Predicative Verification of
Real-time Communicating Processes

Kanako Shinohara Shoji Yuen Toshiki Sakabe Yasuyoshi Inagaki

Department of Information Engineering,
Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-01, Japan
sinohara@sakabe.nuie.nagoya-u.ac.jp
{yuen, sakabe,inagaki}@nuie.nagoya-u.ac.jp

Abstract

We present a verification method of real-time communicating processes with the
synchronous communication mechanism based on a predicative specification. The
predicative specification is originally proposed by Hehner for asynchronous commu-
nicating processes[l], where a communicating process is translated into a first-order
predicate formula.

The predicative specification is inherently “proof-oriented” in that the predicate
calculus directly provides the framework for proof. To verify that a process P satisfies
a specification S is reduced to the proof of [P] = S where [P] is a predicative
specification of P where S is given as a first-order predicate formula.

In this paper, we propose a proof technique as a verification method where a speci-
fication is also given by a process. To verify that a program P should satisfy a spec-
ification @, i.e., to prove [P] = [@], we decompose the proof into smaller parts
using the fact that a specification formula derived from a process can be decomposed
into the input part and the output part. For this propose, we define a “normalized”
specification formula in which inputs and outputs are separated. Finally, we show a
checking algorithm for our verification method following the structure of normalized
formulas.

KRFLEE 7 1 & X ORBFEAARTDR I3 D REEE
BN AMERT AR RS B AR HOE

AEBRKY T8 HRITER
T 464-01 £ BT TREXREET

W=

AR T, Hehner Lo TRBINTWIERFET o0t XORFBEHT KR, ERMHK
ELOBET 0 EROBMICHGREL, REMOERICE S RERFRRETS. FRHICBT
SERFUBE YR, APNCEEA N =XL2HL, BER— MBI 3 BISMR
M 2B ERTS.

BEOBERRTIE, UTO X 5 C—ERBERBOBINERAFER L> TV AT AORIE
¥475. 70k R P OREOEEYRTRARY [P] L45. P KERSALHE S
—HABREORBEXTEXNE, P2 S #WETHESNEVSRIER, [P]= S
—HERBEREORMTIEHTIZLITRETES.

ARTIE, L 7R AR TEX OGN A BAKERTS. BRI ov xR P A7
AR Q EWITHE I PORE. T2bE, [P] = [Q] PHEFAFHEYERT 3.
FutA P ORBHEREETRER][P] 1, TRICHT AN ERTHRER L 2OH
NERTHRARLIZOVT IR TEDS. ZORKERL, [P] 2Eh L RENSMER
BEEBCETRL, TOBERCHES T, EALEZ/ NS BHRESCHB LTS TA A
Y XnkbExB.

1 Introduction

Recently many formal models that incorporate
“time” have been proposed based on the com-
municating process framework [4][7].In those
models, many approaches have been taken to
reason communicating processes that interact
with the environment with time constraints.
In view of a communicating process as a
model of concurrent programs, we aim to model
the reliability for program with time constraints
in a formal framework. For this purpose, we
realize a communicating process as a first-order
predicate formula where its behaviors are spec-
ified as the interpretation of the formula. The
framework of first-order predicate calculus pro-
vides the direct method to provide a “proof”
that a program satisfies a specification. This
“proof-oriented” approach is originally taken
in [1}[2] for the asynchronous communication
mechanism. We extended the approach previ-
ously in [8] for real-time communicating pro-

cess with the synchronous communication mech- -

anism. In this paper, we further investigate a
verification method for this approach.

In [2], the predicative specification of com-
municating process with time constraints is
introduced, where the communicating mech-
anism is totally asynchronous, thus a process
that requires a value on an input channel must
wait arbitrarily long until any value is avail-
able on the channel. But in the real situa-
tion, an input value is required to be enabled
when a process requires it in such a situation
like providing a password at logging into a ma-
chine, where a machine must “time-out” and
notify the failure if a user does not provide
a correct password in time. With this obser-
vation, we take a view that a communication
is synchronous in nature to specify real-time
communications.

The final goal of this paper is to provide
a systematic verification method for our pred-
icative specification to deduce an implication
between specifications of processes. This kind
of proof is useful to verify a step of refinement.
We take the advantage that the specifications
of processes are restricted in the form. Intu-
itively a process is specified to reach one of
specified states offering specified outputs if a
specified pattern of inputs are provided, there-
fore we can convert a specification formula into
“a normalized specification” where inputs and
outputs are syntactically separated. We show
the algorithm to prove normalized specifica-
tion formulas by decomposition.

