Toar vy 8-11
(1996. 28)

%\

W7 R 7T I Y7 F5E Sushi O7 /7 — 33 VI X AR FME
HEEW L
{suga,yamanaka}@iias.flab.fujitsu.co.jp
(¥R) B-LERET ERESRENER
T261 TENEEXDHL -9-3

EFo# 707 5 I 7 E5 Sushi (Smartly User Schedulable HIgh-level Language) 7/ 7—3 3 » 4%
EHCWIETSROHRICIDOWT, N-ARE%#E { Barnes-Hut 7NV T X b %8B & LTIiT» 7-SHEORK R
2oV THET S, Sushiid, V-2 A7—Y3V IR LBV TEHHLERER L 2 —F 5 {42
TH L2 AMLE LTRESNAFTETHY, BEELT / 72 a O »TI -2 A5F—Varvy
FAYLTOTU Y ADTHIC L ZHAEMESERTEL LA TEL. L L, ABCSETFI VL
FEEOWMED S DOEEDHEICL) 20H 5.

An Evaluation of Parallel/Distributed Programming Language
Sushi

Hiroyvasu Sugano Hideki Yamanaka
{suga,yamanaka}@iias.flab.fujitsu.co.jp
Institute for Social Information Science,
FUJITSU LABORATORIES LTD.

1-9-3 Nakase, Mihama-ku, Chiba 261 Japan.

We developed a parallel/distributed programming language Sushi (Smartly User Schedulable HIgh-level
Language) with the programmable annotation designed to provide a flexible resource management facil-
ity on Workstation clusters. In this paper, we report an evaluation of current Sushi specification and
implementation by applying it to well known parallel programming benchimark Barnes-Hut method, one
of most important hierarchical N-body algorithms. While attaching a simple annotation can realize a
performance improvement by process distribution among the clusters, we found some problems on Sushi

language and implementation.

1 Introduction

Developing parallel/distributed software is a
hard task not only for novice programmers but
even for experts in parallel programming. The
reason is that there is no established method-
ology for resource management to utilize par-
allel/distributed computing environments effec-
tively. In a conventional style, programmers
writing parallel/distributed programs have to
specify the suitable strategy for resource allo-
cation in the program itself in a try-and-error
manner. While parallel computers and work-
station clusters on LAN are getting very popu-
lar these days, those possibly high-performance
computing environment are not often effectively
exploited. It is an urgent demand to develope
an easy-to-use parallel/distributed computing
environment.

Parallel/distributed programming language
Sushi (Smartly User Schedulable HIgh-level
Language) [5, 3] has been developed for meeting
such needs. One of the novel feature of Sushi is
a separation of the computation part, in which
problem specific algorithm is described, and the
annotation part, which is programmable anno-
tations specifying resource management. Anno-
tations are provided as a library in Sushi distri-
bution, so users can use those built-in annota-
tions or default annotations to exploit the com-
puting and network resource effectively with-
out much difficulty. Moreover, performance-
concious programmers or experts for parallel
programming can write best-fit annotations for
problems they actually try to solve.

In this paper. we report an evaluation of
current Sushi specification and implementation
by applying it to well known parallel program-
ming benchmark Barnes-Hut method[1. 2}, one
of most important hierarchical N-body algo-
rithms. The Barnes-Hut method is widely used
as an benchmark of shared-memory multipro-
cessor machines. The reason is in its character-
istics; it deals with dynamically changing sys-
tem of particles or bodies, and the communica-
tion pattern of the program depends on the dis-
tribution pattern of particles, and thus is quite
unstructured. Most of the computing time is
spent in the force computing of each particle,
which is actually traverse of the hierarchical
tree once per particle.

CPU3 (Sushi Server)
CPU1(Sushi Server) ‘

Annotation
1 Computation Process

Figure 1: Sushi processes

The language Sushi is implemented on clus-
ters of workstations with Solaris 2. 4 and SunOS
4. 1. 3 operating systems, and it provodes net-
work transparent streams and arrays as commu-
nition facility. In our experiments, we built two
models of Barnes-Hut algorithm based on dif-
ferent communication structures, one is based
on shared array and the other is based on
stream communication. As a load balancing
strategy, we tried simple process distribution,
which migrates particle processes at random,
and CPU-based process distribution, which mi-
grates particle manager processes one for each
CPU. While the results we have at present are
still intermediate, we found some problems on
language design and implementation of the cur-
rent version of Sushi.

