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Abstract
This paper proves the Kruskal-type theorem with gap-condition (4 la
Friedman) on infinite trees (w-trees). As an application, it also proposes
a termination criteria, named simple gap termination, for term graph
rewriting systems (on possibly cyclic terms), where the naive extension
of simple termination [Der82] (based on [Lav78]) does not work well for

term graph rewriting systems.



1 Better-Quasi-Order

Definition 1.1  Let w be the least countable ordinal (i.e., set of natural numbers). If 5,¢ C w, then
s < 1 (s < t) means that s is a (proper) initial segment of £. Define s <t to hold if there is an = > 0
and ip < -+~ < iy < ws.t. for some m < m, s = {1, +,in} and t = {iy,---,i,}. (Thus, e.g., {3} < {5},
{3751 6} 4 {516,81 9}1 {3a576} A{Si 6}‘)

Definition 1.2  For an infinite set X C w, a barrier B on X is a set of finite sets of X s.t. ¢ ¢ B and
1. for every infinite set Y C w thereis an s € Bs.t. s < Y.
2. if s,t € B and s # ¢ then s ¢ 1.

Theorem 1.1 ' If B is a barrier and B = Uj<, B; for some n < w, then some B; contains a barrier (on
Upep;b).

Definition 1.3  Let < be a transitive binary relation on a set Q. Then,

o If < is reflexive, R is called a quasi-order (QO).
o If < is antisymmetric, R is called a partial order (or, simply order).

¢ If each pair of different elements in @ is comparable by <, < is said to be total.

A strict part of < is < — > and denoted as <. We also say a strict (quasi) order < if it is a strict
part of a (quasi) order <. When < is a QO, we will sometimes use < (resp. <) instead of < (resp. <),
for clarity.

Definition 1.4 Let < bea QO on Q. If B is a barrier, f : B — Q is good if there are s, € B s..
satand f(s) < f(t), and f is bad otherwise. f is perfect if for all 5,4 € B, if s« ¢ then f(s) L f(#). Qis
better-quasi-ordered (bqo) if for every barrier B and every f : B — Q, f is good.

Remark 1.1  If we restrict the BQO definition s.t. B runs only barriers of singleton sets (ie, B =
{1,2,---}, etc.), then we get the familiar well-quasi-order (WQO) definition. Note that (1) a well order
is 2 BQO and a BQO is a WQO, and (2) if @ is finite then Q is BQO for any QO <[Lav78].

A (possibly infinite) iree is a set of T on which a strict partial order <7 is defined s.t. for every t € T,
{s € T | s <r t} is well ordered under <7. Thus 7' = U,T, where & runs on ordinals and T, the a-th
level of T, is the set of all ¢ € T' s.t. {s | s <7 t} has type a. The height of T is the least a with T, = ¢.
A pathin T is a linearly ordered downward closed subset of 7. If z € T (resp. a path P in T, let S(z)
(resp. S(P)) be the set of immediate successors of z (resp. P). A path is mazimalin T if S5(P)=¢. Let
brr(z) (or simply br(z) if unambiguous) be {y € T | z <7}, the branch above z. An w-treeis a (possibly
infinitely branching) tree of the height at most w.

Definition 1.5  Let 7 be a set of trees which satisfies
1. For each T" € 7, T has a root (minimum element),

2. Foreach T € 7, if P is a path in T with no largest element then Card(S(P)) < 1. A Q-tree Tg is
a pair (T,]) where T € T and [ : T — Q.

HTeT,s,teT,thereis a greatest lower bound of s and £ in T, denoted by s At.

Definition 1.6  Let Q be a QO set and (T1,1;),(T2,k) € To. (Th,l4) is embeddable to (T2,17) (and
d_cnoted (T1, 1) £ (Ts,13), or simply Ty < T3) if there exists ¢ : Ty — T3 s.t.

1. For s,t € Ty, (s A t) = 9p(s) A (1),
2. Fort € Ty, ll(i) < lg(ﬂ)(f))

*Corollary 1.5 in [Lav78]. The proof is due to Galvin-Prikry. See Theorem 9.9 in [Sim85a].




