CH U FUMEREE LN —FRAIIBITAMKE T — FF v X b
IR & Sl 245, AR SER vk By p- g Et

RS AE LA AR LR
VAT (RK)
T 376 AT RAET 1-5-1
tPhone: +81--277-30-1829
tEmail: igarashi@comp.cs.gunma-u.ac.jp

H55FL ZORITE. P—FRACBIAEF L FUMBEER LTI FXy A P70 b I ik B L, 2OME
LB OWTHRLE S, n KILF—FAD 2n KOPMT 2 ERAICH>TY—Z/ —Fhb n oA v =T 0
K—%#%bZLT. 2n—-1BETHI Iy Y21 708K, [(2n—1)/2] HETOEF L F ¥ 4 FTOMBICH 2 &
b, 7O—-FF v XA MIETLAT v 7T 2|V|-5n Th b, 2IT, [V +—F32A0 - FRTHH, nit b—

FADRTLETH 5,

FoU-F EHCTFOIATHE 2TV a s A THEE, BT O ¥y A b, BT SEA, F—F 2

Fault-Tolerance of Broadcasting in Tori with Byzantine Faults
Yuka Kajiwaraf, Yukihiro Iwasakit, Koji Obokatat, Yutaka Funyu?, and Yoshihide Igarashit

tDepartment of Computer Science,
Gunma University, Kiryu, 376 Japan
tAdvanced Technology Department,
Yokogawa Electric Corporation,
Nishi-Shinjuku. Shinjuku, Tokyo, 163-06 Japan
tPhone: +81-277-30-1829
tEmail: igarashi@comp.cs.gunma-u.ac.jp

Abstract We design a protocol for broadcasting on tori with Byzantine faults. Tts efficiency and fault tolerance are
analyzed. The protocol is to send 2n copies of the message from the source node through 2n independent spanning
trees of an n-dimensional torus. It can tolerate up to 2n — 1 faults of the crash type and up to [(2n — 1)/2] faults

of the Byzantine type. The broadcasting time is 2|V'| — 5n steps, where |V| and n are the order and the dimension

of the torus, respectively.

key words Byzantine faults, crash faults, fault-tolerant broadcasting. independent spanning trees, tori

1 Introduction

In this paper we consider two types of faults, the crash type and the Byzantine type. A fault of the crash type stops
sending any message. and a fault of the Byzantine type can change arbitrarily the message. We design a protocol
for broadcasting on tori with faults, and analyze its efficiency and fault tolerance. We assume that the source node
is always faultless and that each node in the network does not know anything about faults in advance. In order to
tolerate faults we send copies of the message from the source node through multiple channels. Each node decides

the original message by the majority voting rule. This method was discussed on hypercubes and meshes in 1,2, 4].

2 Definitions

Two paths connecting a pair of nodes are sald to be internally disjoint if the two paths have no common nodes
and no common edges excepting their extreme nodes. Two spanning trees of a graph G = (V, E) are said to be
independent if they are rooted at the same node, say s, and for each node v in V7, the two paths from s to v,
one path in each tree, are internally disjoint. A set of spanning trees of G are said to be independent if they are
pairwise independent. A graph G is called an n-channel graph at node s if there are n independent spanning trees
rooted at s of G. If G is an n-channel spanning trees rooted at every node, G is called an n-channel graph. For
any k < 3, it is known that any k-connected graph is a k-channel graph (3, 5, 7]. However, it is open whether for
k > 4, any k-connected graph is a k-channel graph.

The n-dimensional torus of (ro X -+« X ry_;) is a graph @, = (V. E), where V' = {(xq,....25-1) | for each i (0 <
i<n—1), 0< e <rmi—1}and E = {(xo. ..., rp-1){2h.. .. af_y) | for some i, @t = [zi+1],,, and for any j (j #
i), ¥ = T;} Note that [t],, is t modulo n. It is known that any n-dimensional torus of (ro x --- x rp_1)is a2n
channel graph if for any i (0 < i <n—1).1; > 3. If we send the message through 2n independent spanning trees
rooted at the source node, the broadcasting can tolerate up to 2n— 1 faults of the crash type and up to [(2n—1)/2]
faults of the Byzantine type.