The rest of the paper is structured as fol-
lows. section 2 reviews the timed predicative
specification shown in [8] with some modifica-

tions. Section 3 proposes the proof technique
and the algorithm. Section 4 concludes the
paper.
2 Predicative Specification
As in the untimed predicative specification [1],
an interpretation for a communication channel
is a trace of values where each value is stamped
with the time to happen. This timed trace is
similar to that appearing in [6] or [2].

Let the set of non-negative real numbers
be denoted by R2%, then a time dorain is
R* = R2%U {cor} where cor is a constant

* that designates the “unbounded time”, where

r < oot for all r € RZ%. Over time domain
R, we assume the operation extended with
oor+r=r+00=007 and cor —r = 0OT.

Given a set of values V and a time do-
main R, (v,t) € ¥V x R*® is called a timed
value. (v,t) is intended to mean a communi-
cation or a update involved in value v at time
t. We shall call ¢ the time-stamp of timed value
(v,t) with the projections with postfix nota-
tion .ts and .val respectively:for timed value
v, = (v,t), vi.val = v and v;.ts = t. The time
shift operation denoted by v;\t', is defined as:
v\t = (vi.val,vy.ts—t') Intuitively, v;\t' gen-
erates the timed value relative to time t’.

A operation non-negative subtraction — over
R20 is defined by:

ifry > re
otherwise

. ry—T
T1—Tro = { 01 2
First we define a history sequence, called a

timed history, that is designated for an obser-
vation for a communication channel.

Definition 1 Given a set of values V, a timed
history h 1s a (possibly infinite) sequence of
timed values for V. We denote (i+1)-th timed
value of h by hli]. A timed history has the
following conditions:

1. hl0]4s > 0;

2. i< j implies h[i].ts < h[j].ts; .

3. for allt € R2V there exists i such that

hli)-ts > t if h is infinite.

For timed histories, we use the following nota-
tion throughout the paper:

e The projection functions for timed his-
tory h; h.walli] = hfil.wal and h.tsfi] =
hli].ts

o The time shift operator for a timed his-
tory h; h\t = K such that A'[i].val =
hli).val and h'[i].ts = h[i].ts—t

o We write #h for the length of h if h is fi-
nite. Otherwise #h = 0o, where co is an
extra constant that means the “infinite
length”.

o #h =n if hfi].ts < oor for all 2 < n and
hlj] = (L,007) if j > n, where L isa
distinguished value for “undefined”.

o We write ~ for concatenation of timed
histories. If #h =00, h ~h' =h

e h <} if for some hg ' = hg —~ h, and
h < K if for some ho, K’ =h —~ ho

Timed values and timed histories constitute
the domain for models of specification formu-
las of real-time communicating processes. A
process is specified through a specification for-
mula that satisfies the intended observation of
timed values and timed histories. We next dis-
cuss the specification formulas.

Before giving the specifications, we define

a structure over time for time constraints of
programs.

Definition 2 Let the set of non-negative ra-
tional numbers be denoted by Q2. Given q1,q2
Q20 and g3 € Q20U {oor} such that 1 < g2
and q1 < g3, a time interval is one of the fol-
lowing forms: 0, [q1,¢2], [11,43), (q1,¢2] and
(q1,93). We usually use I for either form of
time intervals and T for the set of all time in-
tervals.

2.1 Specification formulas and imple-
mentability
A communication process may have program
variables X, communication channels T' and
time variables Ty,. A The behavior for each
variable is specified by its initial state and its
final state. I'is supposed to be partitioned into
two disjoint sets i, and Tous. T'in stands for
the set of input channels and I'sy: stands for
output channels. We usually use c or ¢j, ¢z, ...
for input channels, d or di,ds,... for output
channels in the rest of the paper. We write 7
for a vector of variables {v;,v2,- -, Un), where
v; i8 a free variable. ’
Then, a specification formula has the fol-
lowing types of free variables;

1. X: A set of initial computation vari-
ables, ranged over by Z, Z1,Za,- .

X: A set of final computation variables,
ranged over by &£, %1, £2,-- -

2.

3.
over by ‘c,ri, ce

. T': A set of final channel variables, ranged
over by ¢, d,---

. T,: A set of time variables, ranged over
by 2,%1,%2," -

For X and X, timed values are assigned, for r
and I', timed histories are assigned, and for Ty,
nonnegative real numbers are assigned. We

€

T': A set of initial channel variables, ranged

call a variable marked by “'” initial and a
variable marked by “”” final

First we argue the implementability of a
specification [2] as the untimed framework [1],
we have introduce the “chaos” specification to
ensure the consistency of the initial/final re-
lation. The chaos specification is defined as:

K =g ts=0AETEANd<d
Following [1], we claim that K is the least
specification with respect to determinacy. There-
fore only a specification formula that implies
K is admitted as a specification of a process.
Since every specification [P] for process P
must be implementable, the following implica-
tion must hold.

v0,3, [[P]= K]

2.2 Real-time Communicating Pro-
cesses

In this section, we define a language for real-

time communicating processes which is a di-

rect extension of Hehner’s language [1] anno-

tated by time constraints for communications.

