コンパクト集合からなる de Bakker-Zucker プロセス領域の 特徴付け

堀田 英一 (horita@progn.kecl.ntt.jp) NTT コミュニケーション科学研究所

概要. 完備距離空間の圏における2つの領域方程式

 $X \cong \wp_{\operatorname{cl}}(A \times id_{1/2}(X))$ および $X \cong \wp_{\operatorname{co}}(A \times id_{1/2}(X))$

のユニークな解として与えられる 2 つのプロセス領域 \mathbf{P} 及び $\hat{\mathbf{P}}$ は、各々プロセス代数の意味論で便利に使われる (ここで \cong は左辺から右辺の上への等長写像の存在を表し、 $\wp_{\mathrm{cl}}(X)$ と $\wp_{\mathrm{co}}(X)$ は各々X の閉部分集合からなる空間と X のコンパクト部分集合からなる空間を表すものとする). ある種の目的に対しては、 $\hat{\mathbf{P}}$ の方が \mathbf{P} より便利である. しかし、 $\hat{\mathbf{P}}$ の定義と計算上の意味は \mathbf{P} のそれらより複雑であり、また $\hat{\mathbf{P}}$ と \mathbf{P} を異なる方程式の解として定義するのみでは、この 2 つの関係は明らかではない. ここでは、 $\hat{\mathbf{P}}$ の \mathbf{P} の部分領域としての特徴付けを与え、それにより $\hat{\mathbf{P}}$ と \mathbf{P} の関係、及び $\hat{\mathbf{P}}$ の計算上の意味を明らかにする.

Characterizing the de Bakker-Zucker Process Domain of Compact Sets

Eiichi Horita (horita@progn.kecl.ntt.jp) NTT Communication Science Laboratories

Abstract. In the denotational semantics of process algebras, we conveniently use the process domains \mathbf{P} and $\hat{\mathbf{P}}$ which are respectively obtained as the unique solutions of the following domain equations in the category complete metric spaces:

$$X \cong \wp_{\operatorname{cl}}(A \times id_{1/2}(X))$$
 and $X \cong \wp_{\operatorname{co}}(A \times id_{1/2}(X)),$

where \cong denotes the existence of an isometry from the left-hand side onto the right-hand side, and $\wp_{cl}(X)$ (resp. $\wp_{co}(X)$) denotes the space consisting of closed subsets of X (resp. compact subsets of X). For certain purposes, the domain $\hat{\mathbf{P}}$ is more convenient than \mathbf{P} . On the other hand, the definition and computational meaning of $\hat{\mathbf{P}}$ are more complicated than those of \mathbf{P} , and little is known about the relationship between \mathbf{P} and $\hat{\mathbf{P}}$ by defining these just as the solutions of different equations. In this paper, we give a characterization $\hat{\mathbf{P}}$ as a subdomain of \mathbf{P} , thereby clarifying the relationship between $\hat{\mathbf{P}}$ and \mathbf{P} , and the computational meaning of $\hat{\mathbf{P}}$.

1 Introduction

In the denotational semantics of process algebras, we conveniently use the process domains \mathbf{P} and $\hat{\mathbf{P}}$ which are respectively obtained as the unique solutions of the following domain equations (1) and (2) in the category of *complete metric spaces* (cms's):

$$X \cong \wp_{\mathrm{cl}}(A \times id_{1/2}(X)),\tag{1}$$

$$X \cong \wp_{co}(A \times id_{1/2}(X)), \tag{2}$$

where $A \neq \emptyset$ is an arbitrarily given set (of actions), \cong denotes the existence of an isometry from the left-hand side onto the right-hand [16] for a related topic).

side, and $\wp_{cl}(X)$ (resp. $\wp_{co}(X)$) denotes the space consisting of closed subsets of X (resp. compact subsets of X). For the definitions of the operators $id_{1/2}$, \times , \wp_{cl} , \wp_{co} and for how

In this paper, we only consider metric spaces $\langle X, d \rangle$ such that the metric function d is bounded by 1, (i.e., such that $d[X \times X] \subseteq [0,1]$). Equation (1) (resp. (2)) has a unique solution in the category of complete metric spaces whose metric functions are bounded by 1. The existence (resp. uniqueness) of a solution of (1) has been proved in [5] (resp. [1]). The existence and uniqueness of a solution of (2) can also be established along the lines of [1] (see [16] for a related topic).

metrics are defined on $\wp_{cl}(A \times id_{1/2}(X))$ and $\wp_{co}(A \times id_{1/2}(X))$, see Definition 1 in Sect. 2.

