o5 v 8-8
(1996. 8. 28)
Nepi’: 7EEICE IRy NT—T - TATSILTDEHD

2 ULNIVETERR

JEH 3E— (horita@progn.keclntt.jp), ZEF f (mano@progn.kecl.ntt.jp)
NTT 3z2=¥—3 3 VBFEER

BE FHHICED S, SBOEEREE Nepi? 23281 5. Nepi? OFHR 2200V AV TEREND, FH—
VAROVDOERER, BRA VAT AR ERTREZ 70 AL LTERTA-0ICAVLNRE IOy T I Y EE
THd. B_URVOFEIKEBHE VAT LAORRELEX250THY, DL VAT AOFHFOD
ICHWO NG, H4d rstEICET VT, Nepi? ORENERFZ © EH L, HHKIC Unix OEEN2EEEEZ AV
T, KRN B R L 52 5.

2,

Nepi‘: a Two-Level Calculus for Network Programming

Based on the m-Calculus

FEiichi Horita (horita@progn kecl.ntt.jp) and Ken Mano (mano@progn.kecl.ntt.jp)
NTT Communication Science Laboratories

Abstract. We propose a calculus Nepi? for network programming, on the basis of the 7-calculus. The
language of Nepi? is defined in two levels: the first-level language, which is a programming language,
is used for representing local systems as processes; the second-level language is used for describing and
analyzing global systems consisting of processes represented in the first-level language. We define the
operational semantics for Nepi® on the basis of the m-calculus, and give an experimental implementation

on a network using standard facilities of Unix.

1 Introduction

We propose a two-level calculus Nepi? for network
programming, on the basis of the w-calculus [11, 10};
the two-levels treats local (or intra-process) concur-
rency and global (or inter-process) concurrency, re-
spectively. We discuss the operational semantics
and an experimental implementation of this calcu-
lus.

Nepi? evolved from Nepi [5, 6, 7], which is a
network programming language based on the =-
calculus but does not distinguish between local and
global concurrency. In Nepi, any two agents can
communicate wtih each other only via a global com-
munication manager (GCM); this method of inter-
agent communication has two problems in perfor-
mance and scalability: (i) for two agents residing
within a local system, this method entails unnec-
essary global interactions; (ii) a substantial part
of the load for inter-agent communication concen-
trates on the GCM, which can be a bottleneck when
the overall system scales up. A major motive for
introducing two levels in Nepi? is our desire to al-
leviate these problems.

We distinguish between local and global con-
currency in Nepi? mainly for performance reasons.
Form the viewpoint of programming and semantics,
on the other hand, we try to keep the difference
between the treatments of local and global concur-
rency as little as possible.

In Sect.?2, the language of Nepi?® is defined in
two levels: the first-level language, which is a pro-

gramming language, defines the syntactic category
of processes and is used for representing local sys-
tems as processes; the second-level language, which
is defined on top of the first-level one, defines the
syntactic category of global systems, and is used
for analyzing global systems consisting of processes
described in the first-level language. We define,
in Sect.3, the operational semantics of Nepi? via
a Plotkin-style transition system [14]. Then we
describe a distributed implementation of Nepi? in
Sect.4. First we introduce another calculus called
the vr-calculus, which we believe to be equiva-
lent to the m-calculus at an appropriate level of
abstraction; the vm-calculus is more suited toward
distributed implementation. Next, a programming
system for Nepi® is provided by implementing the
vm-calculus in Unix using standard facilities such as
sockets and a thread library.

Pierce and Turner developed Pict, a language
based on the 7-calculus, and provided a uniproces-
sor implementation of it [13] ([15] also discusses im-
plementation methods of a similar language). As
pointed out in [13], multi-processor implementa-
tions of any language based on the w-calculus re-
main for future research. Our development of Nepi?
is an effort in this direction. With Nepi?, two pro-
grams invoked as different OS processes residing in
different machines in a network can communicate
with each other. This is why we call Nepi® a net-
work programming language.

2 The Language

The underlying framework of Nepi is the 7-calculus,
which is an algebraic calculus rather than a pro-
gramming language. To develop a programming
system, we need to specify a concrete syntax, which
we give along the lines of the S-expression syntax
of Lisp. We define the language Nepi? in two levels
as explained in the Introduction.