Theorem 1.2 [Lav78, NW65] If @ is BQO, Mg is BQO wrt the embedability <.

Remark 1.2 WQO is not enough {or Kruskal-type theorem for infinite objects. For instance, consider
Q = {(i,7) | i < j < w} ordered by (3,7) < (k,!) if and only if either i = k wedge j < k or j < k. Then
Q is WQO, but a set @¥ of infinite sequence on @ is not WQO, namely,

h = ((0 ]) ( ) ( 13)v(114)1"')’
f2 f ( 1) ( ) ( 13)a(274):"'>:
f:i ; ((011))"'7(":7":"' l):(%’i+2)’(ivi+3)7"'>v

The main techniques to prove Kruskal-type theorems are (1) Ramsey-like theorem and (2) the exis-
tence of the minimal bad sequence (MBS). For (1), theorem 1.1 works. For (2), we first prepare some
definitions (See [Lav78]).

Definition 1.7  Suppose @ is quasi-ordered by <. A partial ranking on Q is a well-founded (irreflexive)
partial order <’ on @ s.t. ¢ <’ r implies ¢ < 7.
If B and C are barriers, then B C C if

1. UC CUB, and
2. for each c€ C thereisabe B with b < c.

BC Cif BC C and thereare b€ B,c€ Cwithb<c. For f: B—Q,g: C — Q and a partial
ranking <'on Q, fCg(fCg)wrt <'if BLC (BLCC)and

1. g(a) = f(a) fora€e BN C,
2. g{e) <’ f(b)forbe B,ceCsit. b<e.

Definition 1.8  Suppose <’ is a partial ranking on Q. For a barrier C, g : C — Q is minimal bad if
g is bad and there is no bad h with g C A.

Theorem 1.3 > Let Q be quasi-ordered by <, <’ a partial ranking on Q. Then for any bad f on Q
there is minimal bad g s.t. f C g.

Thus, the proof of Kruskal-type theorem on infinite objects is reduced to find some appropriate partial
ranking <’.

2 Kruskal-type theorems with gap-condition on infinite trees

Definition 2.1  Let M, be a set of w-trees on which each vertex is labeled by an clement of n (=
{0,1,-++,n—-1}), and (T3, k), (T2,L2) € My forsomen < w. (T1,l1) <g (T2, 12) if there exists 4 : Ty — T
s.t.

1. Th £ Ty,

2. For each t € T, 11(t) = L{¢(1)),

3. For t € Ty, if there is # € Ty s.t. t € S(¢) then Lx(s) > L(¢) for each s s.t. Y(t') <, s <1, ¥(1),
4. For the root ¢ of 71, lo(s) > L1(2) for each s s.t. s <7, ¥(t).

Theorem 2.1 [Sim85b] Forn < w, T(n) is the set of all finite trees with labels less-than-equal n. Then
<g is a WQO on the set T'(n).

Kruskal’s theorem with gap-condition for finite trees have been proposed for finite ordinals[Sim85b]. -
There are two variants of its extensions for infinite ordinals{K89, Gor90]. The main theorem is following:

2Theorem 1.9 in [Lav78], or equivalently theorem 9.17 in [Sim85a].



Theorem 2.2 Let M, be a set of w-trees on which each vertex is labeled by an element of n (=
{0,1,---,n — 1}) for some n < w. Then M, is BQO wrt <g.

To show the theorem, we will prove the slightly stronger statement.

Definition 2.2 Let n{={0,1,---,n—1}) <w. Let Q bea QO and ¢: Q — n.
Let M,(Q) be a set of w-trees satisfying: for (T,) € M,(Q)

1. I(t) € n for each interior vertex t of T

2. (1) € nU Q for each end vertex t of T

(T1,h) <5 (Ty,l3) if there exists ¥ : T} — T} s.t.

1. Ty < Ty, ‘

2. Tor each interior vertex ¢t € Ty, %(t) is an interior vertex of T3 and 1(1) = l(4(1)),

3. For each end vertex ¢ € Ty, (¢) is an end vertex of 7% and either [1{{) = ,(¢(¢)) € n or [1(1) <
L(¥(1) € Q.

4. For each interior vertex t € Ty, t' € S(t) and s € Ty with ¥(f) <1y s <3, ('), L(s) > L{%(t")
when L(¥(t')) € n and 12(s) 2 q(L(¥(t))) when Li{%(t")) € Q.