For certain purposes, the domain $\hat{\mathbf{P}}$ is more convenient than \mathbf{P} (we call $\hat{\mathbf{P}}$ the de Bakker-Zucker process domain of compact sets). On the other hand, the definition and computational meaning of $\hat{\mathbf{P}}$ are more complicated than those of \mathbf{P} , and little is known about the relationship between \mathbf{P} and $\hat{\mathbf{P}}$ by defining these just as the solutions of different equations. In this paper, we give a characterization $\hat{\mathbf{P}}$ as a subdomain of \mathbf{P} , thus clarifying the relationship between \mathbf{P} and $\hat{\mathbf{P}}$, and the computational meaning of $\hat{\mathbf{P}}$.

Although various process domains have been proposed for use in denotational semantics for concurrent languages (especially for process algebras), the importance of the two domains \mathbf{P} and $\hat{\mathbf{P}}$ lies in the fact that they give denotational semantics for a wide class of concurrent languages for which labeled transition systems are given by arbitrary transition rules of a certain format. The domain $\hat{\mathbf{P}}$ is used for languages without value-passing (see [13] and [3, Chap. 2]), and \mathbf{P} is suited for languages with value-passing (see [7] and [3, Chap. 5]).

Since **P** is the solution of (1), there exists an isometry ι from **P** onto $\wp_{\rm cl}(A \times id_{1/2}({\bf P}))$. Thus, we have

$$\mathbf{P} \stackrel{\iota}{\cong} \wp_{\mathrm{cl}}(A \times id_{1/2}(\mathbf{P})), \tag{3}$$

where $\stackrel{\iota}{\cong}$ denotes that ι is an isometry from the left-hand side onto the right-hand side.

We will show that the set $\tilde{\mathbf{P}}$ ($\subseteq \mathbf{P}$) defined by the following equation (4) is the solution of domain equation (2), and therefore, it is isomorphic to $\hat{\mathbf{P}}$ (in the category of complete metric spaces).

$$\tilde{\mathbf{P}} = \bigcap_{n \in \omega} [\tilde{\mathbf{P}}_n], \tag{4}$$

where $\tilde{\mathbf{P}}_n$ $(n \in \omega)$ is inductively defined by the following clauses (i) and (ii):

- (i) $\tilde{\mathbf{P}}_0 = \mathbf{P}$
- (ii) For each $n \in \omega$,

$$\tilde{\mathbf{P}}_{n+1} =
\iota^{-1}[\{X \in \wp_{\mathrm{cl}}(A \times id_{1/2}(\mathbf{P})) |
X \subseteq A \times \tilde{\mathbf{P}}_n \wedge
\forall n \in \omega[\ \tilde{\pi}_n[X] \text{ is finite }]\}],$$
(5)

where $\tilde{\pi}_n$ is the *n*th projection on $A \times id_{1/2}(\mathbf{P})$ (for the definition of the projections on $A \times id_{1/2}(\mathbf{P})$, see Definition 4 in Sect. 2). We call elements of $\tilde{\mathbf{P}}$ hereditarily precompact processes (see Theorem 2 in Sect. 3, for this terminology).

For a similar characterization of the space of compact sets in the linear-time context, cf. [12, Theorem 3.18].

2 Preliminaries

To prove the characterization result described in Sect. 1, we need a few preliminaries in notation and in metric topology.

For a set X, the powerset of X is denoted by $\wp(X)$. For a function $f: X \to Y$ and $X' \in \wp(X)$, we denote by f[X'] the *image* of X under f. We use the standard λ -notation $(\lambda x \in X. \ E(x))$ to denote the mapping which maps $x \in X$ to E(x). We sometimes write $(E_x)_{x \in X}$ or $(E_x|x \in X)$ for $(\lambda x \in X. \ E(x))$. For two sets X and Y, the function space from X to Y is denoted by $(X \to Y)$. The set of natural numbers $0, 1, \ldots$ is denoted by ω .

The notions of isometry, closed set, compact set, complete metric space, and Cauchy sequence are assumed to be known (the reader might consult [2, 11, 14] for these notions).

We use the following operations on complete metric spaces.