2.1 The First-Level Language

For the first-level language, we provide two syn-
taxes: an abstract one and a concrete one. The
abstract syntax is used for defining the operational
semantics of this language in Sect. 3, while the con-
crete syntax is used for writing programs and their
compilation. Programs in the concrete syntax are
transformed in a very straightforward way to corre-
sponding expressions in the abstract syntax.

Preliminaries. The phrase “let (z €) X be ...”
introduces a set X with a variable z ranging over
X. The set of natural numbers is denoted by w.
For n,m € w, let [n.m] = {i € w| n < i <m}. The
power set of a set X is denoted by p(X). For a set
A, we write A* to denote the set of finite sequences
of elements of A. We denote the syntactic identity
between expressions by =. The syntactic category
Id of identifiers is defined as in C. In Nepi, there
are four basic types: int (of integers), str (of char-
acter strings), chan (of communication channels),
and proc (of processes).

Let Vint Vstr; (5 E) vchany and (A e) vproc be
the syntactic categories of variables of types int,
str, chan, and proc, respectively. Each of these is
defined as a subset of Id, by specifying the starting
letter of the identifiers in it: elements of Viy, (resp.
Vstrs Vehan and Vpro) are identifiers starting with i
(resp. w, c and p). Let (2 €) Vaata = Vint U Vatr and
(1‘ E) Vval = Vdata U Vehan-

Value Expressions. We call int and str built-
in data types of Nepi, and put (¢ €) DT =
{int,str}.! A set DO of built-in operators on these
types is also provided, together with a typing func-
tion type : DO — (DT* x DT). For each t € DT,
let £; be the set of terms of type ¢ constructed from
the signature (DT, DO). We use n as a metavari-
able ranging over Lini. Let (d €) Lgata = U{Lt| t €
DT}. We assume that for each t € DT, a seman-
tic domain DV, is given as a subset of £, and
that for each operator F € DO with type(F) =
((t1,...,t.),1), a function from DV, x---x DV

We can introduce new data types and new operators
on data by giving their definitions in C. For the syntax
for doing this, see [5].

to DV; is given as the predefined interpretation of
F. Weput (d €) DV = |J{DV,| t € DT}. The
evaluation [d] € DV of each closed data expres-
sion d is determined by the interpretations of the
operators in DO .2

From Ly, the syntactic category (u €) Lcnan 0f
channel ezpressions is defined by Leyan = Vehan U
{(ch d)| d € Lg}. Finally, we define the syntactic
category (v €) Lya Of value expressions by Lya =
l:data u £chan-

Abstract Syntax for Process Expressions.
Process expressions of Nepi are constructed as alge-
braic terms from the following primitive constructs
plus A-notation (for function abstraction) and p-
notation (for recursion): (1) ‘¢’ for inaction; (2) ‘|
for parallel composition; (3) ‘v’ for generation of
a fresh channel; (4) ‘U for local (or intra-process)
output and ‘!’ for global (or inter-process) output;
(5) ‘" for local (or intra-process) input and ‘??’ for
global (or inter-process) input; (6) ‘+’ for alterna-
tive choice; (7) a set (o €) OP of output ports;
(8) a set (i €) IP of input ports; and (9) ‘if’
for conditionals. Formally, the syntactic category
(P,Q €) Lproc of process expressions is defined si-
multaneously with the three categories (G €) Lprer -
(of prefized process expressions), (A €) DC (of dec-
laration components) and (D €) D (of declara-
tions), by the following grammar:

Pi=d|(] Py P)| (v € P) M

|G| (+G1 -+ Gn)

|(if n P, P,)

l(ecd P)|(i(xzP))

| (e D A) vy -+ wn),
G:=(luvP)|(Muv P) (2

[Pu(hz P)[(??u Az P)),
Aux=(A(zy -+ za) P), (3)
D= (Ay -+ Ag), 4)

where n and k range over w.
An element (A (z; --- z,) P) of DC declares

the process A to have formal parameters z; -+ z,
and body P. For the last term ((z¢ D A) vy --- vn)
of (1) with

there must exist ¢ € [1..n] such that A = A; and
n = n(i). Regarding (4), we impose the constraint
that for D of the form (5), A1,..., Ax must be all
distinct and any element of Vo appearing in P;
must belong to {A1,...,Ax} (2 € [1..k]).

