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Optimal Time Broadcasting in Faulty Star Networks
(Extended Abstract)
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We propose a non-adaptive single-port broadcasting scheme in the n-star network such that it tolerates
n — 2 faults even in the worst case and completes the broadcasting in O(nlogn) time. The existence of
such a broadcasting scheme was not known before. The technique used in the broadcasting scheme is
called diffusing-and-disseminating. This technique is useful to overcome various difficulties for the fault
tolerance of broadcasting in star networks. We also analyze the reliability of the broadcasting scheme in
the case where faults are randomly distributed in the n-star network.

1 Introduction

Broadcasting is one of the fundamental tasks in network communications. It is the process of dissemi-
nating a message from the source node to all other nodes in the network. It can be accomplished in such
a way that each node repeatedly receives and forwards messages. For the past decade an overwhelming
amount of studies on broadcasting in networks have been done. There are some good survey papers on
this subject, e.g.,[8],[16].

Star networks were proposed as attractive interconnection networks {1]. In recent years, star networks
have been much studied [2],[3],[5],[10},{13],{15], and a lot of results on broadcasting in star networks have
been derived [4],{6],(7],{10],[14]. Star networks have recursive structures. The n-star network consists of n
(n— 1)-star networks and additional n!/2 links. The connectivity and the diameter of the n-star network
are n—1 and |3(n —1)/2], respectively [2],[1]. As for broadcasting in star networks the following results
are known: (1) There exists a single-port broadcasting scheme with running time at most nlogn in the
n-star with no faults [9]. The scheme exploits the recursive structure of star networks. It is optimal in the
sense that for any constant ¢ < 1, there does not exist any single-port broadcasting scheme with running
time cnlogn. This is because 2°"1°8™ < n! for any constant ¢ < 1. (2) For the case of a faulty n-star
network, there exists a single-port broadcasting scheme with running time O(n?). The broadcasting by
the scheme tolerates n — 2 faults even in the worst case. The principle of the fault-tolerant broadcasting
is the same as that in hypercubes proposed in [12]. We will explain this broadcasting scheme in Section 3,
and it will be used in the second stage of the broadcasting proposed in this paper. (3) A multi-port fault-
tolerant broadcasting using routing was introduced in {4], and its running time is O(n¥ logn). Gargano et
al. gave a better multi-port fault-tolerant broadcasting scheme, and its running time is O(n) [7]. Mendia
and Sarker presented a problem of finding a single-port broadcasting scheme in faulty star networks in
[9]. However, any substantial solution to this problem has not been given. We give an optimal solution
to this problem in this paper.

2 Preliminaries
Let aja; - --an be a permutation of n symbols 1,2,---,n. For an integer 2 < ¢ < n and a permutation

aias -+ an, a generator g; is defined as g;(a1az---a,) = aiaz - - @i~101Git1 - - an. An undirected graph
G = (V, E) is called the n-star graph (denoted by S,) if V = {aja2::-an | aja2---a, is a permutation
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of 1,2,---,n} and E = {(u,v) | u,v € V and v = g;(«) for some i}. The n-star graph is also called the
n-star network. For 2 < ¢ < n, edges of S, specified by g; are said to be of dimension i. We often
denote edge (u,v) by g if gi(u) = v. It is immediate that S, has n! nodes and it is (n — 1)-regular.
We can choose (n —1)! permutations with an identical last symbol from n! permutations. Hence, we can
decompose the n-star network into n node-disjoint (n — 1)-star networks. From this property we can say
that star networks are hierarchical.

Let ay,az,---,a,m be m distinct symbols chosen from {1,2,---,n}. There are m! permutations of
Gy,0a3,**,am. For each permutation ajas---a.,, we assign an integer from range [1,2,---,m!] in the
lexicographic order. This integer is called the rank of ajas - - - am and denoted by r(ajaz---am).

