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A Near Optimal Parallel Algorithm for Recognizing Outerplanar Graphs
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Abstract An outerplanar graph is a graph which can be embedded in the plane so that
all vertices lie on the boundary of the exterior face. In this paper, we propose a simple
near optimal parallel algorithm for recognizing whether a given graph G is outerplanar in
O(log n) time using O(na(l,n)/logn) processors on an arbitrary-CRCW PRAM where
n is the number of vertices in G, a(l,n) is the inverse Ackermann function, which grows
extremely slowly with respect to ! and n[9] and [ = O(n). Although a near optimal
parallel algorithm for general graphs can also be obtained by combining the algorithm
in [3] with the algorithm for finding biconnected components[4][9], our algorithm uses
methods completely different from the algorithm in [3]’s and is much simpler than [3]’s.
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1 Introduction

An outerplanar graph is an undirected graph
which can be embedded in the plane in such a way
that all vertices lie on the exterior face(, see Fig.
1). A graph always denotes an undirected graph
throughout this paper, except when it is specified
to be directed. For outerplanar graphs, several ef-
ficient algorithms for solving important problems
e.g., vertex-coloring, edge-coloring, longest path,
are known [9][5]. Furthermore, it is well-known that
a given graph is outerplanar if and only if a given
graph has page number one, where graph G has

page number one if there exists a linear arrange-

ment of vertices so that no pair of edges is crossing

when they are drawn on the same side of the linear
arrangement of the vertices [13][11]. The problem
of deciding whether a given graph has page num-
ber one is the special case of the book embedding,
whose application to fault-tolerant VLSI design is
described e.g., in the introduction of [13]. Thus,
it is useful to develop efficient algorithms for rec-
ognizing whether a given graph is outerplanar or
not.

Mitchell [10] proposed an O(n) sequential algo-
rithm for recognizing outerplanar graphs where n
is the number of vertices in G. The sequential al-
gorithm removes a vertex v satisfying some proper-
ties from a given graph G step by step, and cannot
straightforwardly be applied to develop an efficient
parallel algorithm. Diks, Hagerup and Rytter {3]
developed a parallel algorithm for recognizing out-
erplanar graphs. When an input graph is bicon-
nected, the algorithm [3] runs in O(logn) time us-
ing O(n/logn) processors on a CRCW PRAM
(, see e.g., [8]), where n is the number of vertices

in G. However, when an input graph is a general

graph, we need to find biconnected components be-
fore applying the algorithm [3] to each biconnected
component. The best known parallel algorithm for
finding biconnected components runs in O(logn)
time using O((n + m)a(m, n)/logn) processors on
the arbitrary-CRCW PRAM [4] [9] where m is the
number of edges and a(m,n) is the inverse Acker-
mann function, which grows extremely slowly with
respect to m and n [9]. T The arbitrary-CRCW
PRAM is defined by the property that when sev-
eral processors try to write to the same memory
cell in the same step, then exactly one of them
succeeds [8]. As outerplanar graphs have at most
2n — 3 edges [10], by checking this fact first, we can
find biconnected components in O(logn) time us-
ing O(no(l,n)/logn) processors on the arbitrary-
CRCW PRAM where | = O(nr). Thus, the al-
gorithm [3] combined with the algorithm for find-
ing biconnected components [4] [9] takes, in total,
O(logn) time using O(na(l, n)/logn) processors on
the arbitrary-CRCW PRAM, when applied to gen-
eral graphs. Similarly, on a CREW PRAM(, see
e.g., [8]), the complexity of parallel algorithm [3]
is dominated by finding biconnected components,
when applied to general graphs.

In this paper, we present a simple near opti-
mal parallel algorithm for recognizing outerplanar
graphs in O(logn) time using O(na(l,n)/logn)
processors on the arbitrary-CRCW PRAM, in
the sense that O(logn) x O(na(l,n)/logn) =
O(na(l,n)) is almost linear with respect to n. Al-

though a near optimal parallel algorithm for gen-

tIf the class of input graphs is linearly contractible graph

class [7] such as the class of planar graphs, an optimal paral-

lel algorithm for finding biconnected components that runs in
O(log n) time using O(n/log n) processors on the arbitrary-
CRCW PRAM exists [7]. However, this algorithm does not
work for general graphs.
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eral graphs can also be obtained by combining the
algorithm in [3] with the algorithm in [4] [9], our
algorithm uses methods completely different from
the algorithm in [3]’s, e.g., the well known st-

numbering, and is much simpler than [3]’s.

2 Definitions

Given an undirected connected graph G =
(V,E) having no multiple edges. A path P
from vy to v in G is a finite non-null se-
quence vg, €1, v, €2,V , €k, Uk, Vi € V, & =
0,1,--+,k, ¢; € E, j = 1,2,--+,k, such that, for
1 < i < k, the end vertices of e; are v;—; and v;,
respectively. If vg = vg, then path P is a circuit.