After presenting a brief overview of the lan-
guage Sushi in the next section, in Section 3,
we present the characteristics of hierarchical N-
body method Barnes-Hut. In Section 4, we
show how the annotations of Sushi can be uti-
lized to realize the load-balancing of the algo-
rithm and give preliminary evaluation. In Sec-
tion 5, we make a discussion on the current
research status of Sushi, and conclude in Sec-
tion 6.

2 Overview of Programming
Language Sush:

Parallel/distributed programming language
Sushi is designed to effectively utilize dis-
tributed memory parallel computers and the
workstation cluster on a local network. One of

/* {"hostname", SPEC-INT} */

point of

CPU[1={{"olive",88},{"purple",88},{"ivory", 8g}, evaluation

{"cyan",40},{"magenta",60}};

/* {"networkname", bandwidth (Mbps)} */
NET[]={{"£ddi0",100},{"etheri" ,10}};

/* {"absolute-lib-path",...} */

ANN[]={"/usr/local/lib/sushi/ann/cooperate.so"
“/usr/local/lib/sushi/ann/another.so"};

Figure 2: Example of Configuration file

the novel features of Sushi is a separation of the
computation processes, in which problem spe-
cific algorithm is described, and the annotation,
which is programmable annotations specifying
resource management such as process migration
under the dynamic control of annotations. It
appears that such dynamic and programmable
annotations can express a variety of balancing
strategies which are beyond the reach of static
compiler-based methods.

The computation processes (or Sushi pro-
cesses) is actually a set of concurrent sequen-
tial processes communicating each other via
streams and associative arrays, the former real-
izes asynchronous inter-process communication.
Sushi processes can be spawned by other Sushi
processes explicitly. and each Sushi process can
be attached with one annotation at the time
of the creation. The figure 1 shows pairs of
computation processes and annotations are dis-
tributed on some CPUs.

Annotations provide facilities to make an ac-
cess to information managed by the Sushi run-
time system and the operating system. They
are also used to modify the location and pri-
ority of the procees exection. Table 1 shows
some of useful system variables and functions
available in the annotations of the current ver-
sion of Sushi. They can be used to know the
CPU load, communication traffic. the current
computer and network environment. The allow
us to specify the process priority and dynamic
process migration.

Annotations are usually exploited as shared
libraries independent with Sushi programs.
Users can bind annotation library among sev-
eral libraries at the execution time, and this will
make performance tuning effective. The bind-
ing of annotation library can be specified by a
configuration file. which is used to give global or

far enough away group of

particles

., Figure 3: Approximation of particle group

physical information to Sushi run time system.
The Sushi system reads the configuration file
at the execution time and determins available
CPUs and annotation libraries. Figure 2 shows
an example of a configuration file sushi.conf.
CPU[] is an array of pairs of host names and its
SPEC-INT value.

The advantage of the program structure of
Sushi can be summarized as follows. Software
developers can concentrate on the problem to
solve itself on the one hand, and performance
tuning depending on computing environment
on the other hand. This will reduce the compli-
catedness of parallel/distributed programming,
make parallel/distributed programs tractable,
and increase portability and reusability. But, as
those advantages are somewhat subjective, we
have to make an evaluation of Sushi language
based on some benchmarks.

3 Hierarchical N-body

method Barnes-Hut

Classical N-body problem simulates the evolu-
tion of systems composed of bodies or particles
under the influence of Newtonian gravitation.
As it can be apllied to many problems in phys-
ical domain, it is one of the most important
scientific computation. If all pairwise forces are
computated directly for a system with n parti-
cles, its time complexity is O(n?). The hierar-
chical method reduces it to O(n log n).

The principle of Barnes-Hut method is very
simple. It assumes that the effect of the group
of particles may be approximated by that of sin-
gle equivalent particle if the group is far enough
away from the point at which the effect is be-
ing evaluated (Figure 3). Barnes-Hut method
divides 3 dimensional space into 8 subspaces re-
cursively. Thus it builds an octree of subspaces
(cells) rooted at the whole space containing all
particles (Figure 4).