A torus is a regular graph, and it is symmetric with respect to any node, without loss of generality we may

discuss our broadcasting scheme with the fixed source node. (0,....0).

3 Independent Spanning Trees of a Torus

We describe how to construct 2n independent spanning trees rooted at (0,...,0) of an n-dimensional torus Q,
of (ro X -+ x r,_1). Our construction consists of 2 ways. We can construct n spanning trees in each way. We
therefore have 2n spanning trees altogether. Let the n spanning trees constructed in the first be denoted by
T ={Ty,...,Tn_;}, aud let the n spanning trees constructed in the second way be denoted by T={Ty,..-. To1}

A general construction way of independent spanning trees of a product graph was given in [6]. However, our
method can construct a set of independent spauning trees that are more efficient communication channels than the
independent spanning trees constructed by the method in [6]. Our construction can be described by showing how
the parent of each node is chosen.

For node © = (¥g,...,2n-1), &; denotes the ith component of x. neigh(x,i.+) and neigh(x,i,—) denote
neighbor nodes of z such that &t = [; + 1], and 2/ = [#; — 1], respectively. A — B denotes the path of length 1

from node A to node B. The transitive and reflexive closure of = is denoted by .
Construction 1: the construction of T; (0 < i < n)

1. If 2; = 0 then neigh(z,i,+) is the parent of x.

2. If x; = r; — 1 then neigh(x, 1, —) is the parent of r.

3. When 0 < 2; < r; — 1, let j be the smallest positive integer such that v _j, # 0 and let k = [i=gl.. I
zx = ri — 1 then neigh(z,k, +) is the parent of v, and if # < rp — 1 then neigh(a, kb, —) is the parent of x.

We show an example of our construction in Fig.1, where the dark node denotes the source node. Since the
parent of & specified by Construction 1 is a neighbor node of &. Tj is a subgraph of @,. By the next lemma 7T is

a spanning tree of Q.

[]

il

Fig. 1: Spanning trees of (), by Construction 1.

Lemma 1 For any i (0 < i< n), the subgraph T; of Q. constructed by Construction 1, is a spanning tree of Q.

Proof: Let N be the number of nodes of (),,. For any node that is not the source node, just one edge is added
to connect. the node to its parent, the number of edges of T; is exactly N — 1. We next show that for any node v,
there is a path from the source node to v in Tj.

Let s = (0,...,0) be the source node, and let & = (ag,...,2,_1) be an arbitrary node of Q,,. If 2; = 0, there is
a path s — neigh(s.i,+) 5(0....,0,1,2,41,0....,0) 5 (E T i1 L @iy, th-1) = . If2; = r;—1, there
is a path s — neigh(s,é,+) = (0,...,0,2; — 2,0....,0) 5 (0,....0,2; — 2,24,,0,. ... 0) 5 (Xgueens Xjmp lf —
2. Titgye ey Ty_t) = 2. If 0 < 2; < r; — 1, there is a path s — neigh(s,i.+) = (0..... 0.2;,,0,...,0) D
(2gy+ oy Tim2,0,24, Zn1) % . Hence, there is a path in 7} from s to any node. T is therefore a spanning tree

of Q. s
Lemma 2 The set of spanning trees T = {Ty,.... T} constructed by Construction 1 is independent.

Proof: Let T; and T (i < j) be a pair of distinct spanning trees arbitrarily chosen from 7. We show that for
any node z, two paths P; and P; from root s to x, one through T; and the other through T are internally disjoint.
Let u = (ug,...,up—1) and v = (vg,...,vp_1) be internal nodes of P; and Pj, respectively. If x; = 0, u; = 1
and v; = 0. Hence, in this case P; and P; are internally disjoint. Symmetrically we can show that P; and P; are
internally disjoint in the case z; = 0. If #; = r; — 1, then 0 < w; < r; — 1, and ¢v; = 0 or »; — 1. Hence, in this case
P; and P; are also internally disjoint. Symmetrically we can show that P; and P; are internally disjoint in the case
zj=r;-1

Suppose that 0 < r; <r;—1and 0 < z; < r; — 1. Let & be the largest integer such that ¢ <k < j and zp # 0.