A biconnected graph G is a connected graph
which has no vertex v such that G — v (the graph
obtained by removing v from G) has at least two
connected components. A biconnected outerplanar
graph has a planar embedding consisting of a cir-
cuit bounding the exterior face, where (possibly) a
number of non-crossing edges are embedded within
the interior region of this circuit [5]. Edges on the
boundarby of the exterior face are called sides, while
the other edges are called diagonals [5].

Next, we describe the st-numbering used in our
parallel algorithm.
Definition 1 [12] An st-numbering is a one-to-
one function f from V to {1,---,n} satisfying the
following two conditions :

(i) £(s) = 1 and £(t) =,

(i) for each v € V — {s,t}, there exist adjacent
vertices v; and v such that f(v1) < f(v) < f(v2).

Fig. 2 illustrates st-numbering. = The st-
numbering is used as an indispensable component

in several algorithms [12]. We have the following

theorem.

Theorem 1 [12] A graph G is biconnected if and
only if it has an st-numbering by letting s = u and

t = v for each edge (u,v).

(Note 2.1) If graph G is biconnected, its st-
numbering can be obtained in O(logn) time us-
ing O({n+m)a(m,n)/logn) processors [4] where n
(resp., m) is the number of vertices (resp., edges) in

G and a(m,n) is the inverse Ackermann function.

3 The Parallel Algorithm

We first assume that the given graph G is bi-
connected. We shall describe how to treat general
graphs at the end of this section. The following

theorems characterize outerplanar graphs.

Theorem 2 [6] Given graph G = (V,E), G is
outerplanar if and only if G has no subgraph homeo-
morphic to either K4 or Ko 3, where K4 is the com-
plete graph on four vertices and Ko 3 is the graph
illustrated in Fig. 8. O

Theorem 3 [10] An outerplanar graph G with
n(> 3) vertices has
(i) at most 2n — 3 edges,

(i) at least two vertices of degree 2. O

Our parallel algorithm first checks, based on The-
orem 3, if G has at most 2n — 3 edges and at
least two vertices of degree 2. Then, this algorithm
chooses a vertex v of degree 2 and a vertex v’ in-
cident to v; regards v (resp., v’) as s (resp., t) and
finds st-numbering of G. Note that, by Note 2.1
just after Theorem 1, we can find st-numbering of
G because G is assumed to be biconnected. ‘When
G is outerplanar, exactly one Hamiltonian circuit

always exists in G, and the edges constructing the
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Hamiltonian circuit can be regarded as sides of the
outerplanar graph [2][5]. Consequently, the above
process finds the sides by the following lemma. In
the following, suppose that the vertices in G are
numbered from 1 to n by st-numbering where s is
a vertex of degree 2 and t is a vertex incident to
s and each vertex in G is identified with its vertex

number.

Lemma 1 IfG zs outerplanar, then all edges

(i,i+1), i=1,---,n—1, are in G.

(proof) We shall show that, if G does not have some
edge among (i,i+1), ¢ =1,---,n—1, then G is not
outerplanar. Assume that vertex i is not incident to
vertex i+1. By the definition of st-numbering, each
vertex z, £ = 2,---,n — 1, must be incident to a
vertex whose number is less than z and to a vertex
whose number is more than z, respectively. By this
fact and the connectivity of G, G has simple path
Py = i,j1,J2, »dns (I > 1) where i > j; >
j2 >+ > j1 > 1(= s). Vertex 1 (=s) is adjacent to
exactly two vertices n (= t) and 2 by definition, so
ji of P; , must be 2 (, see Fig. 4). Similarly, for i+1,
simple path Piy1s =i+ 1,45, 542 dn s (2 1)
where i +1 > j} > j4 > --- > 2(= jj) > (= 9)
exists.

Moreover, by the fact that each vertex z, ¢ =
2,-++,n — 1, must be incident to the vertex whose
number is more than z, G has simple paths P;; =
i,k1, ko, -
and Py1s =i+ 1,k0, Kk, -

.,t, where i < ky < kg < -+ < t(= n),
,t, where i+ 1 < kf <
k<. <t(=n).