2.2.1 Syntax of Processes

¢ Sublanguage for values :
Given operations %, and a set of computa-
tion variables X, a value ezpressions over X,
ranged over by e, is a well-formed term built
from £, and {z.val | z € X}. A ground ex-
pression, i.e. with no variable, is assumed to
be evaluated to some v € V.

e Language for processes:

Let X,T,7, and Z be a set of computation
variables, communication variables, time vari-
ables and time intervals respectively. We write
e for a expression over X and b for a boolean
expression over X. Let z,z1,29 € X, ¢, ¢1,¢2 €
Tin, d € Tous, I, 1, 1o € T and m is a timed
expression generated over R0 and T,. A pair
of an input channel ¢ and an output channel
d, written as ¢ « d, is called a communication
channel and let Com be a set of communica-
tion channels.

A real-time communicating process P is de-
fined by the following BNF:

P u=skip(m) | z:=re|dlje| iz — P
| P1; Po| Pilicom Po| P1or Py
[{a?nzs — P Oc?pze — P2
| if b then P; else P

The intuitive meanings of process terms
are as follows:

- skip(rn) is the empty operation but m time
units past.

- z =7 e i3 an assignment of value e into com-
putation value z in I.

- dlre emits value e via port d in J

- ¢z — P receives a value to variable z via
port ¢ in I and becomes P in which variable z
is replaced by the value received.

- Pj; P, i8 the sequential composition that P,
starts immediately after P; gets inactive.

- P |lcom P2 is the parallel composition of P,
and P connected by Com. As a syntactic re-
striction, P, and P, share no program variable
nor port variable.

- P or P, i a nondeterministic choice.

- [ei?nx — P O ¢?p,z — P] is the external
choice. If any value is available on either of ¢;
in I1 or ¢ in I, the process takes the value
and choose the branch.

- if b then P, else P, is the conditional choice.

2.2.2 Translation
We write fZ for the expression obtained by
replacing each occurrences of ¥ with the cor-
responding expression €. In the specification,
1, i8 a distinguished time variable to represent
the termination time of the process. We con-
sider a process is terminated at t if no more
communication is enabled after ¢.
e Skip skip(m)

def (B\m =) A (to =m) A K
e Assignment z:=;e .

e H[telAf=T i yAtu=t]AK
where & = e-
¢ Output d';e .

3 [F =T (s ALETAL =t]AK
o Input Let Shift(P,¢) be the shorthand for

DI tu
LV Shlft(P t) is the process all timed

variables of which are shifted backward by ¢.
L #e>0A00ts€)

= Shift(P, ¢[0] ts)cm] ..]IAK
e Sequential comp051t10n
P;Q & [-Vi|P & K]

= 3030 [P 1« AShift(Q,)I] |A K

. Para.llel Composxtlon P ”Com Q

& 3f Z[Pl AQ]3': Aty = magz(ty, to)

where Com = {¢; — d; | 1 <i < n}
e Deterministic Choice
if b then P else Q
& (bval A P) V (=bval A Q)
. Nondetermmlstxc Choice
P or Q f pv Q
e Input Choice

clizr— P =

[a?hz = P Oc?ny— Q)
C (o =0ve0tsg)
(#CQ-—OVCQ[O]tS¢Iz)/\K]
V[#&1 > 0 A &1[0].ts € I A &1[0] -85 < &2[0] 25
AShift (P, & [0]. ts)cl[()] St]

V[#& > 0A &[0)ts € I A 02[0] ts < &1[0].ts
AShift(Q, &2[0]. ts)bz (o), 62[1 1]

2.2.3 Specification Examples

In the following examples, we interpret L;, as
the port that accepts a password, So,; as the
port that displays a prompt, and P,q as a per-
son who is giving a password “#” to login.
Example 1 The person can always give the

password and login to the machine with the
prompt on the screen.

[Lin?n2 = Soutt"%" |{1i0Pya} Puwd'n,"#"]
where I = [0,30] and I = [0, 20]
3Lin3Pua] (Lin?1T — Sou I”%”)h

/\(Pwd I ”:#://)t2]P od A Foa

Aty = maz(t1,12))

= I [{i' _ </I#I/ t) A Saut Sout I %II
At €[0,20)Ata=1]

Atp € [0,30] At, = maz(t1,t2) AK
Example 2 The person may fail to give the
password in time. Then, the login procedure
results in meaningless.