System Variables || MY_CPU Cwrrent CPU ID
MY_PID Process ID of the process

System Functions | spawn_at(CPU) | spawn the procees at CPU
migrate(CPU) migrate the process to CPU
set_priority(PRI) | modify the process priority to PRI
neighbours() array of neighbouring CPU in the network
load(CPU) the load of CPU
traffic(CPU) network traffic between CPU the current cpu
get_cpu(PID) CPU where the process PID is

Table 1: System variables and functions

Figure 4: Hierarchy of cells

Barnes-Hut method consists of four phases:
(1) building an octree of cells, (2) calculating
center of mass of each cell, (3) computing force
on each particle, (4) updating the position and
the velocity of each particle. Here, we just sim-
ply call (1) and (2) cell hierarchy building phase,
and (3) and (4) force computing phase. The oc-
tree is traversed once for each particle to cal-
culate the force acting on the particle. If the
center of mass of a cell is far enough away from
the particle, the effect caused by all the parti-
cles contained in the cell are approximated by
that of the cell’s center of mass. A cell's center
of mass is determined to be far enough away
from the particle if the following inequation is
satisfied:

I/d <8,

where [is the length of a side of the cell, d is
a distance of the cell's center of mass from the
particle, and 6 is a user defined accuracy pa-
rameter, which is usually between 0.4 and 1.2.

The characteristics of Barnes-Hut algorithm

is that the distribution patterns of particles are
nonuniform and dynamically changing. As the
communication patterns are dependent on the
distribution, it is quit unstructured. This is
the reason Barnes-Hut method is adopted by
a number of benchmark test of shared memory
parallel computers [4].

4 Parallelizing Barnes-Hut in
Sushi

Parallelization of Barnes-Hut algorithm is
mainly exploited across particle force compu-
tation and cell hierarchy building. As the scal-
ability of this algorithm is based on the number
of particles, we adopt a parallelization of force
computating phase here. Each particle can be
realized by Sushi process communicating with
the particle manager and they are distributed
among several CPUs.

Sushi programming language realizes net-
work transparent streams and arrays among
processes distributed on the cluster. So, we
have two directions to implement Barnes-Hut
communication structure in Sushi: array-based
communication and stream-based communica-
tion. Actual communication structures we tried
are two different models based on those ex-
treams.

The main components of Barnes-Hut in Sushi
are the particle manager and the cell hierarchy
manager syncronizing the phases of cell hier-
archy building and force computing. As those
phases come in turns and they must have bar-
rier syncronization, these two component pro-
cesses should be on the same machine. Our
two models differ in the communication style
of particle processes and cell building processes
via manager processes. :

e Shared array model
Communications processes
mostly done via sharved arrays. All particle
processes and cell building processes share
the same arrays for communication.

among are

e Stream model
There are no shared aray for communi-
cation between particle processes and cell
building processes.

Another axis on owr experimentation is strat-
egy of process distribution with annotations.
We choose the following two strategies in this
paper: a) simple distribution, and b) CPU-
based distribution. Simple distribution strat-
egy is to exploit the possible parallelism in par-
ticle force computing phase simply by migrat-
ing particle processes to CPUs whose load are
relatively less. CPU-based distribution is a bit
more intelligent strategy, which is to copy par-
ticle managers to CPUs to decrease the bottle-
neck at the manager. The former uses the anno-
tation locate_if_possible and the latter uses
the annotation div_conq shown in Figure 5.

At the time of writing, we only have interme-
diate results on the evaluation with Barnes-Hut,
and we can show the case of simple distribution
here. Figure 6 shows relative speedup to the
number of CPUs in the case of simple distribu-
tion in the shared array and the stream model.
What we can see from the graphs and other
data is summarized as follows;

1. We have only limited performance im-
provement for both cases. In the case
of stream model, overall performance gets
worse when the number of CPU is 4 and 5.