Sincet > -+ > ks >k >i>51>7J2> >
ji > 1(= s), Pt and P;, share no vertex except
i. Similarly, P;; and P15, Pip1t and P s, Py
and P,y , share no vertex except 7, 1+ 1. G*, con-

structed by P, Pit1,5, Pit and Piy1,, has a sub-

graph homeomorphic to Ka3 (, see Fig 4). Hence,
G is not outerplanar by Theorem 2, which however
contradicts the assumption that G is outerplanar.
Thus we have shown that if G is outerplanar, then

G has all edges (3,i+1), ¢=1,---,n—1. 0O

By Lemma 1, if at least one edge among (4,7 +
1), i =1,--+,n — 1, does not exist in G, then the
algorithm stops since G is not outerplanar, other-
wise the edges (i,i+1), i =1,---,n—1, and (n,1)
construct a Hamiltonian circuit C'. We regard the
edges constructing C' as sides of the outerplanar
graph. (Note that if G is outerplanar, Hamiltonian
circuit C is unique [5]. )

We assume that C is embedded in the plane so
that each edge of C bound the exterior face and the
edges of G—~C (G—C denotes the graph obtained by
removing edges of C from G) are embedded within
the interior region of C. The edges of G — C are
called diagonals of G. If the diagonals do not in-
tersect each other on such embedded edges, then G
is outerplanar, otherwise G is not outerplanar.

To see this, we execute the following process.
Hereafter, we identify each vertex with its vertex
number assigned by st-numbering.

Let M (), i = 1, ---, n, be an array such that
M(i) contains vertex jo where jo = min{ j | j is
the endpoint of diagonals adjacent to ¢ }. If there
is no diagonal incident to ¢, M(i) has a value +o0
where +00 is a sufficiently large number satisfying
+00 > n. For each diagonal (z,y) such that z <y,
we execute val(z,y) + min{ M) |z <i<y}
and regard val(z,y) as the value of diagonal (z,y).
On the value val(z,y) for each diagonal (z,y), we

obtain the following lemma.
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Lemma 2  Assume that Hamiltonian circuit C is
embedded in the plane so that each edge of C' bounds
the ezterior face and diagonals are embedded within
the interior region of C.

The diagonals intersect each other if and only if
there is a diagonal (z,y), where z < y, such that

the value val(z,y) is less than vertex number z.

(proof) (=) Assume that there is a pair of diago-
nals which intersect each other. Let (z,y), (z',¥'),
where z < y, ' <y’ and =’ < z, be a pair of inter-
secting diagonals. As these two diagonals intersect
each other, vertex y’ satisfies ¢ < ¥’ < y and is
adjacent to diagonal (z,y') where 2’ < z (See Fig.
6(a)). Hence, val(z,y) = min{ M(i) | z < ¢ <
¥y} <z

(<) Assume that no diagonals intersect each
other. Since no diagonals intersect each other, each
vertex j adjacent to vertex ¢, where z < 7 < y,
satisfies # < j < y for each diagonal (z,y) where
6(b)).

min{ M(?) |z <i<y} >z O

z < y (See Fig. Hence, val(z,y) =

In the following, we introduce Procedure Recog-
nition for recognizing whether a given graph is out-

erplanar.

Procedure Recognition

begin

(Step 1) if m > 2n — 3,
then print “G is not outerplanar” and
stop.

(Step2) if G does not have at least two vertices of

degree 2,

then print “G is not outerplanar” and stop.
(Step 3) Choose a vertex v of degree 2 and a vertex

v’ incident to v; regard v and v’ as s and ¢,
respectively, and find an st-numbering of G

[12]{4].

(Step4) if G does not have at least one edge among
(¢i+1) for all i, 1 < i < n— 1, where
1,4+ 1 are the vertex numbers assigned by

Step 3,
then print “G is not outerplanar” and stop.
(Step 5) For each vertexi,i=1, ---, n,

M (%) + min{ j | j is the endpoint of
diagonals adjacent to 7 }.
{Step 6) For each diagonal e; = (z,y) where z < y,
val(zr,y) + min{ M) |z <i<y}
(Step 7) if there is a diagonal (z,y), where z < y,

such that val(z,y) < z,
then print “G is not outerplanar”,

else print “G is outerplanar”.
end. O

The correctness of Procedure Recognition is ob-
vious by Theorem 3 and Lemmas 1 and 2. We then
analyze the computation time and the number of
processors required.

The complexity analysis is done under the as-
sumption that each vertex of the input graph G
has a pointer to its predefined adjacency list, that
is, for each vertex v € V, the vertices adjacent
to vertex v are given in a liked list, say, L[v] =
(u1, u2, -+, ug), in some order, where d is the
degree of v (Fig. 5(a)). Recall that the arbitrary-
CRCW PRAM is used as a parallel computation
model in this paper.

The list ranking algorithm [8] can handle steps
1, 2 in O(logn) time using O(n/ logn) processors.

Note that m = O(n) in the following analysis, as
steps 3-7 are executed only when m < 2n - 3 by
step 1.

