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Chew’s theorem [Che81] states that the unique normal form property (UN) holds
in a compatible term rewriting system (TRS), i.e., normal forms are unique up to
conversion. The original proof is “rather intricate”[KKlo92]. There is a general feeling
of doubt about the original proof. In fact, there is a gap in the proof.

We present a new proof of the theorem using a peak elimination process of a proof
in a conditional TRS. The notion of independence of reductions is introduced in order
to show termination of the process.



Figure 1: Peak elimination

1 Introduction

Chew’s theorem [Che81] states that the unique normal
form property (UN) holds in a compatible term rewriting
system (TRS), i.e., normal forms are unique up to conver-
sion. The origina] proof in [Che81] is “rather intricate”
[K1092]. There is a general feeling of doubt about the
original proof. In fact, there is a gap in the proof?.

Several people have made partial attempts at new proofs
[dV90, Oga92, 0093, TO94].

Let us briefly outline the methodology of our proof.
Given a compatible term rewriting system R, we trans-
form it into the conditional linearization R due to Toyama
and Oyamaguchi [T094], which is a variant of de Vrijer’s
[dV90]. As de Vrijer observed, it is suffice to prove that
the Church-Rosser property (CR) holds for R in order to
conclude that R is UN. We will prove CR. of R by a peak
elimination process.

Given a conversion, or proof, t; ¢ -+ ¢+ 1, in ﬁ, the
peak elimination replaces a peak t;_1 i — ti41 in this
proof with a conversion £;_; ¢* tiy1 in R according to
the peak elimination rules. If all peaks are eliminated by
applying peak eliminations to the given proof repeatedly,
then we find a term s such that ¢; =" s +" t,, as shown
in figure 1.

The main difficulty of this proof is to show termination
of the peak elimination process. Thereto we introduce the
notion of independence of two reductions in a proof in R.
It is shown that independence is preserved during the peak
elimination process.

Descendant trees are then defined for the reductions in
the starting proof of the process. Using properties of in-
dependence, it is shown that these descendant trees are
finite, which indicates that one particular peak elimina-
tion rule is applied only finitely many times. Since peak
elimination with only the other rules is terminating, the
result follows.

2 Preliminaries
The definitions and terminologies of abstract reduction

systems, terms or term rewriting systems are taken from
[K1092].

1See section 2.3 for the detail.

2.1

Let — be an (abstract) reduction system, that is a bi-
nary relation on some underlying domain. The symmetric
closure, the reflexive transitive closure and the reflexive
transitive symmetric closure of — are written as ¢, —°
and &7, respectively. If there is no a’ such that a — o/,
then a is a normal form of the reduction system. A sc-
quence aj ¢+ --- & ap is called a proof. A (sub)proof of
the form a’ « a — a” is called a peak.

A reduction system — is strongly normalizing (SN) if
there is no infinite sequence such that a; — ag = ---.

A reduction system — has the unigue normal form prop-
erty (UN) if a &* @’ = a = a’ for each pair of normal
forms a,a’. We say — has the Church-Rosser property
(CR) if, for any @ " @, there exists b such that a —=+* b
and @’ —* b. A reduction system —+ has the weak Church-
Rosser property (WCR) if, for @ — b and a — c, there
exists d such that b —* d and ¢ =~ d. It is well-known
that SN & WCR implies CR.

Abstract reduction systems

2.2 Terms

Let F be a set of function symbols and V a countably
infinite set of variables satis{ying that F and V are disjoint
from each other. For every f € F, a natural number arity
is associated with f. Function symbols with arity 0 are
called constants. The set of all terms built from F and
V is defined as usual. The set of variables occurring in
a term 1 is denoted by V(t). A term ¢ is called a ground
term if V(t) = . A term ¢ with no repeated occurrence
of a variable is said to be linear.

A substitution is a map from variables to terms and
the domain is naturally expanded to whole terms. The
application of a substitution o to a term ¢ is written as to.
A substitution o is also written as {z; = t;,---
t,}, where z; are variables such that z;o % z;.

Let O be a fresh special constant symbol. A contezt C[]
is a term in T(F UO,V). When C{] is a context with n
D’sand ty,- -+, 1, are terms, Clty,- - -, 1,] denotes the term
obtained by replacing all @’s in C[] with ¢;’s in a left-to-
right manner. A term { is called a subterm of a term s if
there is a context C[] such that C[t] = s. When C[] £ 0,
then ¢ is said to be a proper subterm of Cf[t].

The set of positions P(t) of a term ¢ is defined as below:

,Tn =

1. P(t) = A if t is either a constant or a variable.

2. Pt {A}U{z-u]l<z<nandu€P( i)} if
t:f(fl, “ln).

For a position p € P(t), t/p is the subterm occurring at
p. For terms ¢, s and a position p € P(t), t[p « s] is the
term obtained by replacing the subterm at p in t with s.

For positions py and pa, p1 < p2 if py is a prefix of pa.
We write p; < pa if p1 < p2 and p1 # pa. When neither
p1 < pg nor pa < pi, p1 and pp are said to be parallel,
notation p; L ps. The longest common prefix of p; and
pa is denoted by A(p1,p2).

2.3 Term rewriting systems

A term rewriting system (TRS) is a finite set R of rewrile
rules. A rewrite rule is a pair of terms denoted by | = ¢




satisfying following properties:
1. ! is not a variable.
2. V() D V(r).

The term I (r) is called the left-hand side (right-hand side)
of l 5 r.

The reduction system — g on the set of terms is defined
from a TRS R as follows:

—r = {C[l8) -5 C[rf] | C[]is a context, 8 is a
substitution and ! = r € R}.

A term 10 is called a redez of Rif ]l — r € R. For a
reduction « : C[l] — g C[r6), the position of the redex [0
in C[l6] is denoted by p(a).

A rewrite rule | — r is left-linear if [ is linear. A TRS
with only left-linear rewrite rules is also said to be left-
linear.

Let ¢ and t’ be terms satisfying that to = t'o with a
substitution o. Then ¢ and t’ are unifiable and o is called
a unifier of t and ¢'. If t and ¢’ are unifiable, then there
exists a substitution 6 called a most general unifier of ¢
and t' such that there is o' satisflying ¢ = ¢’ 0 6 for all
unifiers o of t and t’.

Let ¢t and ¢’ be terms such that ¢t = C[s] with a context
C[] and a non-variable term s. Suppose that s and t’ are
unifiable with a most general unifier 0. Then, C[s0] is
called a superposition of t and t'.

Let C[] be a context with » O’s and let ¢; <5 ¢} be
proofs in R for 1 < i < n. The embedding of the proofs
into C[] is the following:

C[tlthx"‘;tn]
“r Clthta, - ta]
©r Clnty, - ta]

H;} C[tllrtlzw T ,t;],

which is denoted by Clt1,---,t,] &% C[t], -, 5]

‘When we think of a pair of rules S and &, it is supposed
that S and S’ are standardized apart, i.e., the variables in
S and S’ are renamed appropriately so that S and S’ do
not share variables.