For P € Lyoc, let fu(P) denote the set of free
variables contained in P. Let

L8 . = {P € Lywoc| fo(P) = 0}.

proc

2An expression is said to be closed when it contains
no free variables.

Concrete Syntax for Programs. Besides the
abstract syntax above, we introduce a concrete syn-
tax for convenience in writing Nepi programs and
in their compilation. The concrete syntax is the
same as the abstract syntax, except that we use the
labels construct borrowed from Lisp to declare re-
cursive processes in the concrete syntax instead of
the p-construct used in the abstract syntax.

More precisely, the set Epmc (of process expres-
sion) and the one D (of declarations) in the concrete
syntax are defined in the same way as in (1)-(4), ex-
cept that we replace the term ((z D A) vy --- v,)
in (1) by (A v1 --- v,). Each concrete program
of Nepi consists of zero or more declarations of
processes and a main process ezpression. From

~

(D €) D and (P,Q €) Lproc, we define the syn-

tactic category (R €) Lprog of concrete programs in
Nepi? by

R ::= (1abels D P),

where we use the labels construct for defining mu-
tually recursive processes. For each concrete pro-
gram (labels D P) € Ly;0q, We define its abstract
form A((labels D P)) € Ly as follows: For D
having the form (5), we obtain A((1abels D P))
from P by replacing each occurrence of the form
(Ai v1 -+ vp) in P by (0 D Ai) v - vpg)
(2 € [1..k]). We note that the application of A to
concrete programs is analogous to flattening of LO-
TOS [8].

2.2 The Second-Level Language

We use the symbol IT for the global parallel composi-
tion. Let S be a variable ranging over (global) sys-
tem ezpressions which are combinations of (local)
programs running in parallel. From (P €) Lo,
the syntactic category Lyys of system ezpressions is
defined by the following grammar:

Su=P|(Il 51 S3) | (v £9). (6)
By this grammar we have
‘Cproc g ‘Csysa (7)

and we may consider the sort of process expressions
as a subsort of that of system expressions (where we
use the concept of subsort in the sense of [4]).

3 The Operational Semantics Based
on the 7-Calculus

In this section, we define the operational semantics
of Nepi? via a Plotkin-style transition system [14].
As a preliminary to the definition, we first introduce
the notion of structural congruence.

3.1 Structural Congruence

Notation 1 We denote a-convertibility between
process expressions by =,.

Forn >1and P,,...,P, € [fpmc, we use the
notation (||* Pi,...,P,) as a shorthand for a pro-
cess expression; what this shorthand stands for is
inductively defined as follows: (i) For n = 1, the
notation (||* P;) stands for P;. (ii) For n > 1, the
notation (J|* Py ... P,) stands for (|| P, P), where
P is what the notation (II* Py --- P,) stands for. &

Following [10, Sect. 2.3}, we define the structural
congruence = over Lgys, which contains Lproc, as
the smallest congruence relation satisfying the fol-
lowing laws.3 First, two system expressions that are
a-convertible with each other are congruent:

SC12%: S51=a Sy = 51=8,.

We have the following Abelian semigroup laws for
|l and II:

S8C2: (| A (| 2 B))=(ll (Il P P2) Bs).

SCZZ: (H Sl (H Sg S3))é (H (H Sl Sz) 53)
SC3: (|| P R)=(|| P2 P1).
5032: (H Sl 52) é(II SQ Sl)

For process/system expressions of the form (v ---),
we have the following four laws:

SC4*: (v (£,¢) S)=(v ((,€) S).
SC52: £ ¢ fu(S) = (v £ S)=S.

SC6: (& fu(P) =
(Il we&P) PR)=(wE (| P P2)).

SC6%: £ ¢ fu(Sy) =
(I (v € S1) S2)=(v € (1 Sy S2)).

3.2 Transition Rules

For channel expressions u; and uy, we write u; = ug
to mean that both u; and wuy are channel vari-
ables with u; = wus or that both u; and us
are closed terms with [u;] = [us]. For expres-
sions P, vy, ..., v, and distinct variables zy, ..., z,,
we denote by P[(vy,...,v,)/(z1,...,z.)] the result
of the simultaneous substitution of v,...,v, for
Z1,...,Zr in P. We define the set E of events
by (e €) E = (OP x DV) U (IP x DV). Let
(a €) E. = EU {1}, where 7 is a symbol repre-
senting an internal (or unobservable) action.