Definition 1 Let $\langle M, d \rangle$, $\langle M_1, d_1 \rangle$, $\langle M_2, d_2 \rangle$ be complete metric spaces.

(1) An arbitrary set A can be supplied with a metric d_A , called the discrete metric, defined by

$$d_A(x,y) = \left\{ egin{array}{ll} 0 & ext{if } x=y, \ 1 & ext{if } x
eq y. \end{array}
ight.$$

(2) We define a metric d_P on the Cartesian product $M_1 \times M_2$ as follows: For $\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \in M_1 \times M_2$,

$$d_{\mathcal{P}}(\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle) = \max_{j \in \{1,2\}} [d_j(x_j, y_j)].$$

(3) We define a metric d_H on $\wp_{cl}(M)$, called the *Hausdorff distance*, as follows: For every $X, Y \in \wp_{cl}(M)$,

$$d_{\mathbf{H}}(X,Y) = \max\{\sup_{x \in X} [\underline{d}(x,Y)], \sup_{y \in Y} [\underline{d}(y,X)]\},\$$

where $\underline{d}(x, Z) = \inf_{z \in Z} [d(x, z)]$ for every $x \in M$ and $Z \subseteq M$ (we use the convention that $\sup \emptyset = 0$ and $\inf \emptyset = 1$).²

The space $\wp_{co}(M)$ is supplied with a metric by taking the restriction of d_H to it.³

(4) For a real number $\varepsilon \in [0, 1]$, we define

$$id_{\varepsilon}(\langle M, d \rangle) = \langle M, d' \rangle,$$

where $\forall x, y \in M[\ d'(x,y) = \varepsilon \cdot d(x,y)\]$.

Definition 2 (Projections) Let (X, d) a be cms. A family $(\pi_n)_{n \in \omega} \in (\omega \to (X \to X))$ is said to be a *projection family* on X iff

$$\begin{cases} (i) \ \forall n, m \in \omega [\ n \le m \Rightarrow \pi_n \circ \pi_m = \pi_n \], \\ (ii) \ \forall x_1, x_2 \in X [\ \pi_0(x_1) = \pi_0(x_2) \], \end{cases}$$
 (6)

and the following holds for every $x_1, x_2 \in X$:

$$d(x_1, x_2) = \inf\{(1/2)^n | n \in \omega \land \pi_n(x_1) = \pi_n(x_2)\}.$$
 (7)

A cms $\langle X, d \rangle$ is said to have a projection family iff there exists a projection family on X (see [6] for a related concept of a projection space).⁴

Definition 3 (Finite Characterization) Let X be a cms having a projection family $(\pi_n)_{n\in\omega}$, and $Y\subseteq X$. We say Y is a finitely characterized subset of X iff

$$\exists k \in \omega, \exists Y' \in \wp(X), \forall x \in X[$$

$$x \in Y \iff \pi_k(x) \in Y']. \blacksquare$$
(8)

³The fact $\wp_{co}(M)$ is a closed subset of $\wp_{cl}(M)$ can be shown by using Proposition 2 below. Thus, the completeness of $\wp_{co}(M)$ follows from the completeness of $\wp_{cl}(M)$.

⁴Unlike in [6], we do not demand that

$$\forall n, m \in \omega [\ m \le n \ \Rightarrow \ \pi_n \circ \pi_m = \pi_m \].$$

Actually, the projection family $(\pi_n)_{n\in\omega}$ introduced in the proof of Lemma 2 does not satisfy this condition.

Lemma 1 Let X be a cms having a projection family, and Y the intersection of finitely characterized subsets of X. Then, Y is closed.

Proof. See [10, Lemma 2].

Lemma 2 The cms P has a projection family. ■

Proof. Let us fix an arbitrary element \hat{p} of **P**. We inductively define

$$(\pi_n)_{n\in\omega}\in(\omega\to(\mathbf{P}\to\mathbf{P}))$$

as follows:

(i)
$$\forall p \in \mathbf{P}[\ \pi_0(p) = \hat{p}\].$$

We can check, by induction, that (6)(i) holds. Condition (6)(ii) clearly holds. Condition (7) follows from the following two propositions (9) and (10).