5. For the root ¢t of 77 and s € T3 s.t. s <p, ¥(t), l2(s) = Li(¥(t)) when L(¥(t)) € n and L(s) >
q(hi(¥(2))) when h(4(2)) € Q.

We will denote (Tl,ll) = (Tz,lQ) if (T],ll) SG (TQ,IQ) and (lell) 2(; (Tg,lg)

Theorem 2.3 Letn<w, Q@ beaBQOandg: Q — n (={0,1,---,n—1}). Let M,(Q) be a set of
w-trees on which each vertex is labeled by an clement of n. Then M,(Q) is BQO wrt <g.

Definition 2.3 Let n < w. Let @ be a QO and ¢ : @ — n. Wi(Q), S (@), Fo(Q)C M,(Q)) ate
defined to be:

1. Wh(Q) is a set of w-words in M, (Q).

2. 8.(Q) is a set of scattered w-trees in M,(Q). (i.e., for each (S,l) € S,(@) n £ § where n is a
complete binary w-tree (2)“.) ’

3. Fa(Q) is a set of descensionally finite trees. (i.e., For (T,{) € F,(Q), there is no infinite sequence
Ty <7 @y <7 - with (br(zg),1) > (br(z1),]) >5 ---.)

The proof of theorem 2.3 consists of four steps: First, Wy (Q) is shown to be a BQO wrt <4 (theorem
2.4). Second, 8,(Q) is shown to be a BQO wrt <5 (theorem 2.5). During this step, the principle tool is
a recursive construction of $,,(Q) starts with one-points trees in M,(Q)) using an element in W,(Q) as
a spine.

T € Mn(Q)) is a finite union of scattered w-trees, i.e., T = U;$; with S; € 5,(Q). Using this decom-
position, thirdly F,(Q) is shown to be a BQO wrt <4 (theorem 2.6). Again using this decomposition,
lastly M,(Q)) = F,.(Q) is shown (theorem 2.7).

Theorem 2.4 Let n < w. For a barrier D, g: D — W,(Q) is bad wrt <, then there is a barrier £
and gCjs.t. j: E — Q is bad.
Proof Assume g is minimal bad wrt a partial ranking <’ on W,(Q) where J <’ K ifand only if J <¢ K
and dom(J) < dom(K). From theorem 1.1, we can assume Vd € D s.t. either (1) dom(g(d)) = 1, (2)
dom(g(d)) < w, or (3) dom(g(d)) = w.

For (1), there exists a barrier E(C D) s.t. g(e) € Q for e € E. By taking j = g|g, theorem is proved.

For (2), we will prove by induction on n. Again by theorem 1.1, we can assume Yd € D s.t. either
(2-a) g(d) does not contain 0, (2-b) the first element of g(d) is 0, or (2-¢) g(d) contains 0 and the first
element of g(d) is not 0. Tor (2-a), by subtracting 1 from each label of g(d), it is reduced to the induction
hypothesis. For (2-b), let ¢’(d) be obtained from g(d) by taking the first element. Then, ¢'(d) is bad
and this contradicts to the minimal bad assumption of g. For (2-c), let g(d) = (g1(d), g2(d)). Since g1(d)
and g;(d) are good from the minimal bad assumption of g, there is a barrier E s.t. g,(d) and g,(d) are
perfect. This implies that g(d) is good.

For (3), if g(d1) £g 9(d2) with dy < dy, there exists an initial segment J s.t. J £g g(dz). Let
h: D(2) = (n)<¥ by h(d; Udz) = J. Then g T A contradicts to the minimal bad assumption on g. ]



Definition 2.4 Let 7 €7, P apathin T, z € P. Then let P(z) = {br(y) | y € $(2) and y & P}.