In Section 4, we propose a fault-tolerant broadcasting scheme that exploits smaller sub-star networks
Si’s (2 < i < n) recursively. In the analysis of the scheme, we specify sub-star networks in the following
way. Each sub-star network S; of S, is specified by a permutation of n symbols and the set of generators
{92,93,"*+,9i}. In other words, for each ¢, S, can be decomposed into (n!)/(i!) disjoint S;’s by partitioning
the node set so that nodes belong to the same part of the decomposition if and only if n —1 symbaols from
the rightmost of all the nodes of the part are an identical sequence. Note that each sub-star network S;
can be also decomposed into disjoint smaller sub-star networks. For simplicity, we use 1 % n to denote a
permutation with the first and last symbols being 1 and n, respectively. This notation can be extended
to denote other permutations. For example, 1 xn — 1n denotes a permutation with the first, the (n—1)st
and the nth symbols being 1, n — 1 and n, respectively.

We assume that each node represents a processor and each link represents a bidirectional cornmuni-
cation line connecting two nodes at the extremes of the link. All the nodes in a network are synchronized
with a global clock. Broadcasting time is measured as the number of steps to complete the broadcasting.
In each step every node can send a message to at most one neighbor node and can receive a message from
at most one neighbor node. If more than one neighbor nodes attempt to send messages to the same node
in the same step, the node can receive just one message from any one of the neighbor nodes. Such a model
is called a single-port network. Communication from node s;s3 - - s,, to node aja, - - - a, can be done in
the same fashion as communication from the identity permutation 12---n to node f(a;)f(az)--- f(an),
where f(sx) = k for each k(1 < k < n). Hence, it is sufficient to consider broadcasting only from the
source node 12---n. All logarithms in this paper are to the base 2.

3 An Information Disseminating Scheme

In this section we give a natural broadcasting scheme in S,,. The principle of the broadcasting scheme is
the same as that of broadcasting in hypercubes given in [7] and [19]. This scheme can be implemented
in the single-port manner. It is described as the following procedure. The procedure is executed at each
node u of S, concurrently.

procedure  Dissem(n,t)
(* it is executed at each node u *)
repeat t times
for i :=2 to n do
if u held the message before the current step then
u sends the message along dimension

For the implementation of procedure Dissem(n, t), it is not necessarily that each node knows whether
its incident nodes and links are healthy and which is the source node of broadcasting. The following
lemma is immediate.

Lemma 3.1 Let s be the source node in S, and p(s,u) be a path of length t from s to node u. Then
the message from s will reach u through p(s,u) by ezecuting procedure Dissem(n,t) at each node in S,,
provided there are no faults on p(s,u).

Theorem 3.2 If there are at most n—2 faulty nodes and/or links in Sy, then every healthy node receives
the message from the source node by ezecuting procedure Dissem(n, |3(n — 1)/2] +4) at each node in S,,.

Corollary 3.3 If there are at most n — 2 faulty nodes and/or links in S,, then the message from the
source node can reach every node within distance d by executing procedure Dissem(n,d + 4) at each node

in S,.

The next theorem shows that ©(n?) steps are necessary to complete broadcasting in S, by procedure
Dissem.



Theorem 3.4 For anyt < |n/2], procedure Dissem(n,t) cannot complete broadcasting even if there are
no faults in S,.

From Theorem 3.3 and Theorem 3.4 we can say that procedure Dissem can broadcast a message from
the source node throughout the network S, in 3n%/2 + O(n) steps if there are at most n — 2 faults, but
cannot complete broadcasting in Sy, in |n/2](n — 1) steps even if there are no faults.

4 An Efficient Fault-Tolerant Broadcasting Scheme

We now describe our fault-tolerant broadcasting scheme. Let d be the minimum positive integer such
that d! > n — 1. Let p = p;ps---p, be an arbitrary permutation of 1,2,---,n, and let p[i, ;] denote
DiPi+1"+*pj, where 1 < ¢ < j < n. We partition the label of each permutation p into three intervals. The
first interval is just the first symbol p[1, 1] and called the head. The second interval is p[2,3d + 1] and
called the identifier district. The identifier district is divided into three blocks, p[2,d + 1], p[d+2,2d + 1],
and p[2d + 2,3d + 1]. The last interval is p[3d + 2,n]. (See Figure 1.)