Definition 2.1  Let S : ! — rand &' : I' = ' be
rewrite rules. Rules S and S’ are nonoverlapping if there
is no superposition of ! and I’. Rules § and §’ are said
to be overlay if the superposition of | and !’ exists only
where the context C[] = 0. If S and S’ are overlay and
ro = r'o for all unifiers o of [ and !/, then S and S’
are almost nonoverlapping. A TRS R is nonoverlapping
(overlay, almost nonoverlapping) if each pair of rules in R
is nonoverlapping (overlay, almost nonoverlapping).

Definition 2.2 A term { is a linearization of a term {

if
o { is linear, and

e there is a substitution o s.t. o =t and zo € V for
alzeV.

For a rewrite rule [ — r, [ — 7 as following is called a
linearization of [ — r:

e [ is a linearization of I s.t. [o = [, and
e 7o =71,

Definition 2.3 ([Che81,dV90]) Rewrite rules S and 5’
are said to be compatible® if there exist linearizations S,
5" of S, S such that S and S’ are almost nonoverlapping.
A TRS R is compatible if each pair of rules is compatible.

Example 2.1  Combinatory logic CL can be regarded
as a TRS [Klo92]. The TRS CL-pc is the union of CL
and the following parallel-conditional rules. Cl-pc is a
compatible TRS.

SKI parallel-conditional
Szyz = zz{yz) CTzy — =z
Kzy — =z + CFzy — vy
Iz - z Czzz — =z

The aim of this paper is the proof of Chew’s theorem
[Che81).

Theorem 2.1 A compatible TRS is UN.

The proof of Lemma 6.1 in {Che81], which is essential -
for the proof of the theorem, is incomplete [vO]. It states
a correspondence between a system with markers a, 3,
and a systemn without markers. More precisely, removing
the markers in a step in the former system (by means of
the choice function ch), should give a step in the latter
system.

The induction on the length of B —% A in the proof
does not work for the distributivity rule ad. Let us con-
sider the following example:

.‘/(a(h(tllt?)l h(t-?'r t4))) a—; g(h(a(th ig),a(lg, t4))):
B A

where t; are arbitrary terms. Any way of removing the
markers (by selecting an argument via the choice function
ch), we obtain Cp = {g(h(t1,12)),9{h(t3,14))} from B and
Ca = {g(hlts, 1)), 9(h(ts, 1)), 9 (hlts, t2)), 9(h(t, )}
from A. In the induction step, it must be shown that
for each s4 € C4, there exists sy € Cg such that sg =%
s4, which is impossible in the case s4 = g(h{t;,14)) or
g{h(13,12)).

The problem would be avoided by assuming some syn-
chronization mechanism of ch. But it apparently gets
problem with o~ rule.

3 Conditional linearization and
Peak elimination

3.1 A property of compatible rewrite
rules

Definition 3.1  The set of non-common positions
NCyy of terms ¢ and t' is the set of all minimal elements
in {p|TopSym(t/p) # TopSym(t'/p)}, where TopSym(t)
is the top symbol of the term t. The common context
Ciuplloftand ' istlp«—O|pe NCiy] (Et'[p—Olp e
NCt,t‘])~

2De Vrijer's terminology [dV90] is used here. The correspond-

ing notion in Chew’s original paper is “strongly nonoverlapping and
compatible”.




Definition 3.2
fined as follows:

For terms t, t’, a relation ~;, is de-
3 ) t,

s~yp s’ iff s=t/pand s’ =1t'/p for some pe NC, vr.

Note that if s~ s, then s and s’ are subterms of ¢ and
t/, respectively.

Lemma 3.1 Let ¢, ¢ be terms without shared vari-
ables. Assume s ~;y Clu] and u ~; ¢ u’. Then uis a
ground term. 1

Lemma 3.2  Let ¢, ¢’ be unifiable terms without shared
variables. Suppose t and t’ are linear. Then, the substitu-
tion defined as below is a unifier of ¢ and t":

Oppr ={z:=5"|z ~pp S'YU{z" := 5|5~ 2" and s ¢ V}.
1

Lemma 3.3 Let S:1 — 7, § 1" = r’ be compati-
ble rewrite rules with unifiable linearizations of left-hand
sides, i.e., there exist linearizations §: [ — 7, 8/ : I! — #
of S, S respectively such that [ and I’ are unifiable and
7o = 7o for each unifier ¢ of [ and I’. Then, for all
q € NC5 w, either of the following holds:

1. 7/qg € V, and there exist a context Cg[] with m’
O’s (m' > 0), ground terms g1, -, gm and variables
zq, o, Ty in S’ st

o 7lg~ip Color, -, gmi),
o gi ~ip ), for all k, and
. F'/q = Cé[zll’ te ’Iin’]'
2. #/q € V, and there exist a context C[] with n’

O’s (n' > 0), ground terms g{,---, g, and variables

Zy, -, Tp in S s.t.

hd Cq[g’ly‘ o lg:;’] ~I ﬁ’/q»
o zx ~p g; for all k, and

o 7/qg = Cylzr, -+, zn).

Proof Since 7 and # are unifiable, 7f/g € Vor # /g€ V.
We only check the former case. Let Ci[] = 7/g{z =
O|z6;+ # z}, where ;1 is the unifier defined in lemma
3.2. Since ;s is a unifier of # and 7, there are terms
91, ,gm and variables z},---,z!,, satisfying the three
conditions. From lemma 3.1, gx are ground terms. 1

3.2 Left-right separated CTRS and con-
ditional linearization

Definition 3.3 A left-right separated conditional term
rewriting system is a finite set of conditional rewrite
rules with extra variables of the form | — r < z; =
Y1, +, Ty = Yn satisfying following conditions:

1. ! is left-linear, V(I) = {z1,---,2a},
2. V{ry S,
3. {ﬁ,"‘,zn}n{yx,“'
4.z ¢z ifi# 3

3y; = y; may hold for i # j.

:yn}n

,Un} =0, and

I — r is called the unconditional part and z; =
Y1, Tn = Yn is called the condition part of | = r <=
2] = Y1, ,Tn = Yn. In the rest of this paper, for conve-
nience:

1. A condition part is often abbreviated by @, @', etc.

2. Variables 2, -+, z, are assumed to appear in the left-
to-right order in [.

Definition 3.4

The reduction ‘Y)ﬁ.

=9,
={Cl8) Dz, Clro) [T F <o =y,

Let Rbe a left-right separated CTRS.
is inductively defined as follows:

Zn=yn € R and z;0 &ﬁ‘ y;i0}.