Lemma 2.1 (lemma 2.1 in [Lav78]) Let n < w and  be a QO. Let a be an ordinal and A be a limit

ordinal. Let
@) _
seH(Q) = {T there?is a maximal path P € W,(Q)in T }
s.t. P(z) C8*(Q)forall ze P
SNQ) = UacrS°.
by regarding n, Q as one point trees. Then Sp(Q) = UaS*(Q). We say rank(T) for T € S.(Q) be the
least a s.t. T € §%(Q).

{the emptly tree}Unu Q

Theorem 2.5 Let n < w. For a barrier C, g: C — 8,(Q) is bad wrt <s, then there is a barrier £
and gC js.t. 7: E— Q is bad.
Proof Let a partial ranking <’ on S$,(Q) be (T1,h1) <’ (T2, ) if (T1,h) <g (T2,1z) and rank(Ty) <
rank(T;). Assume ¢ is minimal bad wrt a partial ranking <’ on 5,(Q). From theorem 1.1, we can assume
Vd € C s.t. either (1) card(g(d)) = 1 or (2) card(g(d)) > 1. For (1), there exists a barrier E(C C) s.t.
g(e) € Q for e € E. By taking j = g|g, theorem is proved.

For (2), let ¢ € C. Let P, be a maximal path in 7, where g(c) = (T¢, ;) € 5,(Q) s.t. for each z € P,
and each T' € P.(z) rank(T") < rank(T.). Let Jo: P — Wnt1(Q) X P(Sa(Q)) be defined by

Jo = (I(x), P(2))

where I.(z) is the sequence which is obtained by adding n + 1 as the maximal element (wrt <7,.) to
the path from the root of T to z. By regarding J. as a sequence, J; < Jg (embedability without gap-
condition) implies (T, ) < (Ty,l) for ¢,d € C. From theorem 1.10 in [Lav78], il g is bad, there is a
barrier D and §: D — Wp1(Q) X P(Sx(Q)) s.t. ¢ C g and g is bad (by identiflying an element as a
sequence of the length 1). From theorem 2.4 and theorem 1.11 in [La.v78] (with <1 on P(S,(Q)), which
is an one-to-one embedability on sets), there exists a barrier £ and j : E — Wr11(Q) x 8.(Q) s.t.
D C E and j is bad. For j(e) = (I.(z),T") where © € P, C T; and cach 77 € P(z) for ¢ C e, let ] /()
be a tree obtained by replacing the last element of I(z) (whose label is m + 1) with 7*. g E j' and
rank(j'(e)) < rank(T.) (since rank(T') < rank(T.) and adding a scquence to the root of T’ does not
change its rank). This contradicts to the minimal bad assumption of g. 1

Adding (possibly infinite numbers of ) finite trees to (5,) € S,(Q) does not exceed the class of S,(Q).
Thus without loss of generality, for each (T,!) € Mn(Q) we can assume the decomposition 7' = U;T; with
(T:,1) € Sa(Q) satisfies that if z is maximal wrt <7, then either br(z) does not contain 0 or I(z) = 0.

Definition 2.5 Let (T,{) € Fo(Q)C Mn(Q)) and T = U;T; with (T3,{) € S,(Q) s.t. if z € T} is
maximal wrt <7; then either br(z) does not contain 0 or I(z) = 0. If T does not contain a vertex labeled
0 subt(T 1) € Fr-1(Q) is (T,U") where l'(z) = I(z) — 1 for each z € T. With a fresh symbol @, let
=Q u {N} with ¢(Q) = 03. We denote F,(Q)<(T) = {(U,m) € F.(Q) | (U, m) <g (T, 1)}
Define A (2) = (Ti,0) € Sn+1(Q+ U Frno1(Q) U Fn(Q)<(TN) where

1. If € T} is not maximal wrt <r;, then {(z) = I(z).

2. If z € T} is maximal wrt <7; and (br(z),!) does not contain 0, then add a new vertex z+ below z
and set I[(z) = n+ 1, [{(z+) = subt(br(z),!).

