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Abstract In this paper we present a visual debugger, “VPAD”, based on the communicating process

model. We define “debugging” as changing an composite implementation to be equal to its specification
by changing the sub-components of the implementation in the sense of the testing equivalence proposed
by De Nicola—Hennessy’s. The debugger automatically indicates which states of which components in
an implementation do not satisfy its specification based on the diagnostic information generation of
Cellikan—Cleaveland’s. We have extended the algorithm for composite processes. VPAD is to make
automated use of our debugging method where a user can interactively change a process behavior by a
visual manipulation according to the distinguishing information.
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1 Introduction

The communicating process model has been actively studied and proposed as an abstract model for the
concurrent computation. For theoretical purposes, a number of formal systems have been proposed such
as CCS[Mil80, Milg9], CSP[Hoa85], ACP[BW90] and so on. A more practical approach can be seen as
LOTOS|Bri86] and E-LOTOS[JTC98].

In the framework of the communicating process model, the verification on the abstract level is to establish
an (algebraic) behavioral relation between a single process which represents an external behavior of the system
and a set of subprocesses each of which represents a subcomponent of the system. The former process can
be seen as a specification where the detailed system configuration is hidden. The latter can be seen as an
implementation where the actual system configuration is represented in the description.

In this paper, we provide a development method of “debugging” the implementation process to be equal
to the given specification. Since the implementation is given as a composition of subprocesses, modifying
a subprocess may affect the interaction between subprocesses and unexpectedly change the behavior as a
whole.

In [CC95], Celikkan and Cleaveland propose a diagnostic information generation if a pair of processes are
not equal. In debugging processes, this information is quite helpful. But the algorithm is applied to a pair of
simple processes, namely with no process composition. Since we need to handle the process composition for
implementation processes, we propose an expansion of a composite process so that the expanded process can
hold the location information of subprocesses. The location information is used to indicate which subprocess
to be corrected.

Throughout the paper, we characterize process behaviors by the testing semantics[DH84] that is a
“weak” semantics with a number of nice algebraic properties[Hen88]. By characterizing a process as an
acceptance graph[CH93], the algorithm of the diagnostic information generation is applied for the testing
semantics[CC95]. Although choosing this semantics is not essential to our method, we focus on developing
the method from the practical point of view.

We present a visual process algebra debugger, called “VPAD”, to make use of our debugging method. The
authors have been developing a visual manupilation tool for processes in [HYSI97]. The visual manupilation
is very useful in debugging compared to the symbol-based tools such as Concurrency Workbench[CPS93] in
that (1) the state to be modified can be directly presented, and (2) the effect of the change can be easily
understood by a user. The visual approach is also taken by [CLSS96] with more practical functions such as
value-passing, while we intend to provide a generic graphical presentation for the existing verification tools.

The rest of the paper is structured as follows. Section 2 presents some preliminaries for the underlying
theory. Section 3 extend the expansion to a composite process. In Section 4, we mention the diagnostic
information generation for a composite process and present the debugging model. Section 5 illustrates our
supporting tool “VPAD” Section 6 presents an example of application in VPAD. Section 7 concludes by
some remarks. ‘

2 Preliminaries
2.1 Processes, Tests and Preorders

Let a set of actions be ACT and assume the complementary operation over ACT as in CCS. Let the set of
label £ = ACT UACT. T denotes the completed action to represent a communication where 7 ¢ L.

Definition 1 (Process and Test) A process is a labeled transition system P = (Sp, Act,~p,po) where
Sp is a set of states, Act C L, —pC Sp X Act x Sp is a labeled transition relation, and pg € Sp is an initial
state. A test is a labeled transition system whose actions have the special action w.

We write Acty, for Act U {w} and Act, for ActU {r}. For (s,a,s') €=p, we write s Sps s Ddpifs s
for some s', and s B if s > & for no §'. In this paper, we deal only with finite LTS’s where both |Sp|
and | —p | are finite. A state s is divergent if there is an infinite 7-transition sequence from s, i.e. (D),
written as s 1. Otherwise, a state is convergent, written as s 1. We write s f if there exists some s’ such
that s(5>)*s’ and s’ 1. We write s |}, otherwise. S | if for all s € S s |. A process (or a test) is deterministic
if for all s € S and a € Act, there exists at most one s' € S such that s = s’ €.

!Note that these predicates are clearly decidable for a finite LTS.