Then, Z’E = U;Z)a.
Proofs z;4 (3;._ y;0 are called subproofs associated with
cfin) lgm C[F9).

called trivial subproofs and we eventually denote ‘V’ﬁ, as
-
m

Subproofs of an R; reduction are

When a reduction ¢ X}ﬁ t' is done by a rewrite rule

Se 1‘%, it is also denoted by t —V)§ t'. For a reduction
cliv) —V-)ﬁ C[70), 10 is called a redex of R.

Reductions are often treated as more than a relation; we
assume a reduction in R is associated with the following
“information” implicitly:

e the rule used,
o the position, and
e the subproofs.

.. . v v .
Similarly, a rewrite proof A : 1, g 0 ©f ta s Te

garded as a hierarchical construct. Reductions ¢; +v—>§ tis1
itself are top-level components, reductions in subproofs of
them are second-level components, etc. A reduction o is
in A when a is a component of the hierarchical construct.
Also, a reduction « is called a top-level reduction if a is a
top-level component.

Definition 3.5  Tor a rewrite rule § : 1 — r, a condi-
tional linearization S : 1l — 7 <= Q is a left-right separated
conditional rewrite rule constructed as follows:

1. Tis a linearization of  s.t. o = [ and V() NV (1) = 0,
2. 7=r, and
3. add zo = z to the condition part @ for all z € V{I).

A conditional linearization R of a TRS R is a collection of
conditional linearizations of all rules in R.

Note that conditional linearizations of S are unique up
to renaming of variables in {. In the rest of this paper, R
denotes the TRS and R denotes the conditional lineariza-
tion of R.




Example 3.1 R is the conditional linearization of R.

d(z,z) — 0
R=< fly) — dv,f)

1 = f(1)
- d(rl,zg) - 0 &= o T, xy =2z
R=1{ f(wn) = dy,fy)) € n=y

1 - (1)

The following theorem appeared in [T094] with the con-
dition of non-duplicating. The expansion to the general
case is straightforward.

Theorem 3.1 ((TO94]) If Ris CR, then Ris UN.

For left-right separated conditional rewrite rules 35,
5 and § are said to be nonoverlapping (almost nonover-
lapping, overlay) if their unconditional parts are overlapp-
ing (almost nonoverlappmg, overlay). A left-right sepa-
rated CTRS R is nonoverlapping (almost nonoverlapping,
overlay) when every pair of rules in Ris nonoverlapping
(almost nonoverlappmg, overlay). A left-right separated
CTRS R is compatible if there exists a compatible TRS
R such that R is a conditional linearization of R.

Definition 3.6

s is not a redex of B for all s such that ¢ Z)ﬁ s. Atermt
is a quasi-ground normal form of R wrt ¢ € P(t) if

A term ¢ is a head normal form of R if

1. for each ¢’ < g, t/q’ is a head normal form of R, and
2. t/q is a ground normal form of R.

Lemma 3.4 Let! o F<« Q€R. Suppose R be com-
patible. Then, for each non-variable proper subterm ¢ of
{ and substxtutxon 6,19 is a head normal form of R. 1

3.3 Conditional peak elimination

Lemma 3.5 If R is a compatible TRS, then Ris an
overlay system. i

In the rest of this section, the following notations will
be established:

1. R is a compatible TRS.
2.8:0—>nr 8

3.5:1 57 8 :0" > # are ]ineari_zation_s of S and S’
s.t. fo = 7o for all unifiers o of / and .

4. §2T-—)?¢x1 =YL, T = Yn, §’Zi;——} 7',7 P
=y, ~--,:1:f,,,A= 1{;,, articon_ditional linearizations
of Sand §'st. I=land ' = /.

' s+ € R

Deﬁnition 3.7 Suppose there is a peak of the form
C["&] clis) = c[ie ] 5 C[F8]. Forpe NC,A;;, the
left connectmg proof Ap of the peak is defined as follows:
Ap = .
V> e 2 U v 19
vif & ng:c [ i0, J+J'0] <:>RC [yJ "»yJ+J'0]
1fl/p—z, and l’/p—C';[ ,-'-, JH]
 Yigirl) @R Colzib, -+, 2ipb] = 230 S JJO
iflfp=Cylzi, -, ziyir) €V and U'/p=z;

Cp [%’9 ’

where z,6 &ﬁ ykb (230 (Y};i yi0) are the sub-

proofs of C[Ib] Z)fs\ Clro) (C[IA’G] 5 Cl70]), v(i/p) =
{zi,-- - zigir} and V(U'/p) = {r;w“, AR
Definition 3.8  For a rewrite rule $:1 — 7 « z, =

Y1, B = yn, T3 is a substitution defined as follows:

7:5\={11 =Yoo T 3='.‘/n}~

Lemma 3.6  Suppose there is a peak of the form
clro) &5 clie) = cle) S5, C[F).

Then, there exits p € NG‘v;, such that 1756 Hﬁ t T§,0 is

the left connecting proof Ap

Assume 1 ~ .

Proof Definition 3.8 gives the proof. ]

Lemma 3.7  Suppose there is a peak of the form
o) &5 cliv) = cie] B4, CIF8). For g € NC:s,
either of the following holds:

1. 7/q € V, and there exist a context Cj[] with m’
O’s (m’ > 0}, ground terms gy, -, g+ a.nd variables

Yi Yy, S

o 7/g0 Z),’i Cqlgr, -+, 9m]T5, 0 is a left connecting
proof of the peak,

. g X’ii y;, 0 are left connecting proofs of the peak
for all k,

o 7/90 = Clyj, oo, y; 1750, and

. C{][gl,-~,g,,,:]7?§,0 is a quasi-ground normal
form of R wrt g% for each position g, of O in
Call-

7/q € V, and there exist a context Cy[] with n’
D s (n' > 0), ground terms g1,---, g%, and variables
Yipr Vi s.t.

o Colgl, -, 901750 (Y}E 7/q0 is a left connecting

proof of the peak,

oy, 0 Z)ﬁ gy, are left connecting proofs of the peak

for all k,
o 7/980 = Colyi,, -, 4i, /T30, and
. Cngl, g ]71() is a quasi-ground normal form

of R wrt gy for each position g of O in C ql]-

Proof We only check the former case. The first threc
conditions are satisfied by lemma 3.3, 3.6, 7 = 17'~ and
=7 7"* The last condition follows from lemma 3. 4 and

the fact that Cql91,-+, gm’] is a proper subterm of 7. ]

Definition 3.9 Suppose there is a peak of the form
Cle) &5 Cllo) = Cl6) S, C[F0). For g € NCar, the
right connectmg proof By of the peak is a proof connecting
7/q0 and 7'/q6 described in the previous lemma, i.e.,
By =
5100 T o P
7/98 &5 Color, -+ om ) T8 S5 Colth,, - 051720
1f r/q € V
v* ,
i T50 S5 Coloh, -, 9h)T50 & &5 7 /90
ifr/qg ¢ V and P /g e V.