The parallel algorithm for finding st-numbering
runs in O (log n) time using O((n+m)a(m,n)/ logn)
processors [4] where n (resp., m) is the number of
vertices (resp., edges) in input graphs and a(m,n)
is the inverse Ackermann function. Thus, in step
3, finding st-numbering of G requires O(logn)

time using O(na(l,n)/log n) processors where [ =
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O(n).

After finding the st-numbering, each of the initial
vertex numbers in the adjacency lists L[i]’s is re-
placed by its number assigned by the st-numbering.
For this process, we first transform the adjacency
lists L[4]’s into a linked list L’ as follows. Let a ver-
tex u’, be the last element in the adjacency list L[4]
of vertex 7 and a vertex u’i‘"l the first element in
L[i+ 1]. Each vertex ), has a pointer to u{*?, for
t=1, .-+, n—1, (See Fig. 5(b)). We then convert
the linked list L’ into an array A by applying the
list ranking algorithm [8] which runs in O(logn)
time using O(n/logn) processors. And we replace
each of the initial vertex numbers by its number as-
signed by st-numbering using a standard technique
used to implement Brent’s scheduling principle[5][8]
as follows. Partition elements of A into equal-sized
blocks F;, i = 1, ---, |A|/logn, where each size
is O(log n). Treat each block F; separately, and se-
quentially replace each of the initial vertex numbers
belonging to block E; by its number assigned by
st-numbering. ‘This process runs in O(logn) time
using O(n/log n) processors.

Step 4 runs in O(logn) time using O(n/logn)

processors by applying Brent’s scheduling principle[5][8]

stated in step 3.

Let Ak, k'], 1 < k < k' < |A|(= O(n)) be an
interval between k£ and &’ in A. Note that the ele-
ments in A are numbers assigned by st-numbering.
As the degree of each vertex is found in step 2, we
can recognize the vertices adjacent to vertex v as
the element in interval Alk, k' where 1 <k < k' <
|A|. For example, assume that d; is the degree of
vertex i, the vertices adjacent to vertex 1 are the
elements in A[1, d;], the vertices adjacent to vertex

2 are the elements in A[d; 4 1,d; + d2], and so on.

(Note: Given the degree of each vertex, the inter-
vals in A corresponding to vertexifori =1, ---, n,
are found in O(logn) time using O(n/logn) pro-
cessors by applying prefix-sums algorithm [8]. )
Hence, in step 5, finding each minimum vertex num-
ber adjacent to vertex ¢ for ¢ = 1, ---, n, can
be done by computing the minimum of interval
in A corresponding to vertex i. As described in
[8](pp. 131-136), after executing a preprocessing
algorithm (ALGORITHM 3.8 in [8]) which runs in
O(logn) time using O(n/logn) processors, we can
compute the minimum Ay;,[k;, £] of A[k;, k}], that
is, min{A(k;), A(k; + 1), ---, A(k)}, where 1 <
ki < k! <|A|, in O(1) time using O(1) processors.
We need to compute the minimum Ay,.[k:, k]’s
corresponding to vertex ¢, ¢ = 1, -+, n. Hence,
by Brent’s scheduling principle[5][8], we can com-
pute the minimum A, [k, k]’s fori =1, ---, n,
in O(logn) time using O(n/logn) processors. The
total complexity in step 5 is O(logn) time using
O(n/logn) processors.

In step 6, we compute min{ M(3) |z < i<y},
where < y, for each diagonal e; = (z,y), j =
1, -+, k(= O(n)). Since this process is equivalent
to the process described in step 5, this can be done
in O(logn) time using O(n/logn) processors.

Step 7 takes O(log n) time using O(n/logn) pro-

Cessors.

Having assumed that the input graph G is a bi-
connected graph so far, we shall describe, before
closing this section, how to decide whether G is out-
erplanar when G is a general graph. We first check
if G has at most 2n — 3 edges. We next find bicon-
nected components, that is, blocks By, By, ---, B}

of G by applying the algorithm of finding bicon-
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nected components in {4] [9], which runs in O(log n)
time using O(na(l,n)/logn) processors. If G is
outerplanar, then each of blocks By, By,---,Bg is
also outerplanar [2]. Thus, we independently exe-
cute Procedure Recognition for each of these blocks
By, B,, -, By. If a block B; is an edge, then Proce-
dure Recognition tells that B; is outerplanar. When
each block B;, 1 = 1,---,k, is outerplanar, we
print “G is outerplanar” and stop. By the above-
mentioned statements, we have the following theo-

rem.

Theorem 4 Given a graph G with n vertices
and m edges, whether G is outerplanar or not can
be decided in O(logn) time using O(na(l,n)/logn)
processors on the arbitrary-CRCW PRAM where
a(l,n) is the inverse Ackermann function, which
gmivs eztremely slowly with respect to | and n [9]

and! = O(n). O
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