Definition 2 (Experiment System) Given an LTS P = (Sp, Act,—p,po) and a test T = (S, Acty, =T
,to), the experiment system of P by T, denoted by E(P,T), is a transition system (Sp x ST, (po, to)) where
the transition relation is given as follows.

e Fora#7,p3p andt St imply (p,t) — (9, 1');

o p 5 p implies (p,t) — (p',t); and

o t 5 t' implies {p,t) — (p,t')

Given an experiment system £(P,T), a computation of £(P,T) is a maximal sequence of transitions from
(po, to), i-e. the last state of which has no successive state, where pg and %o are the initial states of P and
T respectively. A computation is successful if the sequence is finite and the test part of the last state has a
transition labeled by w.

For £(P,T), we say P may T if £(P,T) has a successful computation and P must T if every computation
of E(P,T) is successful.

Definition 3 (Testing Preorders)
(1) P Cinay Q if for allT €T P may T implies Q may T;
(2) P Coust @ if for all T € T P must T implies Q must T'; and
(3) P Ciest Qif P Emay Q and P Cust @

2.2 Acceptance Graph

As a fully abstract model of Cyest , an acceptance tree is proposed[Hen85]. An acceptance graph is a
graph representation of an acceptance tree. Following the literature[CT93], we call an acceptance graph an
“Agraph”. We say a set of action sets A C 24¢t i5 minimal when for all B € A there is no B’ C B such that
A € B' and min(A) for the minimal set included in A.

Definition 4 (Agraph) A labeled transition system (T', Act,—,to) is an Agraph where eacht € T is labeled
by t.ace C 24¢ and t.conv € {true, false} and the following conditions hold:
1. — is deterministic.

2. s.acc is finite and each A € s.acc is finite.

3. s.acc is minimal.

4. s.conv = true if and only if s.acc # 0.

5. s.conv = false As > s’ = s'.conv = false.
We write U¢ = {u/|u(5)*u’ for some u € U} and D(U,a) = {u'|u > v’ for some u € U} for a set of states
U. For a state p, we write S(p) for {a|p —}. Given a process P, let A(P) = (T, Act,—,to) be an Agraph

that satisfies the following conditions:
1. T={(Q,b,4) | QCT,Q= Qb= Q L} where for t = (Q,b, A) t.acc = A and t.conv =b.

0 if s.conv = false
min({S(q))lqg € Q,q 7}) othewise

3. For t; = (Q1,b1, A1) and &y = (Q2,b2, As), t1 = t5 only if:
(a) a #7; (b) Q2 = (D(Q1,))5 and (c) (b2 = b1) A[(b1 A —b2) = Q2 1]

2. For t = <Q7baA>7 A:{

Definition 5 (Prebisimulation) Let Agraphs Gi and G and a relation II between the states of G1 and
Go. A relation R between the states of G1 and Gz is a prebisimulation when R C I and (s1,s2) € R implies
the followings;

(1) 515 s, = Fsh: 50 B sy A (s),8)) € R.

(2) si.conv = sg.conv.

(8) si.conv A sy -Bsh=>3sh 151 s A (s),sh) €R.
We write s1 K s if there exists a prebisimulation containing (si,s2). And we write Gy £ Gs if the initial
states of G1 and G2 are prebisimular.



For a relation, R between the sates of G and Gy, let F(R) = {{p,)|()p = ' = I¢'.¢ > ¢ AP'R¢]) A
(pi=lad N g d = 3p'p 3P ApRY))})
Theorem 1 [CC95] Let a pair of Agraphs Gi = (Sy, Act,—1,501) and Go = (Sa, Act,—2, s02). Define
50=S1X52 and Elc+1 f(Nk) Then G1EJG2 ‘iﬁVkSmEkSoz
ThlS theorem indicates how to compute the prebisimulation preorder. Also it is easy to show that & ;41 C
L iforalli.

In [CH93], it is shown that the testing preorder of processes is alternatively characterized by the pre-
bisimulation preorder of the corresponding Agraphs starting with a certain relation.

Theorem 2 (Alternative Characterization) [CH93] Let I1 = {{t,u)|t | implies t.acc CC u.acc} where
A CCB if for all A € A there exists B € B such that B C A.

P Ciest Q if and only if A(P) & n.A(Q)
The Agraph is important for our tool design in that it provides a graphical representation fully abstract to
the testing semantics.

3 Expansion of a Composite Process with Locations

A composite process is expanded to a single process to have a diagnostic information. Identifying a state
to be corrected should enable to indicate which subprocess causes the problem. For this purpose, just
expanding the composition operations as the expansion theorem of CCS[Mil89, Hen88] is not enough since
it does not hold the subprocess location information.

Given a set of Agraphs G, - - -, G, and a set of label L, we shall construct a single Agraph whose behavior
represents the composition of Gy, ---, Gy with the restriction of L.