Colyiy, -



Definition 3.10 For a proof A : 1) (‘—7}&; X’E t, in

R, a peak elimination is a transformation of A where a
peak in A, e.g., ti—; (V—E t; z)ﬁ ti41, is replaced with the
sequence defined below. If A’ is obtained from A by a
conditional peak elimination of A, we write A — A’
There are three peak elimination rules corresponding to d(f(1).1)
the relative positions of the reductions of the peak.

(PL) Two reductions of the peak occur at parallel posi-
tions. That is,
Figure 2: Rule P¢
L iy = C[s, 52), i = Cls1,59), tiv1 = Clsu, s9),
and

2. 85 z)g‘ sf,- forj=1,2.
9(t:9:9)  f(g(t,a,a),0)

/

Then, the replacement sequence is

v v
tic1 = C[SII,SQ] '—}3‘2 C{S'l,slz] (—-g‘ C[51,$’2] =tiy1,

I" ‘9{31:32»32)
where the subproofs are not modified. 7 ! =7
! }9(317‘5‘21 ) *
(P<) Two reductions of the peak are nesting. Suppose £ 9(syaa) +
tio1 (zﬁ 1; occurs below t; -3&; tit+1. That is, g(t,a,a) %
1.t = 02[82[01[3'1]]], t = 02[82[01[51]]], tip1 =
Calsd), Figure 3: Rule P¢
2. sg[Cl[sl]] —¥g, s5 with a subproof C\ [s1] *Y*R u,
and

3 s (_ Example 3.2 Let R be that in example 3.1. Suppose
. § a S1.
Ls 1 HR s and ¢ (—)n s. Then, there is a peak of the form

Then the replacement sequence is d{f(1),1) (——E d(1,t) 5. 7 0, where the left-oriented reduc-
tion is by the third rule, and the right-oriented reduction

— m Y -
tio1 = Cyfs2[Ca[s1]]] -3, Calsh] = tiga, by the first rule. By Pq, it is replaced with d(f(1),t) —>A 0

as shown in Figure 2.

. . v V.. ~
which has a modified subproof Cy[s}] <5 Cils:] &7 Example 3.3 Let R be the following:

v v
u. If t;_1 ¢4 t; occurs above t; =4 t;41, then the re-
LTRY PURTHD (flzi,a) oy =2 =1,
: f(g(21,a,0),23) = g(v1, 5, v2)
ST =YLy =Y

Uy Ly

p}acement sequence is ¢;_1 (V_ﬁ ti+1, which is defined R=
similarly.

(Pc) Two reductions of the peak overlap. In this case, the
peak is called a critical peak. Since Ris overlay by . v v
lemma 3.5, the reductions occur at the same position there is a peak of the form s; g f(g(t’.a’a)’a) 5
in t;. That is, g(sh,sh,sh). By Pe, it is replaced with s, Z’fi g(sh, 55, 5)

(which itself is the right connectmg proof of the peak) as

v* v* v*
Suppose t <5 s}, a &7 sy and g(t,a,a) &7 s1. Then,

~ A . . v
1. §:1 =7 <« Qis the rule used in ti_y <5 1, shown in ﬁgure 3. Here, 51 (—)R g(t,a,a) HR g(s},a,a)

- v
2. 5" :7 7 ¢ @ is the rule used in ¢; 'Y’ﬁ tiils and a ©R 4 are left connecting proofs. Note _t,hat
N R g(st,a,a) is a quasi-ground normal form wrt p; and wrt
3. t; = Cllo] = Cll'o}, tie1 = C[Fo] and tiz1 = po, where p; are the positions of @’ in g(t,al,a?).

Clral. . : o
Definition 3.11 A rewrite proof in R is a proof of the
. v v, v v
Then the replacement sequence is formi; =5 =gt &5 R tn
v L a 3.8  Let R be compatible.
ClCsplsr, sl &7 ClCplsty sl Lewm be comp
tio1 tip1 1. Let A) be a proof in R. If a peak elimination process
A+ Ay - terminates at A, then A, is a rewrite
where C~r, is the common context of 7 and 7, and proof in R.
v . .
sj €*q s; are right connecting proofs of the peak. 2. If a peak climination process Ay = Ag = -+ termi-
nates for every proof A; in R, then Ris CR. I



4 Independence of reductions

4.1 Flattening and independence

In this section, the notion of independence is introduced.
Independence is first defined for reductions in a proof in
Ri. Then, it is lifted up to any proof in R by flattening.

Lemma 4.1  For each non-ﬁl reduction ¢ —Y-;E t', there

is a proof t = Cfs1, -+, 5m] 4‘-7?,’,? Clst, - -

| =7, t!
satisfying

.
v
1. s &ﬁ s; are the subproofs of ¢ =+ t', and

2. in the reduction C[s},--,sh,] 3, V') the same rule

. " .,
is used at the same position as in 1 =5 t.

Proof
rewrite rule for the reduction ¢ z)ﬁ t,i=C'l0)and t' =
C'[r6). Let C"[] be a context such that C"[zy, -, zm] =
1. Then, the result follows by setting C[] = C'[C"[]]. 1

Letl = r <z = y;, -, 2m = Ym be the

Definition 4.1  For a non—fil reduction ¢ E)ﬁ t', the
proof t = Clsy, -, sm] \tv‘;ﬁ Clsy, ysm] —rg, ¢ de-

scribed in lemma 4.1 is called the flattening of ¢ —V>§ t.

The flattening of a proof A4 : ¢; &E &ﬁ i, at the i-th

non-R; reduction is obtained by replacing o : ¢; X)ﬁ tiv1
with its flattening.

Lemma 4.2 When a flattening operation is regarded
as a reduction on the set of proofs, there exists a unique
normal forms for each proof A. The normal form is called
the flat proof of A and is denoted by 4.

Proof Since flattening operation is WCR and SN, it
is CR. 1

Note that A® contains only R; reductions.

Definition 4.2  The notations are the same as those
used in lemma 4.1. The mapping flat is a bijection from
reductions in A to ones in its flattening as follows:

1. If a is the top-level reduction ¢ z}ﬁ t', then flat(a)
is Clsi, -+ -, sh,) g 1

2. If o is in the i-th subproof s; (‘—7)}3 s, flat(a)
is the corresponding reduction in C{---, s, -] Z)ﬁ

C["'»S:'v"']‘

For a reduction o in A4, ® in A’ is obtained by repeated
applications of flat.

