contain
6910 and 7871 lines, respectively.

We first compiled all the source files in the Motif ap-
plication mentioned in Section 1, using the populating
compiler. A database containing all the program in-
formation was successfully built, and the size of the
resulting database was 22.00 megabytes; surprisingly,
a 72% reduction. As for stalled invocation, we have
not yet built any substantial tool such as a debugger
or a browser. However, invocations of a simple tool to
peek a database have been almost instantaneous. The
problem is therefore thought to be alleviated.

A different problem that has emerged is the amount of
extra compilation time. The populating compiler takes
2.5 times longer on average than the original compiler
does when invoked with the debugger and browser op-

tions. We are in the process of improving this.

6 Related Work

It is well known that the C++ programming environ-
ment formerly named Cadillac [4] stores C++ program
information in an object-oriented database. It too uses
ObjectStore. However, as far as we know, no paper de-
scribes the database organization in enough detail for
us to compare with our work.

CIA++ [5] is a tool that stores a C++ program in-
formation in a database. The information covered is
largely the same as in our scheme, but does not include
In addition, the database is

relational. We are curious to learn how sharing and

code-static information.

clustering are dealt with in relational setting.

Reprise [6] is a graph representation of C++ pro-
grams. It represents source-static information in much
more detail than our scheme, but does not give any
code-static information. Though the paper describes
how such representations are generated, it does not say

how or where they are stored.

7 Concluding Remarks

We have described how objects are shared and clus-
tered in an object-oriented C++ program database.
Sharing is important to prevent a program database
from occupying too much secondary storage. Our initial
experiment showed that the database occupies much
less space than is required in a conventional file-based
environment. Actually, more space can be squeezed. In
many OODBMSs, including ObjectStore, objects are
stored in persistent storage in almost the same formats
as in virtual memory; they are still objects in persis-
tent storage. However, objects are not a compact way
of representing information. For instance, the xcoff for-
mat encodes the pointer type to the integer type as *-1,
taking a mere three bytes, while the corresponding type
graph in our scheme consists of two type objects, tak-
ing a total of 16 bytes. Even the compress command
in AIX can reduce the size of the database in Section 5

from about 22 megabytes to less than 10 megabytes.

More reduction can definitely be expected if we exten-



sively use type information, which is also stored in the
database, and perform compression page-wise. We are
now designing the details of this procedure, what we
call type-driven compression.

Clustering is crucial to keep clients running with-
out thrashing. Though we have prepared for major
expected clients, we have already found a client that
might cause thrashing. An instance transformer, which
supports schema evolution, turns instances of updated
classes into new versions, accessing all the instances
of each class.” The best clustering for this is a class-
based clustering, which allocates instances of a class to-
gether. However, it obviously conflicts with the sharing-
oriented and death-order clustering. We believe that

dynamic reorganization of a database must be pursued.
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// a.c

int x;

class A { char x; unsigned y; };
double foo(float a){ return x+a; }

& 1: A Sample Program to Show Basic Structure

(XDeﬁneFu.nclion

O file objects

xref objects

]
[] symbol objects
O ype objects

B4 2: Basic Structure of a Program Database: only the relevant values are shown within the objects.

// a.h
class A {

char x; unsigned y;
};
// a.C
extern int x;
#include "a.h"
double foo(float);
// b.C
extern int x;
#include "a.h"
double hoo(float);

[ 3: A Sample Program to Show Object Sharing



[%] 4: Sharing of Objects between Translation Units
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b.C
T
shared xrefs

the hash table
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& 5: Clustering in the C++ Program Database