Let v’ = (ugy...,u]

7,1) be the first node on P; such that u,;c = . Then the kth component of every node on P;

before v is 0, and the kth component of every node on P after ' is ;.. The jth component of every internal node
on P;is vy > 0. When the kth component of a node on P; has changed to ., the obtained node is the last one on
P;. Hence, in this case P; and P; are also internally disjoint. o

Construction 2: the construction of T; 0<i<n)
1. If z; = 0 then neigh(w,1,—) is the parent of x.
2. If 0 < z; <r; — 1 then neigh{a.4,+) is the parent of 2.

3. When z; = r; — 1, let j be the smallest positive integer such that x;_j, # 0, and let & = i —jln. I

zp = rg — 1 then neigh(a. k,+) is the parent of z, and if vy < 7 — 1 then neigh(a, k, =) is the parent of z.

We show an example of our construction in Fig.2, where the dark point denotes the source node. Since the

parent of x specified by Construction 2 is a neighbor node of & in the torus, T; is a subgraph of @Q,,. By the next
lemma T; is a spanning tree of Q,,.

Lemma 3 For any i (0 <i < n), the subgraph T; of Q,,. constructed by Construction 2 is a spanning tree of Q..

Fig. 2: Spanning trees of), by Construction 2.

Proof: Let N be the number of nodes of Q,,. For any node that is not the source node, just one edge is added
to connect the node to its parent, the number of edges of T, is exactly N — 1. We next show that for any node v,
there is a path from the source node to v in T;.

Let s = (0,...,0) be the source node, and let x = (x9,...,rn—1) be an arbitrary node of Q.. I z; =0, then
there exists a path s — neigh(s,7,—) 5 0,....0,7;—1.2i41,0,...,0) 5 (20ye oy Timt,Ti— L Rig1,- 0, Tp_1) = T
If0 < 2; < r; — 1, then there exists a path s — neigh(s,i, —) 5(0,...,0,7,—1,7;41,0,...,0) B (Lo s Ti1aTi—
LZig1se s Tnot) A z. If ©; = r; — 1 then there exists a path s = neigh(s, 1, -5 (0,...,0,2;,241,0,...,0) 5
(zgy. - Tiz2,0,24,. .. yTn—1) 2 2. Hence, there exists a path in T; from s to any node in Q. T; is therefore a
spanning tree of Q. O

Lemma 4 The set of spanning trees T = {To,.... Tu_1} constructed by Construction £ is independent.

Proof: LetT; and T; (i < j) be a pair of distinct spanning trees arbitrarily chosen from 7. We show that for any
node , two paths P; and P; from root s to x, one through T; and the other through T are internally disjoint. Let
u= (g, ,Un—1) and v = (vg,...,Un—1) be internal nodes of P; and P;, respectively. If ©; = 0, then u; =r; — 1
and v; = 0. Hence, in this case P; and P; are internally disjoint. Symmetrically we can show that P; and P; are
internally disjoint in the case 2; = 0. If 0 < 2; <r; — 1, then u; > a; and v; < r;. Hence, in this case P; and P;
are internally disjoint. Symmetrically P; and P; are internally disjoint in the case where 0 < x; <r; — 1.

Assume that z; = r; — 1 and z; = r; — 1. Let k be the largest integer such that i <k < j and z;, # 0. Let
w' = (uf,...,ul_;) be the first node on F; such that uj = x¢. Then the kth component of every node on P; before
u' is 0, and the kth component of every node on P; after u’ is ay. The jth component of every internal node on P;
isv; > 0. When the kth component of a node on P; has changed to x, the obtained node is the last node on P;.