Example 4.1  Let R be that in example 3.1. Let Abea

one-step proof of the form A : d(d(1, f(1)),1) —Yyﬁ 0 with

subproofs d(1, f(1)) 7, f(1) and 1 -3, F(1). In this

case, applying a flattening operation to A, we obtain A’ :

d(d(1, (1), 1) 5, d(7(1),1) =5 d7(1),£(1)) =5, 0
as in figure 4.

d(L,f(1)) == (1)
1/ (1)

d(d(l)f(l))>l) 7“),—%_—‘_\‘? 0

/ gl ‘\: ——
<L a(r(),1) b d(i),H1) B 0

.

d(d(1,1(1)),1)

Figure 4: Flattening

Lemma 4.3 Let A:t —Y)E t’ be a one-step proof where

the position of the reduction is p, and let A® 12 =1; ¢35

Ry
C Py tn 5 t'. For all ¢ < n, there is a reduction
1 1
it X}IQ ' satisfying p(a) = p. i

Definition 4.3

in ﬁl, and let oy
say 1y is between

Let Ay : 1 (——)El s

Suppose that i < j. We

t, be a proof
1

H HEI i,‘+1.

t; and t; (or t; andt;) when i<k <j,
a; and tj (or t; and o;) when i+1<k<j,
t; and aj (or aj and 1;)  when i<k <7,
o; and aj (or a; and o;) when i+ 1<k <.

A reduction ay : tx &5 k41 is between terms (or a

,
reduction and a term, or reductions) if both {5 and x4 are
between terms (or a reduction and a term, or reductions).

Definition 4.4  Let A; be a proof in ﬁl. Relations AL,
ALy, 1o and Zs on reductions a, B in A; are defined as
follows:

eall fifal;Boralsypf.
e all, gif

1. p(a) L p(B), and
2. p(7) £ A(p(e), p(B)) for all reductions y between
a and S.

o o lq B ifeither o Uy Bor § 45 .

o «a /9 B if there are a term ¢ between « and. 3, posi-
tions p € P(t) and ¢ € P(1/p) s.t.

. 1/p is a quasi-ground normal form of R owrt q,

-pla)Z2pg,

B zp

. p(y1) £ p-q for all reductions v; between a and
t, and

5. p(y2) £ p for all reductions v between ¢ and j.

O N

For a proof A in R and reductions a,8 in A, we also
write a IL B, o ULy B, o Ly fand a #Zq Bifa® 1L B,
o Ay B, o’ 1y B and o Z4 B, respectively.
Example 4.2  Let }ibe that in example 3.3. Consider
the following proof in R;:

flg(f(e,a),a,0),0)

% 9(flaa)aa)
53§ gla,a,a)

22 gla, fla,a),a)
&_’9\ g(a,f(a,a),f(a,a)),




where underlines indicate the redexes contracted. Then,
ag A a3, a3z A; a4 and a4 AL; ag. Also, a3 42 a; and
ayg Ly ay since g(f(a,a),a,a) is a quasi-ground normal
form wrt p; and p;, where p; are the positions of a’ in

9(f(a,a),al,a?).

Reductions a and 3 are independent if o L . If « AL,
B, the term ¢ in the definition of 44 is called a split of o
and B. If t is a split and ¢/p is the quasi-ground normal
form, then t/p is called the body of the split.

Definition 4.5 The notations are the same as those
used in definition 3.10. Suppose A — A’. Descendants in
A’ of reductions in A is defined as follows:

e A reduction not in the replacement sequence of the
peak is the descendant of the same reduction in A.

¢ For reductions in the replacement sequence, there are
three cases according to the peak elimination rules:

(PL) Let i : Clsi,sh] &5 Clst,shl,
Cls}, s9] Se C|s}, sh] be reductions of the re-

S3

placement sequence. 7] is the descendant of

v ¢ otie1 (251 t;. A reduction in a subproof
B of 7} is the descendant of the same reduction
in the subproof B of 4;. It is similar for the case
of v5.

v

(P<) Let 3 @ tie1 =g,

the replacement sequence, let B : Ci[s!] +V—§l

tiy1 be the reduction of

Ci[s1] &7 u be the modified subproof and let
vi be the left-most top-level reduction in B. 4
is the descendant of v A reduc-
tion in a subproof B’ of v) other than B is the
descendant of the same reduction in the subproof
B’ of 7. A reduction in B other than +{-part is
the descendant of the same reduction in the sub-
proof Ci [; s;] “’R u of ¥3. 7] is the descendant of
7 o tiey 4——~ t;. A reduction in a subproof of v}
is the same reductlon in the subproof of v;. The
dash lines in figure 2 indicates the descendants.

\4
R A -—)3:7 tiv1.

{P¢) In this case, the replacement sequence is a col-
lection of subproofs of either of the reductions
of the peak embedded into appropriate contexts.
Suppose the replacement sequence is as follows:

o
i1 ¢5 Cls] &5 Cls'] &7 tiy,

where s (Y}‘ﬁ s’ is a subproof of either of the
reductions of the peak. Then, a reduction in
Cls] (Y-)},? C[s] is a descendant of corresponding
reduction in s X%I‘E; s’. The dash lines in figure 3
indicates the descendants. Note that #;_; (Y—§ t;

and t; —) ; 1i+1 themselves have no descendant.

Moreover, for a peak elimination process A; + -+ - — A,
and reductions o; in A;, we say a, is a descendant of a)
if i1 is a descendant of a; for each 1 <7 < n.

Theorem 4.1  Let R be compatible and let 4, A’ be
proofs in R. Suppose that A — A’ and that reductions
o, B' in A’ are descendants of a, § in A, respectively.
Then, a 1. B implies o’ 1L 3.

Proof From lemma 4.9, 4.10 and 4.12 below. I

4.2 Innocent swap

In this section, it is assumed that Risa compatible left-
right separated CTRS.

Lemma 4.4 Let t be a term such that t/p is a quasi-
ground normal form wrt g. If p’ £ p and 1/p' is a redex,
thenp’ Lp-q. ]

Lemma 4.5 Let t be a term such that ¢/p is a quasi-

ground normal form wrt g. If there is a reduction « : ¢ Z’ﬁ
t' such that p(a) £ p, then t'/p is also a quasi-ground
normal form wrt q. 1

v v
Let A:ty &5 &

Lemma 4.6 t, be a proof with

R
=t es o ea

=1 oF R
34 =g, tisl be the flat proof of ¢; —)A ti+1. Suppose that

there exxst. reductions ¢, 8 in A satlsfymg

1. o 1y @,

a reduction v : t; X)A ti41, and let ¢

2. both t; and tiy; in AY are between o' and 4, and
3. there exists j s.t. z{f is a split of o® and @,

Then, t;4 is also a split of o® and 4.

Proof Let t{/p be the body of tf Since y* is between
o and B, p(v*) £ p. Thus, from lemma 4.3, 4.4, 4.5, the
result follows. 1

Lemma 4.7 Let A be a proof in R and let a, 8 be
reductions in A. Suppose that o 1, § and that ¢t is a
split of o* and B, where the body t/p is a quasi-ground
normal form wrt ¢. Assume there is a position p' > p
satisfying

1. t/p is a redex,
2. For each reduction v between ¢ and &, p(7) ¢ p, and
3. p(B) 2 p'.

Then, a 1L; G.