The expansion is divided in two stages. We first construct an Agraph with communication information

called a CAG (communicative Agraph) where the state transitions by the communications are distinguished
in an Agraph. CAG is also a labeled transition system such that its behavior is obtained by its conversion
to an Agraph. This intermediate structure is necessary in order to hold the communication causality that
is not observable in a state of the composite Agraph.
Definition 6 (CAG) Let each G; = (S;, Act, —i,s0:) be an Agraph whose S; is disjoint to each other and
L C Act. PLTS(Gi,-++,Gp, L) is a labeled transition system (R, Act,—, 7o) with R = {{Q, 4,b)|Q =
{t1,...,tu}for t; € S;, A C 24} and b € {true, false}. For each r € R, r.acc for A and r.conv for b. We
override r for Q if no confusion arises. In addition, the following condition must hold:

1. T = {301, ey SOn}

2. r.conv = Aprep sta? -cONYU

3. race = { 0 ' if r.cony = false
min{BU B'|B € t.acc, B' € t'.acc,t,t' € r such that t # t'} otherwise

4. Forr,v' € R, r 5 ' ezactly when:
(a) For somese€r,s >, r'=(r—{s}))U{s'} anda ¢ L
(b) For some s1,sq € r.stat where s1 # s2, @ =T, 81 — s}, 53 = sh, ' = (r — {s1,52}) U{s}, 55}

A CAG G is again transformed into an Agraph A(G) = {T, Act,—,to} where for t € T t = {ry,..., s}
and for each r;, which is a state in G, r; = {ri1, .. rm|rz] € S;}. We write ¢.nodes for this {ry,.. ,rm}.

4 Debugging a Composite Process

4.1 Diagnostic Information Generation

First we briefly mention the diagnostic information generatlon for the prebisimulation preorder{CC95]. Given
Agraphs G; and Gy where Gi; £ Go, for some pair of states (s1,s2) of G; and Gy, the algorithms
PREORDER and DFG shown in [CC95] produces a “witness” IHML? formula F such that G1 |= F but
G2 = F. Then, the states to be corrected are those that do not satisfy F. To generate the formula,
the prebisimulation preorder computation keeps track of non-prebisimular pairs of states at each stage
accompanied with a reason causing non-bisimularity.

The reasons of non-bisimularity are listed by the definition of the preorder as follows:

2IHML stands for Intuitionistic Hennessy Milner Logic[Sti87].



. p Xlg where Il is defined in theorem 2.
.pSpbutgp
.pSpandg SbutVe:g>q andp Zd

. p.conv = true but g.conv = false

W N R O

. p.conv = true, q.conv = true and ¢ 5 ¢ but p A.

5. p.conv = true, g.conv =true and ¢ 5 ¢’ but Vo' : p A p' = p' Z .
For our purpose, it is not necessary to generate a witness formula. since the implementation part of the non-
prebisimular pair can be indicated on a graphical notation. We need a slight change to the algorithms in
[?]. Figure 1 shows PREORDER. Figure 2 shows algorithm FINDDIFF whose input is the stack obtained
by PREORDER and a pair of initial states. FINDDIFF returns the set of CAG states that cause non-
bisimularity.

PREORDER(IL P : (P, Act,—+,po); @ : {(Q, Act, =, qo)); FINDDIFF (Stack, po, 90);
Eg{ =TI touple := TOP(Stack);
’ Stack = POP(Stack);
if (po, go) mot in touple
then FINDDIFF(Stack, po, qo);

0
for all p and ¢ such that p g
Stack := PUSH([0, {p, q), err_indexz], Stack);

1 0
Rp=F(=n); k=1 else case touple of
k-1
while EI;I # EH do [01(?07%))1 e?"’l']
k-1 k i -1 t . H
foreach (p,q) such that p En qbut p 7"2“ gdo if err # -1 then return(go.nodes);

else

Q = {q| (g € go.nodes)
A(g.div = true)};

case

1p3p but ¢ A
Stack := PUSH([1, (p, q),a, (p', —1)], Stack);

i if Q # 0 then return(Q);
20570 ,¢% andVg' (¢S qd =p #n ¢) || else
Stack := PUSH([2, (p,q),a, (P, 4"}, Stack); return({q' | (g € go-nodes)
4plaglaqs q butp Mg ST QA (gD O
Stack := PUSH([47 (pz q}v a, (_17 ql)]a StG'Ck); [1,(})0, (I(]>, a, (p’, —1)]
end return({q | (g € go.nodes) A g 4});
end ;o
Ck+1 ck [2a<p0aq0)a a, (p,q)]
~n =F(=n); k=k+1 FINDDIFF(Stack, 7', ¢');
end k [47(130, qﬂ)a a, (_17‘1,)]
if po EH go then return (true, Stack) return({g | (¢ € go-nodes) A g=});
else return (false, Stack); end
end PREORDER; end FINDDIFF;
Figure 1: Computing the preorder Figure 2: Finding the incorrect states