The broadcasting process by our scheme is divided into two stages, called the diffusing stage and the
disseminating stage. In the diffusing stage, the message from the source node s = 12---n is transmitted
along n—1 internally disjoint channels. Each channel contains at least one node in every (n—3d—-1)-sub-
star network. Note that there are totally (Sd_rilﬁ such sub-star networks. In other words, after the diffusing

stage, at least one node in each (n — 3d — 1)-sub-star network holds the message if there exist at most
n — 2 faults in S,,. Hence, after the diffusing stage, for every node u in S,,, there exists a node v holding
the message within distance |%| from u. Then, Dissem(n, | %] + 4) is executed in the disseminating
stage. By Corollary 3.3, every node can receive the message in this way if there exist at most n — 2 faults
in S,. The diffusing stage consists of the pre-stage and the recursive stage. During the pre-stage, s sends
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Figure 1: The identifier district of p.

its message to its n— 2 neighbors gy(s) = 213---n, g3(s) = 3214 - n, ..., gn=1(8) = (n—1)2--- (n—2)1n.
Then the n — 1 nodes with the message (including s) send the message along dimension n. Then, n —1
nodest;y =nx*l,t; =nx2,...,t,-1 =nx(n—1) receive the message. Next foreach j (1< j<n—1),
the message is transmitted from t; to w; along an appropriate route, where w; satisfies the conditions
that w;[3d +2,n] = t;{3d +2,n] and r(w;[2,d+1]) = r(w;[d+2,2d +1]) = r(w;[2d + 2,3d + 1]) = j. For
each j (1 £ j € n - 1)) we can specify such a route from t; to w; by choosing appropriate nodes whose
labels are obtained by some changes of symbols in ¢;[2,d + 1], ¢;{d + 2,2d + 1], and t;{2d + 2,3d + 1].
For any pair of distinct ¢ and j (1 < 4,7 < n — 1) the route from ¢; to w; and the route from t; to w;
are node-disjoint since the last symbol of the label of each node on the former route is ¢ while the last
symbol of each node on the latter route is j.

The recursive stage follows the pre-stage. The recursive stage is consistent with the hierarchical
structure of S,,. For clear explanation, we now assume that no faults exist in S,. Suppose that there
exist n — 1 nodes holding the message in an m-sub-star network in the recursion stage. Let these n —1
nodes be z1,Z3, *,Tn—1, where for each j (1 € j < n—1), r(z;[2,d + 1)) = r(z;[d + 2,2d + 1}) =
r(z;[2d+2,3d+1]) = j. Then for each j (1 < j < n—1), the message is transmitted from z; to m modes
that are in different (m — 1)-sub-star networks. That is, for each j (1 £ j < n — 1), z; transmits the
message to a node, say y; in each of the m —1 Sp,_;, where y; does not necessarily satisfy r(y;[2,d+1]) =
r(y;ld+2,2d+1]) = r(y;[2d+2,3d+1]) = j. However, at least two of r(y;[2,d+1]), r(y;[d+2,2d+1]) and
r(y;[2d+2,3d+1]) are equal to j. If one of these three ranks is not equal to the others, then we can choose
a route from y; to a node in the same Sy,_, say z; which is obtained by some changes of symbols in the
corresponding intervals so that r(z;[2,d + 1]) = r(z;[d + 2,2d + 1]) = r(2;{2d + 2,3d + 1]) = j. Then we
move to the next round of the recursive stage. The recursive stage stops when it reaches (3d + 1)-sub-star
networks.



4.1 Counstruction of n — 1 Node-Disjoint i-Level Channels

Definition 1 For a node p in Sy, the identifier (id for short) of p is r(p[i,1 + d]) of r(pli,i +d]) =
r(plj,j +d}) for somei# 5 (3,5 =1,d+1 or 2d + 1), and otherwise it is 0.

Lemma 4.1 For any pair of permutations p; and p; of length n, they are distinct if their id’s are not
identical

‘We now explain the process of the recursive stage in detail. For each j (1 < j < n — 1), w; has the
message at the beginning of the recursive stage. We therefore may consider that each w; is a message
source at the beginning of the recursive stage. Hereafter, we call them message sources. Remember that
r(w;[2,d + 1]) = r(w;d + 2,2d + 1]) = r(w;[2d + 2,3d + 1]) = j. The recursive stage is divided into
n—3d — 1 rounds. For each ¢ (1 <¢<n—3d—1)andeach j (1 <j<n—1),let W;(w;) be the set of
nodes that hold the message from w; and are ready to broadcast the message at the beginning of round
i. Initially, let W;(w;) = {w;} and Wi(w;) = ¢ (i > 1). Its contents will be renewed at the beginning of
each round i. For each i (1 €¢ <n—3d—1)and each j (1 < j < n—1), during round i each node in
Wi(w;) executes the following operations:

