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Abstract. In the denotational semantics of process algebras, we conveniently use the process
domains P and P which are respectively obtained as the unique solutions of the following
domain equations in the category complete metric spaces:

X = pa(A x idia(X)) and X = po(A x idija(X)),

where = denotes the existence of an isometry from the left-hand side onto the right-hand side,
and g (X) (resp. pco(X)) denotes the space consisting of closed subsets of X (resp. compact
subsets of X). For certain purposes, the domain P is more convenient than P. On the other
hand, the definition and computational meaning of P are more complicated than those of P,
and little is known about the relationship between P and P by defining these just as the
sotutions of different equations. In this paper, we give a characterization P as a subdomain of
P, thereby clarifying the relationship between P and P, and the computational meaning of P.

1 Introduction side, and pa(X) (resp. pco(X)) denotes the
space consisting of closed subsets of X (resp.
compact subsets of X).! For the definitions of
the operators idi/2, X, ¢, Pco and for how

In the denotational semantics of process alge-
bras, we conveniently use the process domains
P and P which are respectively obtained as the
unique solutions of the following domain equa- 'In this paper, we only consider metric spaces
tions (1) and (2) in the category of complete (X,d) such that the metric function d is bounded

metric spaces (cms’s): by 1, (i.e., such that d[X x X] C [0,1]). Equation
~ . (1) (resp. (2)) has a unique solution in the category

X = pa(A x idi2 (X)), ) of complete metric spaces whose metric functions
X = peo(A X id12(X)), (2) | are bounded by 1. The existence (resp. uniqueness)

. . . . of a solution of (1) has been proved in [5] (resp.
where A (# 0) is an arbitrarily given set (of [1]). The existence and uniqueness of a solution of
actions), = denotes the existence of an isome- | (2) can also be established along the lines of [1] (see
try from the left-hand side onto the right-hand | {16} for a related topic).

__1_

9-1
3)



metrics are defined on p¢(A4 x idi/2(X)) and
©co(A X id1/2(X)), see Definition 1 in Sect. 2.

For certain purposes, the domain P is more
convenient than P (we call P the de Bakker-
Zucker process domain of compact sets). On
the other hand, the definition and computa-
tional meaning of P are more complicated than
those of P, and little is known about the rela-
tionship between P and P by defining these
just as the solutions of different equations. In
this paper, we give a characterization Pasa
subdomain of P, thus clarifying the relation-
ship between P and P, and the computational
meaning of P.

Although various process domains have
been proposed for use in denotational seman-
tics for concurrent languages (especially for
process algebras), the importance of the two
domains P and P lies in the fact that they give
denotational semantics for a wide class of con-
current languages for which labeled transition
systems are given by arbitrary transition rules
of a certain format. The domain P is used for
languages without value-passing (see {13] and
[3, Chap. 2]}, and P is suited for languages with
value-passing (see [7] and [3, Chap. 5]).

Since P is the solution of (1), there exists
an isometry ¢ from P onto (A4 x id1,2(P)).
Thus, we have

P é’ (A x id12(P)), (3)

where & denotes that ¢ is an isometry from the
left-hand side onto the right-hand side.

We will show that the set P (C P) defined
by the following equation (4) is the solution
of domain equation (2), and therefore, it is iso-
morphic to P (in the category of complete met-
ric spaces).

P= ﬂ [Px],

new
where P, (n € w) is inductively defined by the
following clauses (i) and (ii):

(i) Py =P.

(4)

(ii) For each n € w,

Pn+1 =

TH{X € pa(A x idi2(P))|
XCAxPLA
Vn € w[ T,[X] is finite ]}],

where 7, is the nth projection on A x
id1/2(P) (for the definition of the projec-
tions on A X id1/2(P), see Definition 4 in
Sect.2). We call elements of P hereditar-
tly precompact processes (see Theorem 2 in
Sect. 3, for this terminology).

For a similar characterization of the space of
compact sets in the linear-time context, cf. [12,
Theorem 3.18].