Proof Since {/p’ is a redex, p’ L p-q from lemma 4.4,
so p(B) L p-q. Thus, @ £y B. Hence, pla’) > p-q,
and p(y') £ p- ¢ for each reduction 7' between o’ and 1.
Moreover, p(8°) > p, and p(y) £ p’ for each reduction v
between ¢t and ﬂ}ﬂ Therefore, o 4.1 8. [

Definition 4.6 Let A
tiy &E t; and g : 1; Z}ﬁ t;1+1 be reductions

v v
il e Ot be a proof,

and let v; :
such that p(v1) L p(v2). Suppose that either vy : ¢; —Y)ﬁ
tig1 or v i tizgy (——A t; holds.

When 7, : ¢; ——)ﬁ ti41, the innocent swap of v, and v, is
a transformation that changes the order of v; and s, i.e.,
A is transformed to

v v v v v A
Aty HE."HEti‘l_’Et; H§1;+1 H?‘H-Hﬁin,




where ¥} : 1 VH;; tipr (Vb o A/ 17) 1s a reduction with

the same rule, position and subproofs as ¥; (72). In the
v . L

case vy : b 7 ti, an innocent swap is similarly defined.

For a reduction « in A, the descendant o in A’ is defined

in the same way as that of peak eliminations by P, .

Lemma 4.8  Let a, be reductions in a proof A. Sup-
pose that A’ is obtained by an innocent swap on A and
that o’ and @’ are descendants of o and 8, respectively.
Then a 1L B = o' 1L ',

Proof Let A : t; (Yyﬁ (—v-)ﬁ
innocent swap is applied to v; : #;_; & ti, 72 ¢t y}ﬁ
tiy1. Let p1 = p(71) and p2 = p(v2). Let O[] = ticilpr
0,p2 « O], ti_y = Cls1,s2), ti = C[s}, 53], and tiyy =
C[s1,55]). We divide A and A’ into the following proofs:

t,. Assume that the

V"
o Ay ity ©F tiog,
v
o Az itiy1 OF tn,

¢ By : (t,'_1 E) C[s1,52] Z’ﬁ 0[311’32] (=),

o By: (t: =) Cls}, 53] 22 Clst, sb] (= tig1),

7
o By: (tio1 =) Cls1, 2] 25 Clst, sh) (= 1),

o By :(# =) Cls1, 55] &5 Clsi, sb] (= tin1)-

Since an innocent swap preserves the positions of reduc-
tions, it follows that o AL} 8 = o 1; £

We will now prove that « ULy 8 = o' L g'.

Without loss of generality, it can be assumed that o’ is
on the “left-hand side” of A in A’. Let t be a split of o’
and A in A’, where the body t/p is a quasi-ground normal
form wrt ¢. Then, then following cases exist:

1. Both a and f are in either A;, A3, B; or Bs.
2. aisin Ay, Bisin Bj.
. aisin A, Bisin B,.
. aisin Ay, B is in Aj.
. aisin By, fisin By.

. aisin By, Bisin A,.

~N & O A W

. aisin By, B is in Aj.

Case 1. This is obvious.

Case 2. If the split ¢ is in A%, then it is obvious. If the
split ¢ is in B}, then ¢’ = ¢[p; + s3] in B}’ is a split of o
and ﬂ’b from lemma 4.5. Thus, o’ L, §.

Case 8. 1If the split ¢ is in A%, then it is obvious. If the
split ¢ is in either B} or Bb, t/ps is a redex by lemma 4.3.
For all reductions y between ¢ and 8, p(7) £ pa since v
is in either B} or BS. Suppose ps > p. Then, o 1, B
from lemma 4.7 so o’ 1L, 8. Next, suppose ps ¥ p. Since
p2 < p(f*) and p < p(B'), p2 < p. Hence, t[p1 « s1] in
Bj is a split of o” and g". Therefore, o’ 1L 4.

Case 4. If the split ¢ is in either A} or A}, then it is
obvious. If the split ¢ is in BY, then t[p; « s}) in B}’ is

asphv of o and 8° Srom lerma 65, 1 the SPL 138 I
ng, then ¢;1; is also a split of &® and 8 from lemma 4.6.
Thus, t;41 is a split of o’ and B”. Therefore, o’ 1Ly .
Case 5. Since p(a®) > p1, p(8*) > pa and py L pa, o' AL,
B

Case 6. 1f the split ¢ is in A%, then it is obvious. Assume
that the split ¢ is in B}. Since p < p(a*) and p; < pat),
p £ p1. Thus, ps £ p from the assumption p; L po.
Hence, t[p2 + s4] in B is a split of o”’ and §" from
lemma 4.5. Next, assume the split ¢ is in Bg. Then t;4;
is also a split of o’ and B from lemma 4.6. Therefore,
o Ay ﬁ’.

Case 7. 1If the split ¢ is in A%, then it is obvious. If the
split ¢ is in B, then ¢;;, in Al is also a split of o’ and
B* from lemma 4.6. Thus, t;4 is a split of o and ﬁ’b.
Therefore, o 1o #'. ]

Example 4.3 Let R = {9(z",¢') = f(z,y) & z' =
z,y" =y, a — b}. Consider the following proofs:

A:g(a,b) Bz f(a,0) &5 fla,a) Bz f(5,a) 5 g(b,a),

‘. v v v v
Az gla,b) =5 fla,b) =5 f(b,b) &5 f(ba) &5 g(b,a).
v
Let 71 : f(a,6) &5 f(a,a) and v : f(a,a) Dp f(b,a).
Then, an innocent swap of y; for v in A produces A,
whose descendants are v} : f(b,) (Zﬁ f(b,a) and 74 :
v
fla,b) =5 f(b,b).

Note that a swap of v4 for 7| in A’ produces A, but
that this does not preserve independence though p(y4) L
p(71)- In fact, it is not an innocent swap. Let us consider
a : g(a,b) Vﬁ fla,b), B+ f(b,a) (Y—ﬁ g(b,a) in A, and
the corresponding reductions o', §’ in A’. Then, o’ 1L, '
since f(b,b) is a split, while o Ao 3.

4.3 Proof of theorem 4.1

In this section, it is assumed that R is a compatible left-
right separated CTRS.

Lemma 4.9  Let A, A’ be proofs in R such that A By
A’. Let reductions o/, 8" in A’ be descendants of a, fin
A Thena d 8= o 4 3.