$$\forall n \in \omega, \forall p_1, p_2 \in \mathbf{P}[$$

$$\pi_n(p_1) = \pi_n(p_2)$$

$$\Rightarrow d(p_1, d_2) < (1/2)^n].$$
(9)

$$\forall n \in \omega, \forall p_1, p_2 \in \mathbf{P}[$$

$$\pi_{n+1}(p_1) \neq \pi_{n+1}(p_2)$$

$$\Rightarrow d(p_1, d_2) > (1/2)^n].$$
(10)

Propositions (9) and (10) can be proved by induction (see [8, Lemma 2.1] for their proofs). ■

From $(\pi_n)_{n\in\omega}$, we define projection families $(\tilde{\pi}_n)_{n\in\omega}$ on $A\times id_{1/2}(\mathbf{P})$ and $(\hat{\pi}_n)_{n\in\omega}$ on $\wp_{\mathrm{cl}}(A\times id_{1/2}(\mathbf{P}))$ by:

Definition 4 (1) We first fix an arbitrary element \hat{a} of A.

(i) For each
$$\langle a, p \rangle \in A \times \mathbf{P}$$
,
 $\tilde{\pi}_0(\langle a, p \rangle) = \langle \hat{a}, \pi_0(p) \rangle$.

(ii) For
$$n \in \omega$$
 and $\langle a, p \rangle \in A \times \mathbf{P}$,
 $\tilde{\pi}_{n+1}(\langle a, p \rangle) = \langle a, \pi_n(p) \rangle$.

(2) For each $X \in \wp_{cl}(A \times id_{1/2}(\mathbf{P}))$ and $n \in \omega$,

$$\widehat{\pi}_n(X) = \widetilde{\pi}_n[X]$$
.

²The fact that $\langle \wp_{\rm cl}(M), d_{\rm H} \rangle$ is a cms was first proved by Hahn. An accessible proof of it has been given in [5, Appendix A] with its minor errata in [4, pages 79–80].

It is easy to check that $(\tilde{\pi}_n)_{n\in\omega}$ (resp. $(\hat{\pi}_n)_{n\in\omega}$) is a projection family on $A\times id_{1/2}(\mathbf{P})$ (resp. on $\wp_{\mathrm{cl}}(A\times id_{1/2}(\mathbf{P}))$).

A topological space X is said to be sequentially compact iff every sequence of elements of X has a converging subsequence (see [11, Chap. 5]). It is well known that compactness and sequential compactness coincide for metric spaces (see, e.g., [2, Sect. 11.3], for the proof):

Proposition 1 A metric space $\langle X, d \rangle$ is compact iff it is sequentially compact.

The concept of *precompactness* defined next is used to formulate another characterization of compactness.

Definition 5 A metric space (X, d) is said to be *precompact* (or *totally bounded*) iff for every $\epsilon > 0$, there exists finite family $\mathcal{U} \subseteq \wp(X)$ such that $\bigcup \mathcal{U} = X$ and

$$\forall U \in \mathcal{U}[\sup\{d(x,y)|\ x,y \in U\} \le \epsilon\].$$

The next proposition characterizes compactness in terms of precompactness (see, e.g., [11, Theorem 5.32] for the proof):

Proposition 2 A metric space (X, d) is compact iff it is complete and precompact.

We remark that the characterization result described in Sect. 1 is analogous to Prop. 2 (it might be suggestive to say that the characterization result is a recursive version of Prop. 2, in the setting of branching-time process domains).

3 Characterization

In this section, we prove the characterization result described in Sect. 1.

The next lemma, which is a generalization of Theorem 3.18 of [12], gives a characterization of the space of compact subsets.

Lemma 3 Let $\langle X, d \rangle$ be a cms having a projection family $(\pi_n)_{n \in \omega}$, and $Y \in \wp(X)$. Then

$$Y \text{ is compact} \Leftrightarrow Y \text{ is closed} \land \forall k \in \omega[\ \pi_k[Y] \text{ is finite}\]. \blacksquare$$
 (11)

Proof. Since X is a cms, it immediately follows that Y (equipped with the relative topology) is complete iff Y is closed. It is easy to check that Y is precompact iff

 $\forall k \in \omega [\ \pi_k[Y] \text{ is finite }].$

Thus, (11) follows from Prop. 2.

The next proposition is standard in general topology (see, e.g., [2, Sect. 3.7], for the proof).