2 Preliminaries

To prove the characterization result described
in Sect. 1, we need a few preliminaries in nota-
tion and in metric topology.

For a set X, the powerset of X is denoted
by p(X). For a function f : X — Y and
X' € p(X), we denote by f[X'] the image of
X under f. We use the standard A-notation
(Az € X. E(z)) to denote the mapping which
maps z € X to E(z). We sometimes write
(Bz)gex or (B z € X) for (Az € X. E(x)).
For two sets X and Y, the function space from
X to Y is denoted by (X — Y). The set of
natural numbers 0,1, ... is denoted by w.

The notions of isometry, closed set, com-
pact set, complete metric space, and Cauchy
sequence are assumed to be known (the reader
might consult [2, 11, 14] for these notions).

We use the following operations on com-
plete metric spaces.

Definition 1 Let (M,d), (Mi,d;), (M2, da)
be complete metric spaces.

(1) An arbitrary set A can be supplied with
a metric d4, called the discrete metric, de-
fined by

0 ifz=y,
d*“(x’y)z{ L itesy.

(2) We define a metric dp on the Carte-
sitan product M; X M as follows: For
(21,212), (ylay2> € Ml X M27

dP((‘Tl’ 2:2)7 (yb y2))
= max;eq,2)| (x5, y5) }-

(3) We define a metric dg on pu(M), called
the Hausdor[f distance, as follows: For ev-
ery X,Y € pa(M),



dH(Xv Y) = max{ SuszX[d(xv Y)]’
supyey[d(y, X)]},

where d(z,Z) = inf,cz[d(z,2)] for every
z € M and Z C M (we use the convention
that sup® = 0 and inf§ = 1).2

The space pco(M) is supplied with a metric
by taking the restriction of dy to it.?

(4) For a real number ¢ € [0, 1], we define
id:((M,d)) = (M, d),
where Vz,y € M| d'(z,y) = ¢-d(z,y) ]. 1

Definition 2 (Projections) Let (X,d) a be
cms. A family (mpdne, € (W = (X — X))
is said to be a projection family on X iff

(6)

() Vn,mewln<m = mom, =m, |,
(ii) Va1, 2o € X[ mo(z1) = mo(z2) ],

and the following holds for every z;, 25 € X:

d(zlv 12) =

inf{(1/2)7 n € w A mn(21) = mnlz2)}. )

A cms (X,d) is said to have a projection
family iff there exists a projection family on
X (see [6] for a related concept of a projection
space).*

Definition 3 (Finite Characterization) Let
X be a cms having a projection family
(M) new, and Y C X. We say Y is a finitely
characterized subset of X iff

Jk € w,3Y’ € p(X),Vz € X|

z€Y & m(z)eY'].} (8)

*The fact that (pq(M),dy) is a cms was first
proved by Hahn. An accessible proof of it has been
given in [5, Appendix A] with its minor errata in
[4, pages 79-80].

The fact po,(M) is a closed subset of pq(M)
can be shown by using Proposition 2 below. Thus,
the completeness of p.,(M) follows from the com-
pleteness of p.(M).

“Unlike in [6], we do not demand that

Vnmew[m<n = oMy, =7 .

Actually, the projection family (7, ) ne. introduced
in the proof of Lemma 2 does not satisfy this con-
dition.

Lemma 1 Let X be a cms having a projection
family, and Y the intersection of finitely char-
acterized subsets of X. Then, Y is closed. |

Proof. See [10, Lemma 2]. |l
Lemma 2 The cms P has a projection fam-
iy, 1
Proof. Let us fix an arbitrary element p of P.
We inductively define

(M) new € (w — (P — P))

as follows:
(i) VP e P{mo(p) =p -

(ii) Vn € w,Vp e P|

7rn+l(p)
= T H{(a,m (@) (a,) € p}] ]

We can check, by induction, that (6)(i) holds.
Condition (6)(ii) clearly holds. Condition (7)
follows from the following two propositions (9)
and (10).