[Lin?lgx — Soutls ”%” ”{L;,,PP,M} Pwd!14 ”#”]
where I3 = [0,30] and Iy = [0, 60]
def

= EII',i,,EiPwd[(Lin?l;,-'t — Soutls ”%");L
Lin Py
/\(Pwd!h ”#”):z,]Pwd A ¢

Aty = maz(ty,t2))

(Consider P,q = ("#',t
= K

3 Verification Method

~ From now on, we focus on the specification
formulas derived from processes by the pred-
icative specification. Viewing a process also as
a specification, it is important to prove that a
process satisfies another process in the situa-
tion to prove a step of “refinement” [3]. In this
section we investigate a systematic proof tech-
nique by decomposing a specification formula
into smaller parts of input/output formulas.
We convert a specification formula into a
composition of condition formulas and asser-
tion formulas. Intuitively, condition formulas
indicate input condition for process P and as-
sertion formulas indicate output from process
P when the condition is satisfied.

def

) for some 30 < 1< 60)

Definition 3 A condition term ¢s a term the
variables of which are only initial. An atomic
condition formula is of either form of (c-1) or

(c-2):

(c-1) My = Mo, My < My or My > My where
M and My are condition terms.

(c-2) M.ts € I where M is a condition term.

An atomic assertion formula s in the either

form of (a-1), (a-2) or (a-3):

(a-1) K »
(a-2) 9 = M ort = M where v is either of
a program variable, an input channel or out-
put channel and M is a term and t is a time
variable

(e-3) t € M where t is a time variable and M
is a term
Definition 4
(i) Every atomic condition (resp. assertion)
formula is a condition (resp. assertion)
formula.
(ii) If a,B are condition (resp. assertion)
formulas, then so are ~a and a A f.

Definition 5 (Normal Form) A normal form

is a disjunction form: Vi[CF; A AF;]| where
CF;’s are condition formulas and AF;’s are as-
sertion formulas.

Theorem 6 For any process P, there exists a
normal form that is logically equivalent to [P].

For notational convenience, we write N F(P)
for the normal form of the specification for-
mula of P, CF(P);’s for the condition formu-
las of NF(P) and AF(P);’s for the assertion
formulas of NF(P).

Lemma 7
NF(P)=VY [CF(P); AAF(P);]

NF(@ =Y [CF(@; A AF(@);]
Then, if

-

V6 L[NF(P) = NF(@Q)]

Vidj [(CF(P); = CF(Q);)
A(AF(P); = AF(Q);)]

Next we show the algorithm to see if [P] =
[@} by proving NF(P) = NF(Q). By de-
composing N F(P) into CF(P) and AF(P),
we can construct a checking algorithm. In the
algorithm, we use the fact that checking a im-
plication of condition formulas is easier than
checking a implication of assertion formulas
from the definition. In the algorithm, first we

check CF(P); = CF(Q);

and only when this implication is satisfied, the
procedure may proceed to check:

AP(P); = AF(Q);

Checking Algorithm
Let CF(P);, CF(Q); be as following formulas:

CF(P); = /k\ F(P)i

CF(Q); = AF(@Q)
where F(P);k, F(Q);1 are atoms.
I seti=1.
[step I-0]
Set SO (P); = { CF(Q); | Yi.CF(Q); }
[step I-(k+1)] (for k > 0)
If S()(P); has an empty formula @, then
goto step II. Otherwise, set
S®(P);
= {CF(Q); | Vi3l [CF(Q); € SW(P);
with F(Q);; where F(P)iyx = F(Q)j 1}

If S)(P); is the empty set, terminate
this algorithm with the result
“N F(P) not satisfy NF(Q)”.

Otherwise for the same F(Q);; as the un-
derlined part, set

S(k+1) (13)t
= {CF(Q); | Vi CF(Q); € SW(P);,
of which F(Q);; is eliminated]} and
go on to step I-(k+2).

II. An empty formula means that all atoms
are satisfied with CF(P);, i.e.,
CF(Q)j=F(P)a A+ ANF(P)ij-1
Then check AF(P); = AF(Q); in the
first-order predicate calculus.

If “AF(P); = AF(Q); is valid” then
i=1+4 1 and goto step I-0.

Otherwise, terminate this algorithm with
the result “N F(P) not satisfy NF(Q)”.

Proof Example

P=[c?nz — skip(0) O ¢o77,y — skip(0)]
Q = ¢175,z — skip(0) or ¢2?7,y — skip(0)

We prove [P]=[Q].