Proof From lemma 4.8. 1

Lemma 4.10 Let A, A’ be proofs in R such that 4 3‘3
A’. Let reductions o', ' in A’ be descendants of o, Bin
A. Thenald 8= o 1L G

Proof Let ¢;_ F_‘E t; X)ﬁ ti+1 be the peak in A :
1 X»ﬁ X)ﬁ tn which P¢ is applied to. Let | — r «
Ty = Y1, ,Tm = Ym be the rule for the reduction vy :

ti z’,’g tiy1, where ¢; = C[l6] and t;4) = C[rf]. Suppose
Y1 tica Xﬁ t; occurs below the j-th substitution part of

72 and that 4§ : ¢;. A ti41 is the replace sequence for
the peak. Then, the flattening of A at v3 is

v vioiov
SRt ef

fA - SR

o~

v — 40 v i1
i-1 &5 t; = i ©OR 1

v v
o OR Satig e,



* .
where t:-"‘l (Y)ﬁ t¥ corresponds to the subproof zxf (Y);g
yid of 2, and the ﬂat.tening of A’ at v is

- . g
 Bn e Bttt Tt S S

fA’Z-'-t,'_lEt?_ , R

v onV
Rttt _*;Eti+1"‘;

where tf_; = tf[p(m1) « ti-1/p(11)]:

Thus, fA’ is obtained from fA by repeated applica-
tions of innocent swaps to flat(y1), 71 (a descendant of
flat(m)), v# (a descendant of 4}), - -+ with their right ad-
jacent reductlons smce p() L p(flat(y1)) for each reduc-
tion v in t0 HR HR ti~!. From lemma 4.2 and lemma
4.8, mdependence is preserved The proof is similar when
v1 occurs above 7a. 1

Lemma 4.11  Let t; (—ﬁ t -—)A t, be a critical peak and
let A, be a left connecting proof of the peak. Suppose «,
7 are reductions in subproofs of either of reductions of the
peak such that the corresponding reductions, denoted by
@p, By, are in Ap. Then o IL § = ap AL By

v

Proof Suppose Ap is of the form & H}z s =
Cp[ul,u ,Un) <=>R Cplul, -+, up], where s H;z s and
u; pApS # uf are subproofs. There are following cases:
1. Both @, and B, are in either s’ Hﬁ s or
Cyl-+ - iy -] &%cy[..,,u;'...],
2. ap is in c,,[ ] &% Gyl ulye ], By s in
Cpl-e+yu ]HRCP[ j:"'] and 7 # j.
3. ap is in &' (Y);; 5 and B, is in Gy~ ,ui,- -] Z)}z
Cpl---,uf, -] (or vice versa).
In case 1, it is obvious. In case 2, ap ALy fp. The flat

proofs of reductions of the peak can be written as follow-
ing:
t 4, - SR Gl S5 Cils] Bt

-

t 8% CalCylur, -, un)) &7 Co

Note that the positions of O in both C1{] and Ca[] are p.
Let p' be the position of reduchons of the peak. Then, for
all reductions v in Ci[s] HR tort HR Ca[Cplug, -+, uall,

p(7) L p' - p from the definition of flattening. Therefore
the result follows in case 3. The proof is similar when Ap is

of the form Cplsy,---,s ]4:»5 104 [s1,--,sa] = u (-);;u. 1
Lemma 4.12  Let A, A’ be a proof in R such that A 7%
A’. If reductions a, B in A have descendants o/, ' in A,
thenaJ.Lﬁ:%a’_lLﬁ’.
Proof Let A: 1 (—)ﬁ . (—Mt and t;_1 (—Rt —)
tig1 be the critical peak ehmmated in A A, Let v :
tios S5ti, v 1 ti 2gtipr and P = p(y1) = p(72):
Wxthout loss of generahty, it can be assumed that o’
is on the “left-hand side” of 8 in A’. We divide A into
following proofs:

v
e A ity ©R ti—1,

v*
o Ay :tip1 R i,

v
L] 31 tioa (-‘ﬁ ti,

e By t; 35 tip1-

Let B : ;-1 &E ti+1 be the replacement sequence for
the critical peak. Note that for each reduction v in B,
p(7) > p'. Then, the following cases exist:

1. Both @ and g are either A; or Aq.
2. aisin A; and fis in As.
3. « and B are in either B or Bs.

4. o is in A; and @ is in either By or Bs (or, a is in
either By or By and 8 is in Asa).

Case 1. This is obvious.
Case 2. Since p(y) > p' for each reduction v in B, it
follows that o 1L, 8 = o 1l; . Assume that o Ly 8
and tis asplit of o* and #*. If tisin B, then t;_1 is also
a split from lemma 4.6. If ¢ is in B%, ti41 is also a split
from lemma 4.6. Thus, we can assume that t is in either
A% or AY. Since p(y) > p' for each reduction y in B it
follows that o' Ao 3.
Case 8. Recall that B is a collection of the right connect-
ing proofs B, of the peak. Suppose &', §' are in Bq part,
Bg-part of B respecuvely If ¢ # ¢', then o/ 1, A"
Hence, suppose ¢ = ¢’. Again, recall that Bq is a collec-
tion of left connecting proofs. Suppose By is as follows:

v* v

s & Clor, -, gm] ©F Clur, - uml,
where A, : s Z)ﬁ Clgt,-++,g9m] and Ay,
Cl,9i, ) (Y)ﬁ C[ -+, u;,- -] are left connecting proofs.

If o (or ﬁ’) is in A,-part and §' (or a’) is in Ay;-
part, then o 1y @' by lemma 3.7. If o, § are in
Ay;-part, Ay;-part respectively such that ¢ ;ﬁ 7, then
o JLI (. The remaining case is both o' and §' are in
either A,-part or Ay -part, and the result follows from
lemma 4.11. The proof is similar when By is of the form
Clsr,+52] S5 Clon,+100] SR w.
Case 4. From symmetry, we can assume that « is in A,
and that B is in either By or By. If § is either v, or
72, B’ does not exist. Thus, 8 is in a subproof of 7, or
. Suppose « ALy B. Then, p(y) £ /\ (a*),p') for each
reduct.xon v between o and t;_; since 7} is between o’ and
B, and p’ < p(8*). Since p(y') > p' for each reduction 5
in B’b, it follows that o’ g 4.

Assume that o Lo B and that ¢ is a split of o® and
8", where the body t/p is a quasi-ground normal form
wrt g. If ¢ is in Al, then o I, B since p(y') > p' for
each reductlon ¥ in BS. Suppose tis in either B} or BY.
Since 4! is between a" and 1, p' £ p. Also, p’ L p since
p < p(f) and p < p(B"). Hence, p’ > p, so o 1Ly f§ from
lemma 4.7. Thus, o' 1Ly £'. 1
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Figure 5: Descendant tree

5 Church-Rosser property of R

Let R be a compatible TRS, and let Tt be the conditional
linearization. Assume that 4! : t; X}ﬁ ‘Y*ﬁ t, is an

arbitrary proof in R and that A' = A% ~ .- is an arbi-
trary peak elimination process. The following section will
show that the process A' = A? —+ - terminates. This
implies that CR holds for R by lemma 3.8.