Vn € w,Vp1,p2 € P|

7"n(pl) = ”n(pQ)
= d(p1,d2) < (1/2)"].

(9)

VYn € w,Vp1,p2 € P|

Tnt+1(p1) # Tnt1(p2)
= d(p1,da) > (1/2)" ].

(10)

Propositions (9) and (10) can be proved
by induction (see [8, Lemma 2.1] for their
proofs). W

From (m;)pew, we define projection fami-
lies (Tn)new on A X id1,2(P) and (Fp)new on
pd(A X id;/z(P)) by:

Definition 4 (1) We first fix an arbitrary el-
ement a of A.

(i) For each {a,p) € A x P,
#io({a, p}) = (&, 70(p))-
(ii) For n € w and (a,p) € A x P,
Tnt1((a,p)) = (a,mn(p))-
(2) Foreach X € g (A xid./2(P)) and n € w,

Tn(X) = 7~rn[X]~ |



It is easy to check that (fy)ncw (resp.
(Fn)new) is a projection family on A x id1/2(P)
(resp. on pei(A x idi/2(P))).

A topological space X is said to be sequen-
tially compact iff every sequence of elements
of X has a converging subsequence (see [11,
Chap. 5]). It is well known that compactness
and sequential compactness coincide for metric
spaces (see, e.g., [2, Sect. 11.3], for the proof):

Proposition 1 A metric space (X, d) is com-
pact iff it is sequentially compact. 1

The concept of precompactness defined next
is used to formulate another characterization of
compactness.

Definition 5 A metric space (X, d) is said to
be precompact (or totally bounded) iff for every
€ > 0, there exists finite family I/ C p(X) such
that U = X and

VU € U[ sup{d(z,y)| 2,y €U} < €1

The next proposition characterizes compact-
ness in terms of precompactness (see, €.g., [11,
Theorem 5.32] for the proof):

Proposition 2 A metric space (X,d) is com-
pact iff it is complete and precompact. [

We remark that the characterization result
described in Sect. 1 is analogous to Prop.2 (it
might be suggestive to say that the characteri-
zation result is a recursive version of Prop. 2, in
the setting of branching-time process domains).

3 Characterization

In this section, we prove the characterization
result described in Sect. 1.

The next lemma, which is a generalization
of Theorem 3.18 of [12], gives a characterization
of the space of compact subsets.

Lemma 3 Let {(X,d) be a cms having a pro-
jection family (mp)new, and Y € p(X). Then

Y is compact
< Y is closed
AVEk € w[ m[Y] s finite . 11

(11)

Proof. Since X is a cms, it immediately fol-
lows that Y (equipped with the relative topol-
ogy) is complete iff ¥ is closed. It is easy to
check that Y is precompact iff

Vk € w[ mx[Y] is finite |.
Thus, (11) follows from Prop.2. W

The next proposition is standard in general
topology (see, e.g., [2, Sect. 3.7}, for the proof).

Proposition 3 Let X be a topological space,
and Y a closed subset of X. Then

pa(Y) = pa(X) N pY),

where Y in the left-hand side is taken to be
equipped with the relative topology. 1

(12)

From Lemma 3, we obtain the next lemma.

Lemma 4 (1) Let (X,d) be a cms having a
projection family (mp)new- Then the set

{Y € KJCI(X)l

Vn € W[ m[Y] is finite ]} (13)

is a closed subset of the cms pa(X).

(2) For any closed subset P’ of P, the set

{X € pa(A x idi2(P))|
XCAxPA
Vn € W[ T,[X] s finite |}

(14)

is a closed subset of p(A x id1,2(P)). A

Proof. Part (1) follows from Lemma 1, and
Part (2) follows from Part (1). W

From Lemmas 3 and 4, we obtain the next
theorem, which gives a characterization of the
de Bakker-Zucker process domain of compact
sets.