3. If z € T} is maximal wrt <7y, {(z) = 0 and (br(z),!) <5 (T,0), then I(z) = (br(z),]).
4. If = € Ty is maximal wrt <7;, I(z) = 0 and (br(z),!) = (T,1), then I(z) = R

Define A((T,)) = {Ay() | < w0} € P(Sutr(@F U Fas(Q) U Fa(@)<TDY). For (T,0),(U,m) €
Fn(Q), define A((T,1)) < A((U,m)) if for each A, (1) € A((T,!)) there exists Am)(7) € A((U,m))
s.t. A(Tl)(t) Le A(Um)(]) :

31f Q is a BQO, Q is also a BQO.




Lemma 2.2 For (T,1),(U,m) € Fn(Q), A(T,1)) < A((U,m)) implies (T, 1) <5 (U, ).
Proof We will construct an embedding H : (T,l) — (U,m) (with gap-condition) in w steps. The
induction hypothesis is:

If z € T; is maximal wrt <r;, there is a 1-1 function J; s.t.

1. if (b’r(y),l) does not contain 0 then (br(y),!) <g (br(Ji(¥)), m),
2. if I(y) = 0 and (br(y),!) <g (T,1) then m{J;(y)) = 0 and (br(y),!) <g (br(Ji(y)),m),
3. if l{y) = 0 and (br(y),!) = (T,1) then m(Ji(y)) = 0 and (br(Ji(y)),m) = (U, m).

Since A((T,1)) £ A((U,m)), there exists A(U.m)(j) € A((U,m)) s.t. A(T,I)(O) = (To,]) <& A(U,m)(j) =
(U;, 7). Then set Hg by the embedding Ty — Uj;.

Suppose that H; has been defined, y € T; is maximal. If either (1) (br(y),!) does not contain 0 or (2)
{y) = 0 and (br(y),!) <z (T,!) then (br(y),!) <g (br(Ji(y)),m). Thus extend H; with an embedding of
br(y) into br(Ji(y)). ~

Suppose that (3) I(y) = 0 and (br(y),!) = G(T,!) then there exists an embedding L : (U,m) —
(br(Ji(y)),m). Since A((T,1)) < A((U,m)), there exists Aw,m)(j) € A((U,m)) s.i. Aqp(i+1) =
(Tiy1,]) <g Awm)(d) = (U;,m). Let K 1 (Tiy1,!) = (U;;m) C (U,m) be an induced embedding.
Thus extend H; on br(y) NTiyy with LK. Since L isomorphically embeds (U, m) into (br(Ji(y)), m), the
induction hypothesis is satisfied to the next stage. 1

Theorem 2.6  Let n < w. For a barrier B, f: B — F,(Q) is bad wrt <g, then there is a barrier £
and fC jst. j: E— Qis bad. Thus if @ is a BQO then F»(Q) is a BQO (wrt <¢).

Proof We will prove by induction on n. For n = 0, < and < (without gap-condition) are equivalent
(see lemma 2 in theorem 2.4 of [Lav78]). Assume the theorem has been proved until n — 1.

Define a partial ranking <’ by: (U,m) <’ (T,!) if and only if for some z € T' (U, m) = (br(z),{) <g
(T, D). By theorem 1.3, we can assume [ : B — F,(Q) is minimal bad. Let f(b) = (T4, ;) for b € B and
let f(b) = A((Ts,%))- From lemma 2.2, f is bad. From lemma 1.3 in [Lav78), there is a barrier C C B(2)
and an g defined on C s.t. for ¢ € C (c = b; U by where by < b, and b;,b, € B) g(c) € g(b1) and g is
bad. Since g(c) € 8Sn41(QF U Frm1(Q) U Fon(Q)<(To)) and g is bad, from theorem 2.5 there is a barrier
D with C C D and A defined on D s.t. A(d) € QF U F_1(Q) U Fon(Q)<Toh) for (b <)d € D and h is
bad. Since @+ and F,_,(Q) are BQO, from theorem 1.1 there is a barrier £ C D and j defined on E
s.t. j(e) <' (Ty,8) for (b <)e € E and j is bad. Thus g - j and this is contradiction. ]

Theorem 2.7 M,(Q)) = Fo(Q).