Hence, in this case P; and P; are internally disjoint. O
Lemma 5 For any T; of T and T; of T (0 <i,j < n), these two trees are independent spanning trees of (Qp.

Proof: We show that for any node x of @, two paths P; and P;, one through T; and the other through T‘j are
internally disjoint. Let u = (ug,...,up—1) and v = (vg, - .-, Un—1) be internal nodes of P; and P;, respectively.

Assume z; = 0. If i = j, then u; = land v; = r; — 1. If i # j then u; = 1 and v; = 0. Hence, in this case P;
and P; are internally disjoint. If z; =0 and 7 # j, then u; = 0 and v; = r; — 1. Hence, in this case P; and P; are
internally disjoint.

We next assume that 0 < 2; <7; —land 0 < xj <r; — 1. If i = j then u; < z; and v; > ;. Hence, in this
case P; and P; are internally disjoint. Similarly we can show that P; and P; are also internally disjoint in the case
i# .

Finally we assume that 0 < ¥; <r;—1and vj =r;—1. We first assume i < j. Let k be the largest integer such
that i < k < j and oy # 0. Let u’' = (ug,...,u},_;) be the first node on P; such that u), = x. If u locates before
u' on P;, ux < z) and u; = 0. If u locates not before ' on P;, uy = . The jth component of every internal node
on Pj is v; > 0. When the kth component of a node on P has changed to xy, the obtained node is the last node
of P;. Hence, in this case P; and P; are also internally disjoint.]

From Lemma 2, Lemma 4, and Lemma 5, the following theorem is immediate.

Theorem 1 The set of 2n spanning trees of Q. T UT constructed by Construction 1 and Construction 2 is
independent.

4 A Broadcasting Protocol

We describe a protocol for broadcasting along independent spanning trees in 7U T from the source = (0,...,0).
‘We assumie that each node has no information about faults in advance and that the source node is always faultless.
The broadcasting consists of two stages, First Stage and Second Stage. We denote First Stage by F' and Second
Stage by S. Each stage consists of n rounds. In each round each node can send a message and/or can receive a
message in a direction (dimension).
Let Vi denote a message value sent along spanning tree, Ty;,,,. and let ¥y, denote a received message value

that comes along spanning tree Ty;,,,. We denote the number of iterations in each stage by w(stage, round).

1 if stage = F and 7,oung = 3
r; —3 elseif stage = F and r,quna > 3
'w(stage-, 7‘ound) = 2 elseif stage = S and Pround = 3

r; — 2 elseif stage = § and r,4unq is odd
ri —3 elseif stage = S and r,,unq 15 even

A message value that is sent from node z or has been received in a round of a stage is denoted by

val(stage, x, round).

V; if stage = F and j < round and r; =r; — 1,
where j is the smallest integer such that 0 < j < round and x; # 0.
Vi elseif stage = F and j < round
val(stage, z, round) = e elseif stage = 5 and xp =1, — 1,
where k is the smallest integer such that round < k < n and x # 0.
Vi elseif stage = 5 and xp <7rp —1

undefine otherwise

We are now ready to describe our protocol using the symbols defined above.
/* First Stage */

begin
for round := 0 ton—1do
for time := 0 to w(F,round) do
if Yindex (round < index < n), Zinder = 0 then begin
/¥ send */
if £ = source then
if time = 0 then
send(Veound, neigh(z, round, +))
elseif time = 1 then
send(Vyouna, neigh(z, round, —))
elseif 1,,u,4 = time then
send(val(F, z, round), neigh(z, round, +))
elseif time = 1 and z,oung = 0 then
send(val(F, z, round), neigh(z, round, —));
/¥ receive */
if x = neigh(source,round. +) or x = neigh(source, round, —) then
if ¥ = neigh(source,round, +) and time = 0 then
receive(Viound, source) (F1)
elseif © = neigh(source, round, —) and time = 1 then
7'eceive(v’mu,,d, source) (F2)
elseif z,.oung = time + 1 then
receive(val(F, neigh(z, round, —), round), netgh(xr, round, —)) (F'3)

elseif time = 1 and Zround = Tround — 1 then
receive(val(F,neigh(z, round, +),round), neigh(x,round, +)) (F'4)
end
end.