At first, we transform a specification for-
mula into the normal form as follows:
(underlined parts are condition formulas)

NF(P)
= [#L =0A#&=0AK]
V[#bl =0A &[0].ts ¢ I, A K]
V[e1[0].ts ¢ I1 A2 =0A K]
V{t1[0].ts & I1 A &2[0].ts & Io A K]

V[#bl >0A8 [0].ts el; A ’l.'J‘ = ’i-; :1[0]2[11]

V[#e > 0AB[0lts € AT =1 Loy]
NF(@Q)
[#& = 0A K]
V[bl[O].ts ¢ I A K]
Vl#e& = 0A K]
V[22[0].ts ¢ Io A K]

V[#b} >0A (\31[0]18 el /\'1-5) :1[0161[1]]

V[#e >0A%0)tse LAT=1

Then we prove NF(P) = NF(Q) as fol-
lows:
Proof:
Lseti=1,CF(P)1=#&=0A#&=0
[step I-0] set
SO(P), ={ CF(Q); | ¥i.CF(Q); }
[step I-1] S©(P); has no empty formula @,
then set
SOP) = {CF@)} = {#u = 0}
5)(P); is not empty, then set
SW(P), = {0 }
then goto ste
[step I-2]
then goto II
II. from AF(P); = AF(Q)1 = K, clearly
AF(P)1 = AF(Q)
2 and goto step I-0. ---

g(P) 1 has an empty formula @,

then i =
In the same way, we prove that

vidj [(CF(P); = CF(Q);)
AAF(P); = AF(Q);)]

Then, NF(P) = NF(Q). »

Next we check NF(Q) = NF(P).

Proof:
Iseti=1 CF(Q) =+#& =0
[step I-0] set

5O(Q)1 = { CF(P); | Yi.CF(P); }
[step I-1] SO(Q); has no empty formula 0.,
then set
5O(Q); = {CF(P)1} = {#& = 0A# = 0}
50)(Q); is not empty, then set

SW@Qn = {#62 =0}
then goto ste?
[step I-2 (@h has no empty formula, and
this a.lgonthm terminates.

There is no C F(P); satisfied by CF(Q)y, i.e.,

NF(Q) = NF(P) is not satisfied. |
4 Concluding Remarks

We have presented a predicative specification
for real-time communicating processes with the
synchronous communicating mechanism, the

ez[o]ag[x...]] ,

earlier version of which is appeared in [8]. The
translation from a process to a first order pred-
icate formula is compositional, especially com-
munications are specified basically as the con-
Jjunction -of formulas. Next, we focused on
specification formulas derived from processes
and gave the proof technique by decomposing
a specification formula into the input part and
the output part.

The notion of time stamp appears gener-
ally in the specifications with time. In our
framework, the time domain is the non-negative
real numbers, but no underlying nature of time
is assumed other than density. Our commu-
nication model is synchronous, but not fully
compatible with the usual process algebras like
[4][6] in that the communication channel may
be seen as a queue with time constraint where
no message is lost even if the time constraint
is expired. In that case, the specification will
report the failure.

Our communication model is more suit-
able to report a “failure” of communication.
Thus, the usefulness of the specification will
be exhibited by the application to the situa-
tion where strict reliability is required. We
need further investigation in this respect.

References
[1] E.C.R. Hehner: “Predicative Programming
Part 1 & 2”7, Communication of ACM vol

27,pp.134-151, (1984)

[2] E.C.R. Hehner: A Practical Theory of Pro-
gramming, Springer-Verlag, (1993)

[3] D. Scholefield, H. Zedan,He Jifeng., ¢ A
Predicative Semantics for the Refinement of
Real-Time Systems”, LNCS 802,pp.230-249.
(1994)

Liang Chen: “Timed Processes: Models, Ax-
toms and Decidability”, Ph.D Thesis, CST-
101-93, University of Edinburgh, (1993)

[5] E.C.R.Hehner, L.E.Gupta and A.J.Malton,
“Predicative Methodology”, Acta Informat-
ica 23, pp.487-505. (1986)

[6] Rajeev Alur, David Dill: “Automata For
Modeling Real-time Systems”, LNCS 443,
pp-322-335. (1990)

[7] U. Holmer, K. Larsen and W. Yi: “Deciding
Properties of Regular Real Timed Processes”,
LNCS 575, pp.443-453, (1991)

S. Yuen, K. Shinohara, T. Sakabe and Y. Ina-
gaki: “Predicative Specification for Real-time
Communicating Processes”,12th Conference
Proceedings Japan Society for Software Sci-
ence and Technology, pp.181-184, (1995)

[4

[8