Proposition 3 Let X be a topological space, and Y a closed subset of X. Then

$$\wp_{cl}(Y) = \wp_{cl}(X) \cap \wp(Y), \tag{12}$$

where Y in the left-hand side is taken to be equipped with the relative topology.

From Lemma 3, we obtain the next lemma.

Lemma 4 (1) Let $\langle X, d \rangle$ be a cms having a projection family $(\pi_n)_{n \in \omega}$. Then the set

$$\{Y \in \wp_{cl}(X) | \\ \forall n \in \omega [\pi_n[Y] \text{ is finite }] \}$$
 (13)

is a closed subset of the cms $\wp_{cl}(X)$.

(2) For any closed subset P' of P, the set

$$\begin{aligned}
\{X \in \wp_{\mathrm{cl}}(A \times id_{1/2}(\mathbf{P})) | \\
X \subseteq A \times \mathbf{P}' \wedge \\
\forall n \in \omega[\ \tilde{\pi}_n[X] \ is \ finite\] \}
\end{aligned} \tag{14}$$

is a closed subset of $\wp_{\rm cl}(A \times id_{1/2}(\mathbf{P}))$.

Proof. Part (1) follows from Lemma 1, and Part (2) follows from Part (1). ■

From Lemmas 3 and 4, we obtain the next theorem, which gives a characterization of the de Bakker-Zucker process domain of compact

Theorem 1 Let $\tilde{\mathbf{P}}$ be defined as in Sect. 1. Then, $\tilde{\mathbf{P}}$ is the solution of domain equation (2). That is,

$$\tilde{\mathbf{P}} \cong \wp_{\mathrm{co}}(A \times id_{1/2}(\tilde{\mathbf{P}})). \blacksquare \tag{15}$$

Proof. Remember that the solution **P** of domain equation (1) satisfies (3), with ι being an isometry (see Sect. 1).

For $X \in \wp(A \times \mathbf{P})$, let $\Phi(X)$ denote that

$$\forall n \in \omega [\tilde{\pi}_n[X] \text{ is finite }], \tag{16}$$

where $(\tilde{\pi}_n)_{n \in \omega}$ is the projection family on $A \times id_{1/2}(\mathbf{P})$. For $\mathbf{P}' \subseteq \mathbf{P}$, we put

$$\wp_{\text{cl}}^{\star}(A \times id_{1/2}(\mathbf{P}'))
= \{X \in \wp_{\text{cl}}^{\star}(A \times id_{1/2}(\mathbf{P}')) | \Phi(X)\}.$$
(17)

For closed $P' \subseteq P$, we have

$$\wp_{\text{cl}}^*(A \times id_{1/2}(\mathbf{P'})) = \wp_{\text{co}}(A \times id_{1/2}(\mathbf{P'}))$$
 (18)

by Lemma 3.

By Lemma 4(2), $\tilde{\mathbf{P}}_n$ is a closed subset of \mathbf{P} , for every $n \in \omega$. Therefore, $\tilde{\mathbf{P}} = \bigcap_n [\tilde{\mathbf{P}}_n]$ is a closed subset of \mathbf{P} . Thus, we have

$$\wp_{\operatorname{cl}}^*(A \times id_{1/2}(\tilde{\mathbf{P}})) = \wp_{\operatorname{co}}(A \times id_{1/2}(\tilde{\mathbf{P}})). (19)$$

By Prop. 3, we have

Thus.

$$\wp_{\text{cl}}(A \times id_{1/2}(\tilde{\mathbf{P}})) = \bigcap_{n \in \omega} [\wp_{\text{cl}}(A \times id_{1/2}(\tilde{\mathbf{P}}_n))].$$
(20)