3Below, we tag rules for system expressions with a
superscript 2, as in SC1% below. We remark that SC12
implies that VP, P; € Loroc| A =« PL = PED],
since each process expression is also a system expression
by (7). The rules SC4% and SC5? below have similar
implications obtained by replacing the variables S, S;
ranging over Lqy, with Py, P ranging over Lproc.

The transition relations — (a € E.) are defined
as the smallest binary relations on Ly, satisfying
the following laws COM-STR?.

COM: If 43 = uy and type(v) = type(c), then

M+ (wmovp)--)
- Tu(AzQ))
= (Il P Qv/z]).

COM': If uy = us and type(v) = type(z), then

i (+ - (MugvP) -)
(+ - (Mu2(Az Q) --)
5 (Il P Qv/z]).

COM?: If u; = uy and type(v) = type(z), then
(I (+ - Mua v P)) o)
e P 03 Q))
=@ P) (I Qlv/a] --4))

QUT: For each o € OP, we have
(o d P) 12D, p

IN: For each i € IP, we have

G (2 P) 2, prayz).

CND: If [n] # 0, then (if n P; P;) 5 P,. Other-

wise, (lf n P] Pz) —T) Pg.
REC: If (A (z1 - z,) P) € D, then

(v D A)vy - vy)

—’—')P[(vl,...,v,)/(zi,...,zr)].
i P 5 P
(| P Py) > (| P Py)
PARZ: §1 5 .
(I1 Sy Sa) = (I1 S} Sy).
RES?: sSs

T wEHHweSs)
5158, S, 8,, ShES,

515 S, '
From - (a € E,), we define so-called weak tran-
sition relations => (s € (E,)*), and thereby the
concept of weak bisimulation as in (9].

The rule STR? is useful in simplifying the defini-
tion of the transition relation, but imposes difficulty
in distributed implementation of the n-calculus. In
the next section, we introduce another calculus
named the vm-calculus, which is more suited to dis-
tributed implementation, and which we believe to

be equivalent to the w-calculus at an appropriate
level of abstraction.

STR?:

4 The Implementation on a Network

In this section, we describe a distributed implemen-
tation of Nepi?. First, in Sect.4.1, we introduce
another calculus called the vw-calculus. Next, in
Sect. 4.2, a programming system for Nepi? is pro-
vided by implementing the vm-calculus.

4.1 The vr-Calculus:
Oriented Calculus

The transition relations of the vr-calculus are de-
fined as binary relations between system configura-
tions, which are pairs of a process expression and an
integer (for a similar treatment of mobile processes
in the framework chemical abstract machines, see
[1, Sect.5.2]). We define the transition relations
between system configurations as in Sect. 3, except
that we replace the rules RES? and STR? in Sect. 3
by the rules RES, and STRZ given below.

To give the rule RES,, we need to introduce dis-
tinct channel constants 49, 71,72, - . - not appearing
in Loroc- Let [mec be the set of process expressions
constructed in the same way as in Sect.2 except
that the symbols 7., may be used as channel con-
stants (m € w). Clearly, we have Loroc & Loproc-
Let Lo, = {P € Loroc| fo(P) = 0} A sys-
tem configuration is formally defined to be a pair
(m,P) € wx L., where m is used as the index of
the next fresh channel. The rule RES, is given in
terms of the channel constants -y; as follows:

RES,: (m, (v £ P)} 5 (m + 1, Ply,,/€]).

To formulate the rule STRZ, we define a relation
=, to be the equivalence relation on ﬁsy, induced by
the Abelian semigroup laws for || and II. In terms
of =,, the rule STRZ is given as follows:

STR,Z,: Sl =y SZr (mvsl) i’ <£7 Sill) R

(m, S2) = (£, 57)

The idea underlying this rule is that two system
expressions that consist of the same parallel com-
ponents (but possibly differ in their textual repre-
sentations) should be able to make the same tran-
sitions. We employ STR2 only for convenience in
formulating the transition rules of the wr-calculus.
Indeed, without using STR:‘:, we can define essen-
tially the same transition system, by extending the
set of actions as in [9].