Among the non-bisimularity reasons, reason 3 and 5 do not appear in the stack[CC93]. For reason 3, We
start with IT as given in theorem2 and I = K ¢, K 1,... is a decreasing sequence. For reason 5, since
an Agraph is deterministic, reason 2 and reason 4 imply reason 3. Thus, we omit those reasons from the

original algorithm of PREORDER.
4.2 The Debugging Method

Figure 3 shows the model of debugging. Given a simple specification process and a composite implementation
process as labeled transition systems, they are transformed into Agraphs. Then, for the implementation,
CAG is generated. By transforming the CAG into an Agraph, we get the verification result. If the answer is
YES (i.e. equal to the specification), then we finish the debugging. Otherwise, by FINDDIFF, the incorrect
state in the implementation is identified. Referring to the corresponding CAG, we also can identify the
incorrect states in the subprocess. A user correct one of the suggested corrections by the debugging tool,
and repeats this procedure until the implementation reaches to a correct process.
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Figure 3: The Debugging Model

5 Graphical Debugger “VPAD”

We briefly present the configuration and the functions of our graphical debugger “VPAD”? written in Tcl/Tk.
VPAD interact with a user by the following two kinds of windows.

One is called the verification window as shown in Figure 4, which presents the structures and attributes
of Agraphs, debug command history, and verification results. A divergent state in an Agraph is colored
as white, and a convergent state as gray. The Agraph of specification is shown on the left and that of
implementation on the right. The Agrah shown in this window is the expanded Agraph where the incorrect
state is highlighted by yellow. The closer information that correspond to this state is shown below these
canvases. Lower on the right, verification results are shown.

| a canvas for the
acceptance graph of
| an implementation.

a canvas for the
acceptance graph of |
a specification. i

a listbox for the
infomation of the
all sub-processes.

a listbox for the
history of commands
and messages.

a board for the result
i of the verification.

Figure 4: Verification window

The other is called the organization window, which displays the subprocess structure of the implemen-
tation. The incorrect states are highlighted also by yellow. These windows have a graphical edit function
so that a user can change processes by visual manipulation. Figure 5 shows an example of the organization
window where process ’C’ shown in the right-most window is composed from processes A’ and ‘B’ shown
in the other two windows.

3VPAD stands for Visual Process Algebra Debugger



Figure 5: Organization window

6 An Example of A Debugging Step
We shall illustrate one step of the debugging method using VPAD as a small fragment of our method. While
Let the specification and implementation be as Figure 6. Process ‘C’ is composed by two subprocesses ‘A’
and ‘B’.

At this step, 'C’ is diagnosed as having an incorrect extra transition labeled by ’c’, which is not present
in P’. Transition 0 % 1 in ‘C’ is known as originating in the transition 0 - 2 in the subprocess ‘B’.

Specification implementation

Figure 6: Agraphs before a correction

According to reason 4 in the stack, the debugger suggests deleting it by popping up a suggestion window as
Figure 7. '

an explanation of this error.

a list of suggestions for
edition about this error.

a selection of targets

which you want to edit. buttons for the execution of

the selected edition.

Figure 7: An example of suggestion window

The window has three suggestions. By selecting the ‘Delete Action’, a new frame appears at the bottom of
this window. After this deletion, the graph of the implementation changes like Figure 8.

By deleting the transition, another transition labeled by ‘c’ is also deleted since there are two states of
’C’ involved in this transition. But this completes matching the corrected 'C’ to the specification.

7 Concluding Remarks

We proposed a graphical debugger “VPAD” which supports debugging a composite process to satisfy its
specification given by a simple process. The debugger identifies the incorrect state based on the diagnos-
tic information generation algorithms. In order to identify the incorrect states in the subcomponents, we



Specification Implementation

Figure 8: Agraphs after the correction

extended the Agraph structure so that the intermediate 7-transitions in a 7-closure of an Agraph are distin-
guished. VPAD suggests to a user what kind of corrections is appropriate using the diagnostic information.
A user can interactively modify the subprocesses with the graphical interface of VPAD.

Applying our method to other semantics such as the bisimulation equivalences is a future work. Although
this is not a big problem theoretically, the extension of VPAD is not obvious. In the current version of the
debugger, we partially support the interface with the Concurrency Workbench NC[CS96]. We would like
to extend the interface fully so that our tool can be used as an “intelligent” front-end for the symbol-based
verification tools. We are also interested in using the similarity between specification and implementation
as the guidance for efficient debugging.
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