/* Second Stage */

begin
for round := 0 ton — 1 do
for time := 0 to w(S, round) do begin
/* send */
if round < n — 1 and Jindex(round < inder < n) such that ¥indes # 0 and
Zround < w(F,round) and 2,ound = time then
send(val(S, x, round), neigh(z, round, +))
elseif round < n — 1 and 3inderr(round < index < n) such that &inges # 0 and
time = 1 and Z,4unqg = 0 then
send(val(8, x, round), neigh(x, round, —))
else
if neigh(z,round, —) # source and time = 0 and T,ound = 1 then
send(Vyound, netgh(z, round, —))
elseif time = 1 and Z,ound = "round — 1 then
send(Vyouna, neigh(z, round, +))
else
case Tround = 3
if time = 2 then
if Zround = Tround — 1 then
send(ernd, neigh(a,round, —))
elseif T,ound = Tround — 2 then
send(Vyound, neigh(a, round, +))
case T'round 15 €ven
if time = 0 and T,ound = Tround — 2 then
send(Vround. neigh(x, round, +))
elseif Z,ound = Tround — 1 - time then
send(Vround, neigh(z, round, —))
€ase Troyng 15 0dd
if time = 0 and Zround = Tround — 2 then
send(Vypuna, neigh({z.round, +))
elseif time = 0 and Zround = Tround — 1 then
send(Vround. neigh{z, round, —))
elseif time > 2 and Tround = Fround — H1ME
send(f/}ouw7 neigh{z,round, —));
/* receive */
if round < n - 1 and Jinder(round < inder < n) such that i ges # 0 and
round < w{F, round) and ¥pouna = tinie 41 then
receive(val(S, neigh(x,round, —), round), neigh(r,round, —)) (S1)
elseif round < n — 1 and Jindex(round < inder < n) such that ringer # 0 and
time = 1 and Lyound = Mround — 1 then
receive(val(§, neigh(z, round, +), round), neigh{z, round, +3) (82)
else
if © # source and time = 0 and ,,na = 0 then
receive(Vipuna:neigh{x, round. +)) (S53)
elseif time = 1 and 2oune = 0 then

recetve(Viound, neigh(z, round, —)) (S4)
else
case round = 3
if time = 2 then
if Zround = Tround — 2 then
receive(Vmund, neigh(x, round, +)) (S5)
elseif T,0und = rround — 1 then)
recetve(Viound, neigh(z, round, —)) (56)
CaSe Tyoynd 1S even

if time = 0 and Z,ound = Tround — 1 then

receive{ Voound, neigh(x, round, —)) (S7)
elseif T,ound = Tround — 2 — time then
receive(Vround, neigh{x, round, +)) (58)

CAaSE Troung 1s odd
if time = 0 and T,ound = Tround — 1 then

receive(Viound, neigh{z, round, —)) (59)
elseif time = 0 and z,,ynd = Tround — 2 then
receive(Viound, neigh(x, round, +)) (510)
elseif time > 2 and Z,ound = "round — 1 — time
receive(Vmund,neigh(.r,round,—+—)) (S11)
end
end.

Using First Stage and Second Stage given above we can describe our broadcasting protocol is describe as follows:

broadcast
begin

First Stage;

Second Stage;

V = the majority of {Vp,..., Vo1, Vou..o, Vi }
end.

Hereafter, p(z, ;) denotes the parent of z in 7T}, and R(round, time, 4) denotes a statement specified by 4 in
First Stage and Second Stage of the protocol, where A is one of F1,..., F4 (First Stage) or one of §1,...,511
(Second Stage) at the timing specified by round and time. For the broadcasting protocol the following lemma holds
true.

Lemma 6 For any node x, by the broadcasting protocol defined above x sends at most one message in each unit
time interval (step) along a direction, and the message sent by x can be veceived by the neighbor node of v in the

direction in the same unit time interval.