(1) Each node p € Wi(wj) sends its message to g2(p), g3(p),- - -, gsa+1(p) sequentially. Then
node p broadcasts its message in a binary jumping way as described in Section 4.2. That

is, p sends its message to gza+1+1(p), g3d+1+2(p), -, 93d+1+2* (P) sequentially, where k is the
maximum integer such that 3d+ 1+ 2¥ < n —1.

When all of g5(p), g3(p), - -, g3a+1(p) have received the message, each node u € {g2(p), g3(p),
-+, gsd+1(p)} executes the following operations:

(2) Along gn—i+1, u sends the message received from p. Then after gn_iyi(u) receives the
message, it transmits the message to node u’ through a path such that r(v/[2,d + 1]) =
r(uw'[d+2,2d + 1]) = r(u’[2d +2,3d+1]) = j. Let Routel” (u) be the set of nodes on the
path from u to u'. Node u' is added to Wi (w;).

Let 3d + 1 < dim < 3d + 1 + 2%. Each node v in the set of nodes (including gsa+1+1(p), g3ds1425° " "
g3da1+2+(p)) that received the message along an edge gJ;,,, broadcasts the message in a binary jumping
way as described in (3) below:

(3) When p sends a message along g5, +1421-1> U first receives a message from gj;,, (it is

not necessarily that v receives the message directly from p). Then v sends its message to

9dim+2:(V); Gaim+21+1 (V) - -+, Gdim+2¢(v) sequentially, where g is the maximum integer such

that dim + 29 < n —i. When the binary jumping transmissions finished, p and all the nodes

that received the message along a dimension among gs4+2,93d+3,- - -, gn—i, send the message

along gn—i+1. The set of the final n — 3d — i nodes that have received the message along
Gn-i+1 is denoted by BJ;(p). All the nodes in BJ;(p) are added to Wiy, (w;), too.

The operations listed (1), (2) and (3) above are called Rule (1), Rule (2) and Rule (3), respectively. We
will give'a further detailed description about our broadcasting scheme in Subsection 4.2.

Lemma 4.2 Let w; = %j (1 < j < n) be a message source in Sy, at the beginning of the recursive stage.
For each i (1 < i< n—3d) and for an arbitrary node p € W;(w;), r(p[2,d +1]) = r(pld + 2,2d + 1]) =
r(p[2d 4+ 2,3d + 1)) = 7, where 1 <i<n-3d,

Definition 2 Let p € Wi(w;), H = {g2(p), g3(p), - -, gsa+1(p)} and Yi(wj,p) = U Routel? (u). Let
Xi(wj,p) be the set of nodes that have received the message directly or indirectly from node p but not in
Yi(wj,p) during round i. We define Ui(w;) = U  Yi(wj,p) and Vi(w;) = U Xi(wj,p).

PEW;(w;) PEW:(w;)

Definition 3 Let w; be a message source in Sy, at the beginning of the recursive stage. Forl <i < n-—3d,

the i-level channel rooted at wj, denoted by Ci(w;), is defined as |J (Ux(w;) U Vi(w;)).

The next lemma is immediate from the definition of the i-level channel.

Lemma 4.3 For1<i < n—3d, at least one node in each S,_; obtained by fizing the last i symbols of
the labels of nodes of S, is contained in the i-level channel rooted at w;, Ci(w;). a



Lemma 4.4 Let w; = xj (1 < j < n) be a message source in S, at the beginning of the recursive stage
satisfying r(w;[2, d+1]) = r(w;[d+2,2d+1]) = r(w;[2d+2,3d+1]) = 5. Then for eachi (1 <i<n—3d)
n—-3d—1
there exists the i-level channel rooted at w; such that the id of every node in  |J Uk (wj) 15 j.
k=1