We believe that each system expression S in the
w-calculus and the system configuration (m,S) in
the vr-calculus are bisimilar in the sense of CCS
[9, Sect.5.1]. This property is formally stated by
the next claim.

an Implementation

Claim 1 There is a relation = C ngs x (w % ﬁgys)
satisfying the following two clauses (i), (ii).

(i) VS e Ll Vmew[S~ (m,S)]

(ii) For every S; € L8, and (m,S,) € w x L8,
such that Sy = (m,S,), the following two prop-

erties (8) and (9) hold for every s € (E.)*:

VSIS = 5 = (8)
3L, S5){ {m, Sa) => (£, Sh)
A ST R (L, 5)]]-
(L, S3)[(m, Sa) = (£, S5) = 9)

3S|[S1= 8, A S, ~ {6,851

We are working on the proof of this claim, expecting
that this can be proved along the lines of the proof
of [5, 6, 7, Theorem 1], a similar claim for Nepi from
which Nepi? evolved (see [5] for a detailed proof
of this theorem). Assuming that this claim holds,
we developed a programming system for Nepi? by
implementing the va-calculus as described below.

4.2 The Two-Level Implementation Based
on the vw-Calculus

On the basis of the vr-calculus, we developed an ex-
perimental two-level implementation of Nepi? on a
network, using standard facilities of Unix. Figure 1
illustrates the implementation, where we use essen-
tially the same method as that of [2] to implement
a rendezvous-type inter-agent communication, also
employing the concept of a tuple space of [3].

Units of concurrent execution corresponding to
process expressions of Nepi? are called agents. A
prefixed process expression G is called local (resp.
global) when it is of the form (! u v P’) or
(?u Az P')) (resp. M uv P")or (?7u (X z P"))).
For G € Ly, we define Type(G) as follows:

Type((! v v P')) = (tu, type(v), v),
Type((? u (A & P))) = (u, type(z)),
Type(("! w v P')) = (Mu, type(v),v),
Type((?? u (A z P'))) = (?7u, type(z)),

where type(v) (resp. type(z)) is the type of the value
expression v (resp. of the value variable z).

In order to manage the request of an agent P to
execute the composition (+ Gy --- G,), we have to
distinguish three cases: (i) When each G; is a local
prefixed process expression, P submits the commu-
nication request {Type(G1),-.., Type(G,)) to the
relevant local communication manager (LCM) and
asks the LCM to decide whether there is any match-
ing communication request. (ii) When each G; is
a global prefixed process expression, P submits the
communication request to the relevant LCM, and
the LCM just forwards the agent’s request to the
global communication manager (GCM) and asks
the GCM to decide whether there is any match-
ing communication request. (iii) Otherwise, P first
submits the communication request to the relevant
LCM, and then the LCM forwards the global part

1. (labels

2. ((p_main ()

3. (+

4 (7?7 <0

5. (A ¢

6. (l (p_main) (p_sub £))))
7 (? c1

8 (2 x

9. {Handle the return code x)
10. (p_main)))))

11. (p_sub (&)

12. {Manage the session with the client}
13. (! c¢1 {return code) &)))
14. (p_main))

Figure 2: A Concurrent Server

of the request to the GCM; the LCM and the GCM
cooperate following a certain protocol (the LCM-
GCM protocol) to achieve the communication re-
quested by the agent. In the protocol, either of the
LCM or the GCM needs to have precedence over
the other to avoid the possibility of deadlock (here
we omit describing the protocol for lack of space).

5 Example Program

Figure 5 gives an outline of a concurrent server of a
client-server system, where pseudo-statements are
surrounded by {---) . The main server (p_main)
creates a subagent (p_sub) for each service request
from a client. The subagent manages the session
with the relevant client and sends a return code to
p_main when the session ends. In this program, we
use alternative choice between a global input (on
line 4) and a local input (on line 7).

6 Concluding Remarks

We conclude this paper with several remarks on re-
lated work and on topics for future work.