Theorem 1 Let P be defined as in Sect. 1.
Then, P is the solution of domain equation (2).
That s,

P = peo(A X idi2(P)). (15)

Proof. Remember that the solution P of do-
main equation (1) satisfies (3), with ¢ being an
isometry (see Sect. 1).

For X € p(A x P), let ®(X) denote that

Vn € w| #in[X] is finite ], (16)

where (7,)necw is the projection family on A x
| id1/2(P). For P! C P, we put
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o4 (A x idy2 (P'))
={X € pg(A x idi2(P))] 2(X)}.

For closed P’ C P, we have

pa(A > idi2(P') = peo(A x idi2 (P')) (18)

(17)

by Lemma 3.

By Lemma 4(2), P,, is a closed subset of P,
for every n € w. Therefore, P = (,[P,] is a
closed subset of P. Thus, we have

pa(A x idi 2 (P)) = peo(A x iday2(P)). (19)
By Prop. 3, we have

pc1(A % 1d12(P))
= pa(A x idi2(P)) N p(A x P)  (by (12))
= pa(A x idi2(P)) N [} [p(A x Pp) ]

neEw
(by (4)) :
= ﬂ [PCI(A X id1/2(P)) N 50(14 X Pn)]
ncw
=] ﬂ [pC](A X id1/2(1~)n))] (by (12))'
new

Thus,

Pci(A x 1d1/2(13)) .
= nnew[ pCl(A X id;/z(Pn))].

Furthermore,

Peo(A x idiy2(P))

= pa(A x idy:(P)) (by (18))

= {X € pa(4 x idi/2(P))| &(X)}
={Xe€ ﬂ [ (A x z.d1/2(1~)n))n o(X)}

new

(by (20)) i
= N {X € pa(A x idi/2(Pn))| (X)}]

new

= [V [{X € pa(A x idi/2(P))]

(20)

new X C Ax P, A ®(X)}]
(by (12))
= (N [ePna]] (by (5))
new
=4[V [Pn+1]] (since ¢ is 1-1)
new
=\ [Bal)=lB] (by (4)).
n>1
Thus,

Peo(A X idy/2(P)) = «[P). (21)

Consequently, by putting i = {,‘\13, we obtain
the desired consequence that

P = peo(A x idyy2(P)). W (22)

Remark 1 When A is infinite, I3n+1 is a
proper subset of f’n, for each n € w. For ex-
ample, if A = {a;] 1 € w} with a; # a; for
t # 7, then we can construct a process p such
that p € P, but p ¢ Py as follows: First, put

P = (e, B) i € w)),

where p is an arbitrary element of P. And put
p=1"1({{a,p"}})- Clearly, p € Py. Butp ¢ Py,
since p' € P;.

We remark that P and P coincide, when A
is finite. J

Remark 2 For every p E~l~), «(p) is compact
by Theorem 1. However P itself is not com-
pact, when A is infinite. |

Next, we give an alternative characterization of
the BZ process domain of compact sets. This
characterization is given in terms of hereditary
pointwise precompaciness, which we defined as
follows:

Definition 6 A subset P’ of P is said to be
a hereditarily pointwise precompact subset of
P iff the following three conditions (i)—(iii)
hold:

(i) Vp € P/, Vk € w[ 7g[c(p)] is finite ].

(ii) Vp e P',Va € A,Vp' € P|
(p) 3 (a,p') = p' € P'].

(iii) P’ is a closed subset of P. J

The next theorem characterizes P as the
largest hereditarily pointwise precompact sub-
set.

Theorem 2 P is the largest of all hereditarily
pointwise precompact subsets of P. |

Proof. First, we show that P is a hereditarily
pointwise precompact subset of P. It suffices
to show that P satisfies conditions (i)-(iii) of
Definition 6. The fact that P satisfies condi-
tion (i) follows from the fact that P C P, and

_5_



the definition of Py (see (5)). By (15), P sat-
isfies condition (ii). As stated in the proof of
Theorem 1, P is a closed subset of P, ie, it
satisfies condition (iii). Thus, P satisfies con-
ditions (i)-(iii), and therefore, it is hereditarily
pointwise precompact subset of P.