Proof By the definition of the i-level channel rooted at wj, Ci(w;) = O (Ui{w;) U Vi(w;)). From
Lemma 4.2, for each node p € W;, r(p[2,d +1]) = r(p[d+2,2d+1]) = r(p[?lzci:-ll— 2,3d+1}) = j. According
to Rule 3 of the recursive stage, the identifier district of each node in Vi(w;) (1 <i <n— 3d) remains
unchanged. Hence, the id’s of all the nodes in H—U'I Vi(w;) are equal to j. On the other hand, from
Rule 1 and Rule 2 of the recursive stage, at most I:;lle of u[2,d + 1], uld + 2,2d + 1] and u[2d + 2,3d + 1]
of each node u € Ui(w;) (1 < i < n — 3d) has changed. Hence, the id’s of all the nodes in n_Ul_l Uy (w;)

are equal to j. ]
From Lemma 4.1 and Lemma 4.4, the following theorem is immediate.

Theorem 4.5 Let wy,ws, -+, wn—1 be n — 1 message sources in Sy,. Then for eachi (1 <i<n—3d),
there ezist n — 1 node-disjoint i-level channels Ci(wy), Ci(wz),- -, Ci{wn-1). a

Lemma 4.6 For 1 <i < n— 3d, the time needed in round i of the recursive stage 1s 3d + max{log(n —
3d—i)+1,13] +1}.

Theorem 4.7 Let s be the source node in Sp. For an arbitrary sub-star network S3qy1 obtained by fizing
the last n—3d—1 symbols of the labels of nodes in Sy, s can send the message to n—1 distinct nodes in the

n—3d-1
S3as1 through n—1 node-disjoint paths within n+| %] —1+ 3 (3d+max{log(n—3d—i)+1, 3] +1})
i=1
steps.

4.2 Diffuse-Disseminate Scheme in Faulty Star Networks

We are now ready to formally describe our fault tolerant broadcasting scheme in Sn. We assume that there
exist at most f faults in Sy, where f < n— 1. Our broadcasting scheme, called the Diffuse-Disseminate,
consists of two stages. This scheme is described as follows:

procedure  Diffuse-Disseminate

(* for each node u *)

if u is the source node then /* the pre-stage */

fori:=2ton—1do
send the message along g;*

if u has the message then send the message along g,
if u received a message from g;; then
for i:=1to |%] do :
adjust u so that r(u[2,d +1]) = r(u[d + 2,2d + 1)) = 7(2d + 2,3d + 1]) = un
(* u, denotes the last symbol of u *
for i := 0 to n — 3d — 2 do /* the recursive stage */
begin
if u has the message then
begin
for j:=2to3d+1do
send the message along g;
call Binary-jump(3d + 1,n — %)
end
if u received the message from g¥ (1 < j < 3d +2) then send the message along gr,_;
if u received a message from g¥_; then call Route(u)
end
call Dissem(n, |32 + 4) /* the disseminating stage */

Binary-jump(n;,na) is to distribute the message from a node in S, to its neighbors in a binary
jumping way. Route(u) can transmit a message from u to a node with no destroyed block in its id
district. Here, we omitted their descriptions.



Theorem 4.8 Procedure Diffusing-and-Disseminating can broadcast o message from the source node to
all other nodes in S, within (1 + €)nlogn steps if there exist at most n — 2 faulty nodes and/or links in
the network, where € is a positive constant less than 1.

5 Amnalysis of Broadcasting in S, with Random Faults

Since the connectivity of §, is n — 1, any broadcasting scheme in S, can tolerate at most n — 2 faults.
However, if we assume that faulty places are randomly distributed in a network then the worst case occurs
rarely [5]. Hence, even if there exist much more than n — 2 faults in Sy, broadcasting may succeed with
a high probability. In this section, we give a probabilistic analysis of the reliability of our broadcasting
scheme and have the following theorem.

Theorem 5.1 For any constant o < 1, if there are no more than (n)* faulty nodes randomly distributed
in Sy, broadcasting by our scheme succeeds with a probability higher than 1 — 1/nl. '

6 Conclusion

We showed that our broadcasting scheme tolerates up to n — 2 faults in S,, and that its running time is
O(nlogn). This running time is optimal for the asymptotic order and almost optimal for the constant
factor of the order. We conjecture that the scheme might be optimal even for the constant factor of the
order, too. This problem is theoretically interesting, and worthy for the further investigation.
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