In [12], a two-level calculus M-LOTOS based on
LOTOS [8] and the w-calculus [11] is proposed. This
calculus is for specification rather than for program-
ming, and is much more complex than Nepi® partly
because of the complexity of the base language LO-
TOS. The idea underlying the multiple tuple spaces
of [3] is similar to the one underlying the design of
Nepi?.

The proof of Claim 1 is to be given, and we ex-
pect that there is no essential difficulty in achieving
this along the lines of [5, 6, 7]. The correctness of
the LCM-GCM protocol mentioned in Sect. 4.2 is
also to be proved. It also remains for future work
to support structured data for communication in
Nepi®, as mentioned in [6].

Global Communication Manager

Global Channel Server

Global Tuple Space:
{(Mc1,type;, msg;), ---, (?7c2,typey))

{(?7cs, types), (Mes, typey, msgy))

Counter m

Thread Group A

(TCP/1P)
(Unix Process)

Local Com. Manager A

Send Part Receive Part

Thread Group B (TCP/IP)
(Unix Process)
Local Com. Manager B
Local
Send Part Receive Part Channel
Server

Local Tuple Space A

Agent, ; Agent, Agentp , Agentp .,
(Thread) (Thread)
Figure 1: The Two-Level Implementation of Nepi?
References scription Technique based on the Temporal Or-

[1] G. Berry and G. Boudol, The chemical abstract
machine, Theoretical Computer Science, Vol. 96,
217-248, 1992.

Luca Cardelli, An implementation model of ren-
dezvous communication, in Lecture Notes in Com-
puter Science, Vol. 197, pp. 449-457, 1984.

[2

—
ko)

D. Gelernter, Multiple tuple spaces in Linda, in
Proceedings of the PARLE’89 Conference, Lecture
Notes in Computer Science, Vol. 366, Springer,
pp. 20-27, 1989.

{4] J.A. Goguen and G. Malcolm: Algebraic Semantics
of Imperative Programs, MIT Press, 1996.

[5] E. Horita and K. Mano, Nepi: A Network Pro-
gramming Language Based on the m-Calculus, ECL
Technical Report, Vol. 11933, NTT Communica-
tion Science Laboratories, 1995.

[6] E. Horita and K. Mano: Nepi: a network program-
ming language based on the m-calculus, IPSJ SIG
Notes, 95-PRO-2, pp. 161-168, 1995.

E. Horita and K. Mano: Nepi: a network program-
ming language based on the m-calculus, in Proceed-
ings of the 1st International Conference on Coordi-
nation Models, Languages and Applications 1996,
Lecture Notes in Computer Science, Vol. 1061,
Springer, pp. 424427, 1996.

[8] ISO, Information Processing Systems — Open Sys-
tems Interconnection — LOTOS - A Formal De-

(7

dering of Observational Behaviour, International
Standard ISO 8807, ISO, 1989.

[9] R. Milner, Communication and Concurrency,
Prentice Hall International, 1989.

[10] R. Milner, The Polyadic w-Calculus: A Tutorial,
Technical Report ECS-LFCS-91-180, LFCS, De-
partment of Computer Science, Univ. of Edin-
burgh, 1991.

R. Miluer, J. Parrow, and D. Walker, A calculus of
mobile processes, I and II, Information and Com-
putation, Vol. 100, pp. 1-40 and pp. 41-77, 1992.

E. Najm, J.-B. Stefani, and A. Février,

Mobile LOTOS, in Working Draft on Enhancement
to LOTOS (ISO/IEC JTC1/5C21/WG1 N1349),
ISO, 1994.

B. C. Pierce and D. N. Turner, Concurrent objects
in a process calculus, in Proceedings of Interna-
tional Workshop TPPP’%4, in Proceedings of Sem-
inar on Concurrency, Lecture Notes in Computer
Science, Vol. 907, pp. 187-215, Springer, 1994.

G. D. Plotkin, A Structural Approach to Opera-
tional Semantics, Report DAIMI FN-19, Comp.
Sci. Dept., Aarhus Univ., 1981.

K. Takeuchi, K. Honda, and M. Kubo, An
interaction-based language and its typing system,
in Proceedings of PARLE’94: Parallel Architec-
tures and Language Europe, Lecture Notes in Com-
puter Science, Vol. 817, pp. 398-413.

(11]

(12]

(13]

(14]

[15]