Definition 5.1  The initial labeling on each reduction
in A* for i = 1,2, -- is defined as follows:

1. The set of initial labels is {{a] | is in A'}.
2. Each reduction « in A! is labeled [a].

3. For each reduction § in A’ for i > 2, B is labeled [a]
if B is a descendant of o in A?l.

Definition 5.2 Let a be a reduction in A'. The de-
scendant tree Tiq) is an edge-labeled tree defined as fol-
lows:

1. The root vertex is the reduction « in AL,

2. Let o’ in A’ be a vertex of Tia)- Suppose that there
are k > i, Bk, v, satisfying following conditions:
(a) In A% s A¥*1 Po s applied.

(b) Bk is in a subproof of a reduction v, of the peak
eliminated in A% 1+ A¥+1.

(c) Bk is a descendant of o'.

Let kg be the lowest value satisfying such conditions.
Then, all the descendants 3%,---, @, in A¥ot! of By,
are the child vertices of o’. The label of the edges
(!, B}) is the initial label of vk, e.g. [7] (figure 5).

Note that all vertices in Tj, are labeled with [a].
We classify Pc into the following:

(PL) The replacement sequence is empty.

(P?;) The replacement sequence is not empty.

Lemma 5.1 Suppose PZ is applied in A — A™*L
Then, there are a reduction £ in A and a descendant
tree Tjq) such that § is a vertex of T4} 1

Lemma 5.2  Suppose « is in a subproof of 8. Then,

a LS.

Proof  Since p(a’) > p(B’), @ L1 8. Suppose there is a
split ¢ of o® and (', where the body t/p is 2 quasi-ground
normal form wrt ¢. Then, p(8*) L p- ¢ from lemma 4.3
and 4.4. Also, p(a®) L p- g since p(e®) > p(8'). This
contradicts to the definition of dl,. 1

Lemma 5.3 Let A be a proof in R with reductions a
and 8. If o UL B and 8 is in a subproof of 3, then o L. 3.

Proof Suppose that @’ is between o and ,B'b. It is
obvious that o 1 § = o d; . If @ Ao B, then any
split ¢ of o® and B° is also a split of o* and ﬂ/b.

Next, suppose that 8" is between o and 8. It is ob-
vious that o 1Ly # = o 1 B’. Suppose a Uy § and tis
a split of @ and 3, where the body t/p is a quasi-ground
normal form wrt ¢. The result is obvious when ¢ is be-
tween o’ and ﬁ'b. If ¢ is between 8 and 8, t/p(@) is a
redex from lemma 4.3. Thus, p(8®) L p - ¢ from lemma
4.4. Hence, p(@’) > p-¢ so a I; B. Therefore, a 1| B'.
1

Lemma 5.4 Let A, A’ be proofs such that A — A’
Suppose af, -+ -, ap, in A’ are descendants of o in A. Then,
my #ma = oy, Ao, .

Proof Notations are the same as those used in def-
inition 3.7 or lemma 3.7. It is clear that o has mul-
tiple descendants only when Pg is applied to a peak
Clro] &5 i) = C[l'6] S, C[70) in A and when
is in a subproof of either of reductions of the peak.

The replacement sequence for the peak is a collection of
right connecting proofs By. If ay,, is in Bg-part and e,
is in Bg-part such that g # ¢/, then af, A, a7, . Hence,
suppose ¢ = ¢'. Assume 7/q = y; € V. Then, By is as
follows:

vl &7 Cylor, -

v
1gm’]/T§10 “R C;[y;I P y}m,]7'§,9,

where Ap, : gk g)ﬁ y;,0 are left connecting proofs of the

peak. Note that py is the position of z}, in?. Since f/pk =
gx are ground terms, Ap, themselves are also subproofs of

Cli6] B¢, CIF).

The other left connecting proof A, yif (Y»;}‘
Cé[gl, “++,gms] 1s rewritten as follows:

0 GH 0= Cllzl0, 2 0] S5 CLi0, -yl
iV &g il = plZ;Y, y Ljgje ]©R p[y] ) » Yjjt ]

Then, 4, and 2/ ;.0 &7 Yj 140 can not originated from
the same subproof for any &, k. For Pl >pbutpe Lp,
2

. ” P
where Pat,,, 18 the position of 2} ,. in {".

It is clear Fhat subproofs a7 ;.0 Z},’i Yiyro0 are origi-
nated from different subproofs from each other. Hence,
only the following case is possible: af,, is in A,,-part and
al,, isin A, ,-part such that & # k. Then, ap,, ALy o, .

The proof is similar in the case 7/¢ g V. 1

A path of Tj, is a sequence of edges starting from the
root. A label path is the sequence of labels of edges in
a path. The set of all label paths of Tj, is denoted by
Lpathz,,,.
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Figure 6: Proof of lemma 5.5

Lemma 5.5  Let [y1], [v2],--- € Lpathr,,;. Then, (vl #
[v;] for all @ # j.

Proof Suppose [yi] = [y;] = [#] for some ¢ # j. Then,
there are descendants ay, as of a and descendants £, fa,
B3 of B as shown in figure 6, where oy (f2) is a descendant
of a1 (Bs).

Since B; and B3 are descendants of the same reduction,
By AL B3 from lemma 5.4 and theorem 4.1. Since ; isin a
subproof of f1, a1 AL B3 from lemma 5.3. Hence, as AL fo
from theorem 4.1. However, as A B3 by lemma 5.2. This
leads to a contradiction. [

Lemma 5.6  For each initial label [a], the descendant
tree Tj, is finite.

Proof From lemma 5.5, each path of Tj, has finite
length (bounded by the number of reductions in A). Since
Tia) is obviously finitely branching, Kénig’s lemma shows
that T}, is finite. I

Lemma 5.7 In the peak elimination process A! —
A? vy ..., only finitely many peak eliminations occur with
P2.

Proof From lemma 5.7 and 5.1. 'l
Definition 5.3
and let v; : ¢; (Yrﬁ tiy1. A reduction v; is right-oriented

Let B : 1y Z)ﬁ X}ﬁ t, be a proof

(left-oriented) if v : t; lﬁ tiv1 (i ti 1V—§ tit1). The
height of 4; is defined as follows:

height(v;) = #{7; | 7; is left-oriented and j < i}.
The mass of B is defined as

>

right-oriented +;

mass(B) = height(y:).

That is, the mass is the number of the tiles as shown in
figure 7.

Lemma 5.8 Let B, B’ be proofs such that B — B’
with either P, , P¢ or PL. Then, mass(B) > mass(B'). 1

Corollary 5.1  Let B; i} B; i3 B3 B . bea peak
elimination process starting from B;. If each P; is either
P, P. or P}, then the length of the process is finite. 1

Figure 7: Mass

Theorem 5.1 Any peak elimination process A!
A? s ... terminates.

Proof From corollary 5.7 and corollary 5.1. 1

Corollary 5.2  Let R be a compatible TRS and let R
be the conditional linearization of R. Then, R is CR.
Therefore, R is UN. 1
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