We will prove theorem 2.7 by induction on n. For n = 0, < and <& are equivalent and this is shown
by lemma 4 in theorem 2.4 in [Lav78]. Note that if (T,[) € M,(Q) does not contain 0, by induction
hypothesis subt(T,!) € Mn_1(Q) = Fn_1(Q), and (T,1) € Fn(Q).

Definition 2.6  Let (T,1) € M4(Q) and T = U;T; with (T3,1) € Sa(Q) s.t. if ¢ € T} is maximal wrt
<7; then either br(z) does not contain 0 or /(z) = 0. Let Q@+ = Q U {Q} with ¢(Q) = 0.

Define Biyyy(i) = (T3,1) € $,11(QF U F(Q) where

1. If € T; is not maximal wrt <7;, then I(z) = I(z).

2. If z € T; is maximal wrt <7; and (br(z),!) does not contain 0, then add a new vertex z* below «
and set I(z) = n + 1, [(z+) = (br(2),!).

3. If z € T; is maximal wrt <r;, {(2) = 0 and br(z) € F,,(Q), then I(z) = (br(z),).
4. If z € T; is maximal wrt <7, {(z) = 0 and (br(z),1) € Mo (Q) ~ F,.(Q), then [(z) = Q.

Define B((T, 1)) = {Bz,p(i) | i < w} € P(Sn1(QF U Fn(Q))) For (T,1),(U,m) € Ma(Q) — Fn(Q),
define B((T,!)) < B((U,m)) if for each B(r;(i) € B((T,!)) there exists Bwm(7) € B((U,m)) s.t.
Biz(i) <& Bwm)(5)-



Lemma 2.3 Let (T,{),(U,m) € My(Q) — Fu(Q) s.t. I(root(T)) = m{root(U)) = 0. Il B((T,1)) <
B((br(u),m)) for each u € U s.t. m{u) = 0 and (br(u,m)) & Fa(Q), then (1,1) <5 (U,m).
Proof We will construct an embedding I : (T,l) — (U, m) (keeping gap-condition) in w steps. The
induction hypothesis is:

If z € T; is maximal wrt <7, there is a 1-1 function J; s.t.

1. if (br(y),!) does not contain 0 then (br(Ji{y)),m) does not contain 0.
2. if [(y) = 0 and (br(y),!) € Fu(Q) then m(Ji(y)) = 0 and (br(Ji(y)), m) € Fu(Q),

3. if I(y) = 0 and (br(y),!) & Frn(Q) then m(J;(y)) = 0 and (br(Ji(y)),m) & Frn(Q).

Since B((T,1)) < B((U,m)), there exists Biym)(7) € B((U,m))s.t. Birn(0) = (Tu,]) <& Bumy() =
(U;,m). Then set I by the embedding To — U;.

Suppose that I; has been defined, y € T} is maximal. If either (1) br(y) does not contain 0 or (2)
{(y) = 0 and (br(y),]) € Fa(Q) then (br(y),!) <a (br(Ji(y)),!). Thus extend J; with an embedding of
br(y) into br(J;(y)). '

Suppose that (3) {(y) = 0 and (br(y),!)} & Fa(Q), then from induction hypothesis m(J;(y)) = 0 and
(br(Ji(y)), m) € Fo(@Q). Thus from the assumption, B((T,!)) < B((br(Ji(y)),m)) and there exists j s.t.
Birpy(i+ 1) <5 Br(si(y))m)(J) via an embedding K. Then I; can be extended on br(y) N T34y with K,
and the induction %ypotflesis is preserved. [

Proof of induction step for theorem 2.7 Let (T,0) € M (Q) - Fn(Q)and S={z € T | l(z) =
0 and (br(z),l) € Ma(Q) — Fn(Q)}. For each 5,1 € S s.t. s <7 ¢, B((br(s),1)) > B{(br(t),])) by an
identity embedding.

If (br(z),1) does not contain 0 then (br(z),l) € Fo(Q). Thus § (wrt <7) is an infinite trec of the
height w.