Furthermore,

$$\begin{split} &\wp_{\operatorname{co}}(A \times id_{1/2}(\tilde{\mathbf{P}})) \\ &= \wp_{\operatorname{cl}}^{*}(A \times id_{1/2}(\tilde{\mathbf{P}})) \quad (\operatorname{by } (18)) \\ &= \{X \in \wp_{\operatorname{cl}}(A \times id_{1/2}(\tilde{\mathbf{P}})) | \Phi(X)\} \\ &= \{X \in \bigcap_{n \in \omega} [\wp_{\operatorname{cl}}(A \times id_{1/2}(\tilde{\mathbf{P}}_n))] | \Phi(X)\} \\ &\quad (\operatorname{by } (20)) \\ &= \bigcap_{n \in \omega} [\{X \in \wp_{\operatorname{cl}}(A \times id_{1/2}(\tilde{\mathbf{P}}_n)) | \Phi(X)\}] \\ &= \bigcap_{n \in \omega} [\{X \in \wp_{\operatorname{cl}}(A \times id_{1/2}(\mathbf{P})) | \Phi(X)\}] \\ &= \bigcap_{n \in \omega} [\{X \in \wp_{\operatorname{cl}}(A \times id_{1/2}(\mathbf{P})) | \Phi(X)\}] \\ &= \bigcap_{n \in \omega} [\iota[\tilde{\mathbf{P}}_n]] \quad (\operatorname{by } (5)) \\ &= \iota[\bigcap_{n \in \omega} [\tilde{\mathbf{P}}_{n+1}]] \quad (\operatorname{since } \iota \operatorname{ is } 1\text{-}1) \\ &= \iota[\bigcap_{n \geq 1} [\tilde{\mathbf{P}}_n]] = \iota[\tilde{\mathbf{P}}] \quad (\operatorname{by } (4)). \end{split}$$

Thus,

$$\wp_{co}(A \times id_{1/2}(\tilde{\mathbf{P}})) = \iota[\tilde{\mathbf{P}}]. \tag{2}$$

Consequently, by putting $\tilde{\iota} = \iota \upharpoonright \tilde{\mathbf{P}}$, we obtain the desired consequence that

$$\tilde{\mathbf{P}} \stackrel{\tilde{\iota}}{\cong} \wp_{\text{co}}(A \times id_{1/2}(\tilde{\mathbf{P}})). \blacksquare$$
 (22)

Remark 1 When A is infinite, \tilde{P}_{n+1} is a proper subset of \tilde{P}_n , for each $n \in \omega$. For example, if $A = \{a_i | i \in \omega\}$ with $a_i \neq a_j$ for $i \neq j$, then we can construct a process p such that $p \in \tilde{\mathbf{P}}_1$ but $p \notin \tilde{\mathbf{P}}_2$ as follows: First, put

$$p' = \iota^{-1}(\{\langle a_i, \hat{p} \rangle | i \in \omega\}),$$

where \hat{p} is an arbitrary element of **P**. And put $p = \iota^{-1}(\{\langle a, p' \rangle\})$. Clearly, $p \in \tilde{\mathbf{P}}_1$. But $p \notin \tilde{\mathbf{P}}_2$, since $p' \notin \tilde{\mathbf{P}}_1$.

We remark that ${\bf P}$ and $\tilde{{\bf P}}$ coincide, when A is finite.

Remark 2 For every $p \in \tilde{\mathbf{P}}$, $\iota(p)$ is compact by Theorem 1. However $\tilde{\mathbf{P}}$ itself is *not* compact, when A is infinite.

Next, we give an alternative characterization of the BZ process domain of compact sets. This characterization is given in terms of *hereditary* pointwise precompactness, which we defined as follows:

Definition 6 A subset **P'** of **P** is said to be a hereditarily pointwise precompact subset of **P** iff the following three conditions (i)–(iii) hold:

- (i) $\forall p \in \mathbf{P}', \forall k \in \omega[\ \tilde{\pi}_k[\iota(p)] \text{ is finite }].$
- (ii) $\forall p \in \mathbf{P}', \forall a \in A, \forall p' \in \mathbf{P}[$ $\iota(p) \ni \langle a, p' \rangle \Rightarrow p' \in \mathbf{P}'].$
- (iii) P' is a closed subset of P.

The next theorem characterizes $\tilde{\mathbf{P}}$ as the largest hereditarily pointwise precompact subset.

Theorem 2 $\tilde{\mathbf{P}}$ is the largest of all hereditarily pointwise precompact subsets of \mathbf{P} .

Proof. First, we show that $\tilde{\mathbf{P}}$ is a hereditarily pointwise precompact subset of \mathbf{P} . It suffices to show that $\tilde{\mathbf{P}}$ satisfies conditions (i)–(iii) of Definition 6. The fact that $\tilde{\mathbf{P}}$ satisfies condition (i) follows from the fact that $\tilde{\mathbf{P}} \subseteq \tilde{\mathbf{P}}_1$ and

the definition of $\tilde{\mathbf{P}}_1$ (see (5)). By (15), $\tilde{\mathbf{P}}$ satisfies condition (ii). As stated in the proof of Theorem 1, $\tilde{\mathbf{P}}$ is a closed subset of \mathbf{P} , i.e., it satisfies condition (iii). Thus, $\tilde{\mathbf{P}}$ satisfies conditions (i)–(iii), and therefore, it is hereditarily pointwise precompact subset of \mathbf{P} .