Proof: From the definition of the protocol it is immediate that any node r sends at most one message and
receives at most one message in each step. We show that a sending message from a node @ can be received by the
corresponding neighbor node of = in the same step. In order to this fact it is sufficient to show that for any node
2 and during any round, neigh(z, round, +) aud neigh(x, round, —) never sends messages to v in the same step.

For First Stage, during any round if 0 < 2,ound < "round — 1 then only neigh(x, round, —) can send a message
te z, and if Zround = Tround — 1 then only neigh(x, round.+) can send a message to x. Hence, for First Stage two
nodes never send message to the same node in the same step.

For Second Stage, during a round message may be sent to a node along two directions. However, these two
messages are sent in different steps. For @ satisfying &,ouna = 0, neigh(x.round. +) can send a message to @
only when time = 0, and neigh(w,round, —) can send a message to @ only when #me = 1. For » satisfying
Tyound = i — 1, neigh(x, round. +) can send a message to @ only when time = 1, and neigh{x. round. —) can send
a message to z only when time = 0 (for r,.,une = 3, only when time = 2). For r satisfying 0 < #round < "round — 1.

neigh(x,round, +) can send a message to x only when timne = rround — Tround = 2 if 7rouna 18 even and only when
time = Iround — Tround — 1 if Tround 18 odd (for rguna = 3, only when time = 2). and neigh(x, round, —) can send
a message to z only when time = ¥,oune — 1. Hence, for Second Stage two nodes never send to the same node in
the same step. This lemma therefore holds true. O

We can prove the following four lemmas. Due to the page limit we omit the proofs of these lemmas.
Lemma 7 For any node v of Q. © receives a message sent along cach T;.
Lemma 8 For any node x of Q. & receives « message sent along each T;.
Lemma 9 The broadcasting protocol defined in this section can be implemented in the one-port model of Q..

Lemma 10 The broadcasting time by the protocol on Q, of (ro X+ X rn—1) is 2|V| —5n. where |V| is the number
of nodes of Qn and n > 3.

From these lemmas we can obtain the next theorem.

Theorem 2 The broadcasting by the protocol can be implemented on the I-port model of (., and its broadcasting
time is 2|V| — 5n, where |V| is the number of nodes of Q,. It can tolerate up to 2n — 1 faults of the crash type and
up to |(2n — 1)/2] faults of the Byzantine type.

5 Concluding Remarks

We show a fault-tolerant broadcasting protocol on tori. There are many ways of constructing 2n independent
spanning trees of a n-dimensional torus. It is interesting to investigate how we can choose 2n independent spanning
trees with nice properties for broadcasting. It is also worthy to study efficient and reliable broadcasting protocols

for other network families.

References

[1] F. Bao and Y. Igarashi, “Reliable broadcasting in product networks with Byzantine Faults”, 26th Annual
International Symposium on Fault-Tolerant Computing, Sendai, pp.262 -271, 1996.

[2] F. Bao, K. Katano, Y. Funyu and Y. Igarashi, “Fault tolerance of broadcasting in hypercubes, meshes and
tori”, Technical Report of IEICE, Fault-tolerant Systems, FTS95-79, pp.31-38, 1996.

[3] A. Itai and M. Rodeh, “The multi-tree approach to reliability in distributed networks”, Information and Com-
putation, vol.79, pp.43-59, 1988.

[4] Y. Kajiwara and Y. Igarashi, “Fault-Tolerant Broadcasting in Mesh-Connected Networks”, Technical Report
of IEICE, Computation, COMP96-26. pp.37-46, 1996.

[5] S. Khuller and B. Schieber, “On independent spanning trees”, Information Processing Letters, vol.42, pp.321-
323, 1992.

[6] K. Obokata, Y. Iwasaki, F. Bao and Y. Igarashi, “Independent spanning trees of product graphs”, 22nd Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science, Como, Italy. 1996.

[7] A. Zehavi and A. Itai, “Three tree-paths”, J. Graph Theory, vol.13, pp.175-188, 1989.