Since B((T,1)) € P(Sn+1(QF U Fn(Q))), {B((U,m)) | (U,m) € Mn(Q) — Fn(Q)} is a BQO, thus
well-founded. Then there exists s € § s.t. for each t € S with s <7 ¢t B((br(s),0)) # B((br(1),D))
(thus B{(br(s),1)) = B((br(t),1))). From lemma 2.3, (br(s),!) <g (br(t),!). But since (br(s),!) €
M (Q)—F.(Q), from definition there must be an infinite sequence s = so <7 81 <7 - - 5.t. {(br(s:),0) >
(br(si41,!) for each i. This is contradiction. : 1

3 Simple gap termination for term graph rewriting systems

A reduction — is terminating if there is no infinite sequence s.t. sy — s — ---. Simple termination
[Der82] is the frequently used criteria for a term rewriting system. For a TGRS (on possibly cyclic
term graphs), the naive extension of simple termination based on Kruskal-type theorem on infinite trees
[NW65, Lav78] does not work well. Let R = {a(a(b(z))) — a(b(z))}. Then R is terminating. R
rewrites a term graph y : a(a(b(y))) to v : a(b(y)), but unfold(y : a(a(b(y))) > unfold(y : a(b(y)))
and un fold(y : a(a(b(y))) < unfold(y : a(b(a(b(y))))) = unfold(y : (a(5(y)))), because only fairness of
occurrences of a,b on each path relates to <.

Definition 3.1 [JKdV94] A term graph s is a finite directed graph satisfying:
1. s has a root. 4
2. each vertex of s has a label (function symbol) which has a fixed arity.

An w-term obtained by unfolding s is denoted unjfold(s). A term graph rewriting system (TGRS, for
short) R is a finite set of rewrile rules [ — r which are pairs of acyclic term graphs I,r s.t. [ is not a
variable and V(I) D V(r).

Roughly speaking, reduction relation — is defined similar to those which of a term rewriting system,
cxcept that a TGRS regards a variable as an address. For precise definition, please refer [JKdV94, AK94].
We will consider reduction — of a TGRS on possibly cyclic term graphs®.

*The definition of reduction of TGRS on a cyclic term graph requires some unfolding mechanism for a term graph. For
instance, when the rule a(z) — z is applied on a term graph y : a(y), [JKdV94] asserts y : a(y) as the result of the reduction.
This requires some unfolding mechanism by default - otherwise, the result would be y : y. However this mechanism is
not explicitly defined in literatures. Our termination criteria - simple gap termination (for a TRS see [Oga94]), on which
unfolding does not effect - is a safer choice.



Theorem 3.1 Let R = {{ — r} be a TGRS. Assume that a set of function symbols is totally ordered.
If there is a QO < on ground term graphs s.t.

1. s > t implies C[s] > S[t] for each context C[].

2. C[s] > s where each function symbol f on a path from the root of C[s] to the root of s satisfies
f > root(s).

3. For each ground term graphs s,¢, s lﬁ t (i.e., reduction at the root by the rule Ir — r) implies
—r
s> t.

4. 3> t implies un fold(s) # unfold(t).

Then R is terminating.
Proof Define a QO <,s on w-trees by: unfold(s) <5 unfold(t) if s < t. I'rom (4), s > ¢ implics
unfold(s) >yus5 unfold(t). From (2), Clunfold(s)] >.5 unfold(s) if each function symbol f on a path
from the root of Cun fold(s)] to the root of s satisfies f > root{un fold(s)). Since un fold(s) has repeated
patterns (produced by cycles in s) except for its downward-closed finite subset, thus Clun fold(s)] >.s
un fold(s) and transitivity implies <,y C <¢ on w-trees obtained by unfolding finite term graphs.

Suppose there exists an infinite reduction sequence 83 — s — ---. Without loss of generality, we
can assume that each s; is a ground term graph. Thus from (1),(3), s1 > 82 > --- and unfold(s1) >uy
unfold(sy) >,z - --. However, from theorem 2.2 there exists ,7 s.t. 7 < j and unfold(s;) <¢ unfold(s;).
This is contradiction. 1

Then 3 : a(a(5(y))) = ¥ : a(b(y)) for R = {a(a(b(2))) = a(b(=))}, and unfold(y : a(a(b(s)) >c
unfold(y : a(b(y))) with a > b.
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