Next, let P’ be an arbitrary hereditarily
pointwise precompact subset of P. Then, we
can show, by induction, that

Vnew[P' CP, ]
Hence we have

P'C ﬂ[i)n]z

new

P.
Thus, we obtain the claim of the theorem. i

4 Concluding Remarks

We conclude this paper with a few remarks
about future work.

In this paper, we give a characterization
of the solution of a domain equation X =
Peo(A % id1/2(X)) as a subdomain of the so-
lution of X = p(A x id1/2(X)). Here we note
that the operator pq,(A X idi/2(-)) is obtained
from e (A x idy/a(-)) by replacing po by peo-
It might be possible to generalize this result so
that for a class of operators F, the solution of
X = F'(X) is characterized as a subdomain
of the the solution of X = F(X), where F' is
obtained from F by replacing pq by gco-

In the proof of the characterization result,
Theorem 1, we conveniently use the property
that the base space P has a projection fam-
ily. It remains for future research to clarify the
condition for a cms to have a projection family.

References

[1] P. America and J.J.M.M. Rutten (1989), Solv-
ing reflexive domain equations in a category of
complete metric spaces, Journal of Computer
and System Sciences, Vol. 39, No. 3, pp. 343—
375.

J. Dugundji (1966), Topology, Allyn and Ba-
con, Boston.

J. de Bakker and E.P. de Vink (1996), Control
Flow Semantics, The MIT Press.

J.W. de Bakker and J.J.M.M. Rutten, eds.
(1992), Ten Years of Concurrency Semantics,
World Scientific Publishing, Singapore.

(5]

6

=

=

(8]

(10]

(11]

(12]

(13]

(14

[ast

(15]

(16]

J.W. de Bakker and J.I. Zucker (1982), Pro-
cesses and the denotational semantics of con-
currency, Information and Control, Vol. 54,
pp- 70-120.

F.-J. de Vries (1995), Projection spaces and re-
cursive domain equations, IPSJ Technical Re-
port PRO-4-8, pp. 37-38.

E. Horita (1992), Deriving compositional mod-
els for concurrency based on de Bakker-Zucker
metric domain from Structured Operational
Semantics, IEICE Transactions on Informa-
tion and Systems Vol. E75-A, No. 3, pp.400-
409.

E. Horita (1993), Fully Abstract Models for
Concurrent Languages, Ph.D. thesis, the Free
University of Amsterdam.

E. Horita (1996), Semantics of process algebras
(in Japanese), Journal of Information Process-
ing Society of Japan, Vol. 37, No. 4, pp. 312-
318.

E. Horita, J.W. de Bakker, and J.J.M.M. Rut-
ten (1994), Fully abstract denotational models
for nonuniform concurrent languages, Informa-
tion and Computation, Vol. 115, pp. 125-178.

JK. Kelley (1955),
Springer-Verlag.

J.-J.Ch. Meyer and E.P. de Vink (1988), Appli-
cations of compactness in the Smyth powerdo-
main of steams, Theoretical Computer Science,
Vol. 57, pp. 251-282.

J.JM.M. Rutten (1990), Deriving denota-
tional models for bisimulation from struc-
tured operational semantics, in Proceedings of
IFIP TC2 Working Conference on Program-
ming Concepts and Methods, (M. Broy and
C.B. Jones, eds.), pp. 155-177.

V. Stoltenberg-Hansen, E.R. Griffor, and
I. Lindstroem (1994), Mathematical Theory of
Domains, Cambridge University Press.

F. van Breugel (1994), Topological Models in
Comparative Semantics, Ph.D. thesis, the Free
University of Amsterdam.

General Topology,

F. van Breugel and J. Warmerdam (1994),
Solving Domain Equations in a Category of
Compact Metric Spaces, CWI Technical Re-
port CS-9424, CWI, Amsterdam.