2. Stream communication between different
machines may cause significant overhead.

3. We use stream-as-data for broadcasting for
both cases. We found that this may be one
major cause of overhead.

Note: we used 1 to 6 SparcStations with So-
laris 2.4 operating system connected by a CDDI
network. Sushi processes are realized as So-
laris threads with Sushi intermediate code in-
terpreters. The data are generated at random
in advance. and we used 100 particles.

annotation locate_if_possible(arg) {
init : {
if (load(arg % $MAX_CPU)<2000)
spawn_at (§MY_CPU) ;
else spawn_at(arg % $MAX_CPU);

if (load($MY_CPU)>10000)
for (i in $neighbour([])
if (load($neighbour[i])<5000) {
migrate ($neighbour([i]);
break;
}
}

const THRESHOLD=5;
annotation div_conq(arg) {
init : {
if (arg>0) threshold=arg;
else threshold=THRESHOLD;
des=n_descendant () ;
sib=n_sibling();
if (des < threshold) {
spawn_at ((des+sib) %$MAX_CPU);

}

if (load($MY_CPU)>5000*cpu_speed($MY_CPU)/88)

for (i in $neighbour(])
if (load($neighbour[i]) <

1000*cpu_speed ($MY_CPU)/88) {

migrate($neighbour[i]);
break;

Figure 5: Annotations

.5 Discussions

Although the language Sushi is designed to pro-
vide a useful framework on parallel/distributed
programming, Barnes-Hut method is our first
trial to implement a scientific computation algo-
rithm in Sushi. The overall performance is not
high compared with other parallel programming
languages bacause of the current implementa-
tion based on the interpreter. While the per-
formance improvement is not sufficient either,
this improvement is realized by simply attach-
ing annotations at one line of the original pro-
gram. This is the partial realization of the facil-
ity for tractable parallel/distributed program-
ming, one of our motivations.

However, we are not satisfied with the cur-
rent results at all in the following reasons. One
is that the performance improvement is too low.
One of the reasons will be partly in the current
communication overhead in the network and op-
erating system and partly in the program struc-

4 +---Shared-Array-Mode
. Stream Model -+

Speedup

2 3 4
No. of CPUs

Figure 6: Speedup in Simple Distribution

ture which give overhead to manager processes.
To make the problem clear, we have to ana-
lyze the acquired data more thoroughly. We will
continue our experiment on Barnes-Hut making
our communication model sophisticated.

The other point is in annotation design which
we found is very restrictive. We would some-
times like to write a communication between
computation processes and annotations, but it
is quite restricted at present. We are now re-
considering our annotation design to get more
flexibility.

6 Concluding remarks

In this paper, we report imtermediate result of
an evaluation of current Sushi specification and
implementation by applying it to well known
parallel programming benchmark Barnes-Hut
method[2], one of most important hierarchical
N-body algorithms. While we do not have suf-
ficient result, we found several problems of cur-
rent Sushi language and implementation.

We expect that annotation style load balanc-
ing can provide an flexible resowrce manage-
ment on parallel/distributed computing envi-
ronment. It will have portability and reusabil-
ity as well. To make the problems clearer and
improve Sushi language, we are continuing its
evaluation from both of language design and
performance point of view.

As another large scale problem, we are
now implementing the scalable communication
server on the Internet cyberspace application
with Sushi. This is designed to serve large

amount of participants communicating each
other. Such an Internet application is a good
example of Sushi’s scalable parallel/distribution
programming. We are also examining building
Sushi system on Fujitsu AP3000.

Acknowledgement

The authors would like to thank Youji Kohda,
Haruyasu Ueda, and Takanori Ugai for their
fruitful discussions and helpful comments.

References

[1] J. E. Barnes and P. Hut. A hierarchical
O(N log N) force calculation algorithm. Na-
ture, 324(4):446-449, 1986.

[2] J. P. Singh, J. L. Hennessy, and A. Gupta.
Implications of hierarchical N-body meth-
ods for multiprocessor architectures.
ACM Transactions on Computer Systems,
13(2):141-202, May 1995.

[3] H. Sugano, H. Yamanaka, and T. Ugai. An-
notation programming in Sushi. IPSJ 95-
PRO-2 (in Japanese), 95(2):113-120, Au-
gust 1995.

[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Signh,
and A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Con-
siderarions. In Proc. 22nd Annual Inter-
national Symposium on Computer Architec-
ture, pages 24-36, June 1995.

[5] H. Yamanaka, T. Ugai, H. Ueda, H. Sugano,
and Y. Wada. Sushi - a Parallel and Dis-
tributed Programming Language with Vol-
untary Process Migration - (in Japanese).
In Proc. of 49th Conference of IPSJ, vol-
ume 4, pages 319-320. IPSJ, September
1994.