Next, let \mathbf{P}' be an arbitrary hereditarily pointwise precompact subset of \mathbf{P} . Then, we can show, by induction, that

$$\forall n \in \omega [\mathbf{P}' \subseteq \tilde{\mathbf{P}}_n].$$

Hence we have

$$\mathbf{P}' \subseteq \bigcap_{n \in \omega} [\tilde{\mathbf{P}}_n] = \tilde{\mathbf{P}}.$$

Thus, we obtain the claim of the theorem.

4 Concluding Remarks

We conclude this paper with a few remarks about future work.

In this paper, we give a characterization of the solution of a domain equation $X \cong \wp_{co}(A \times id_{1/2}(X))$ as a subdomain of the solution of $X \cong \wp_{cl}(A \times id_{1/2}(X))$. Here we note that the operator $\wp_{co}(A \times id_{1/2}(\cdot))$ is obtained from $\wp_{cl}(A \times id_{1/2}(\cdot))$ by replacing \wp_{cl} by \wp_{co} . It might be possible to generalize this result so that for a class of operators F, the solution of X = F'(X) is characterized as a subdomain of the the solution of X = F(X), where F' is obtained from F by replacing \wp_{cl} by \wp_{co} .

In the proof of the characterization result, Theorem 1, we conveniently use the property that the base space P has a projection family. It remains for future research to clarify the condition for a cms to have a projection family.

References

- P. America and J.J.M.M. Rutten (1989), Solving reflexive domain equations in a category of complete metric spaces, *Journal of Computer and System Sciences*, Vol. 39, No. 3, pp. 343–375.
- [2] J. Dugundji (1966), *Topology*, Allyn and Bacon, Boston.
- [3] J. de Bakker and E.P. de Vink (1996), Control Flow Semantics, The MIT Press.
- [4] J.W. de Bakker and J.J.M.M. Rutten, eds. (1992), Ten Years of Concurrency Semantics, World Scientific Publishing, Singapore.

- [5] J.W. de Bakker and J.I. Zucker (1982), Processes and the denotational semantics of concurrency, *Information and Control*, Vol. 54, pp. 70–120.
- [6] F.-J. de Vries (1995), Projection spaces and recursive domain equations, IPSJ Technical Report PRO-4-8, pp. 37-38.
- [7] E. Horita (1992), Deriving compositional models for concurrency based on de Bakker-Zucker metric domain from Structured Operational Semantics, IEICE Transactions on Information and Systems Vol. E75-A, No. 3, pp. 400-409
- [8] E. Horita (1993), Fully Abstract Models for Concurrent Languages, Ph.D. thesis, the Free University of Amsterdam.
- [9] E. Horita (1996), Semantics of process algebras (in Japanese), Journal of Information Processing Society of Japan, Vol. 37, No. 4, pp. 312– 318.
- [10] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten (1994), Fully abstract denotational models for nonuniform concurrent languages, *Informa*tion and Computation, Vol. 115, pp. 125–178.
- [11] J.K. Kelley (1955), General Topology, Springer-Verlag.
- [12] J.-J.Ch. Meyer and E.P. de Vink (1988), Applications of compactness in the Smyth powerdomain of steams, *Theoretical Computer Science*, Vol. 57, pp. 251–282.
- [13] J.J.M.M. Rutten (1990), Deriving denotational models for bisimulation from structured operational semantics, in *Proceedings of IFIP TC2 Working Conference on Programming Concepts and Methods*, (M. Broy and C.B. Jones, eds.), pp. 155–177.
- [14] V. Stoltenberg-Hansen, E.R. Griffor, and I. Lindstroem (1994), Mathematical Theory of Domains, Cambridge University Press.
- [15] F. van Breugel (1994), Topological Models in Comparative Semantics, Ph.D. thesis, the Free University of Amsterdam.
- [16] F. van Breugel and J. Warmerdam (1994), Solving Domain Equations in a Category of Compact Metric Spaces, CWI Technical Report CS-9424, CWI, Amsterdam.