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LARGE-NUMBERED MULTICOLOR MILU PRECONDITIONING
ON SX-3/14

SHUN DOI * and ATSUSHI HOSHI {

Abstract. This paper considers the vector implementation of preconditioned conjugate gradient (PCG)
type methods in solving sparse linear systems of the 3D 7-point difference form. The modified incomplete LU
(MILU) factorization is sought, where the system is numbered with respect to the multicolor ordering with a
large number of colors (e.g. 75). The advantage in the usage of the large-numbered multicolor ordering is that
the PCG-type method based on this ordering tends to require fewer iterations (to reach the same accuracy) than
the same method based on a small-numbered multicolor ordering, while both orderings spend almost the same
computational time per iteration if the problem is sufficiently large. Numerical experiments are carried out on
the SX-3/14 supercomputer, using convection-diffusion equations discretized on a 76 X 76 X 76 grid. Results of
experiments show that the large-numbered multicolor (M)ILU/Bi-CGSTAB method, which records a speed more
than 2 GFLOPS, converges faster than both the small-numbered multicolor and the hyperplane (M)ILU/Bi-
CGSTAB methods.
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1. Introduction. Preconditioned conjugate gradient (PCG) type methods are widely used
in solving the sparse linear system Au = b that stems from various engineering problems. These
PCG-type methods are defined as unpreconditioned CG-type methods for an equivalent system
M~YAu = M~'b, where M is a preconditioner. Let L, D and U, respectively, be the strictly
lower triangle, the diagonal and the strictly upper triangle of A = L + D + U. The incomplete
factorization, which is a class of commonly used preconditioners, can be written in the form

(1.1) M= (A+L)I+ATD),

where the diagonal matrix A is defined, in the (diagonal) incomplete LU factorization [10, 11],
by

(1.2) A + diag(LA™U) = D,
and, in its Gustafsson’s modification [9], by
(1.3) A + rowsum(LA™U) = D,

apart from relaxation parameters [1, 9, 15, 18]. Here, “diag(LA™U)” is a diagonal matrix
composed of diagonal elements of LA™!U and “rowsum(LA~U)” is a diagonal matrix where
each diagonal element is equal to the summation of row elements. In each iteration in PCG-
type methods, it is necessary to find v such that Mv = w for a given w. In the incomplete
factorization (1.1), this solution is carried out by the forward and backward substitutions

(1.4) v = A7 (w ~ L),
(1.5) v=2v — AU,
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On vector and/or parallel computers, these forward and backward substitutions turn out to
be the most time consuming part in the whole PCG computation. A popular way to vectorize
(1.4) (and (1.5)) is to reorder the linear system Au = b, so as to avoid recurrence relations in
the substitution Lv' — v' (and Uv — v). One well-known technique is to use the multicolor
ordering [7, 12, 13]. In the multicolor ordering, A has a block form A = [4;;] (¢,j = 1,...,¢)
where the diagonal blocks 4;; (¢ = 1,...,c) are diagonal matrices. Here, ¢ is the number of
colors. If ¢ = 2, the multicolor ordering results in the popular red-black ordering. If an N XN
matrix A is numbered with respect to a multicolor ordering with ¢ colors, then the forward
substitution (1.4) for elements in each v} (¢ = 1,---,¢) can be computed in parallel, where the
average vector length is N/c. It is also the same for the backward substitution (1.5).

In early studies conducted by Poole and Ortega [13] and by Oyanagi [12], only small ¢ (e.g.
7) was examined. One of their main conclusions is that the multicolor PCG method converges
slowly compared with the popular row PCG method, especially for anisotropic problems, and
that this slow convergence may possibly offset the gain achieved by vectorization. Recently,
Fujino and Doi examined the multicolor ICCG method with large ¢ (e.g. 49 or 99) on some
vectorcomputers [8]. Their conclusion is that the large-numbered multicolor ICCG method
converges faster than the small-numbered multicolor ICCG method, especially for anisotropic
problems, and that the method is at least as fast as the traditional hyperplane and diagonal
ICCG methods.

Now, recall that each vectorcomputer has a specific vector length for which the computa-
tional speed is saturated, and that little improvement will be obtained for longer vectors. On
current high speed vectorcomputers, this vector length, denoted lj;m, is O(10%). Assume that the
size of a linear system is N =1000000 (which may result from discretization on a 100x100x 100
grid). The multicolor PCG method with ¢=0(10%) then provides the vector length of O(10*)
that suffices these vectorcomputers. Since larger c is expected to provide better convergence in
PCG method [2], and since vector performance for any c less than O(10?) is almost the same, the
multicolor PCG method with ¢= O(10?) is expected to have less computational time than the
method with ¢ smaller than this. More precisely, the multicolor PCG method with ¢ ~ N/lj;,
is expected to give “optimal” performance for a given problem size N and a given “saturation
point” Ij;,,.

In the rest of this paper, we assume that the finite difference grid, termed (4,7, k), is a
rectangle (1 <7 < ng,1 < j < ny,1 <k < ngy), and that coefficients in A corresponding to
a node (i, j, k) reside in {7 + (j — 1)n, + (k — 1)nyny}th elements in individual arrays. These
assumptions are quite natural in “real life”. ‘

Section 2 introduces model problems and the multicolor algorithms. Section 3 reports timing
results in the multicolor forward and backward substitutions (which dominate the computational
time), measured on the SX-3/14 supercomputer. Section 4 reports results of a comparison
between the multicolor (M)ILU/Bi-CGSTAB ! method (where ¢ = 75,25, 5) and the hyperplane
(M)ILU/Bi-CGSTAB method. The superiority of the present method will be concluded.

2. Algorithms.
2.1. Model problem. We consider the 3D convection-diffusion equation

(2.1) (kzul)l + (kyu'y)'y + (kpul), + vapul + 'vyu; +v,u, =0 (k;>0,ky>0,k;>0),

! The Bi-CGSTAB (Bi-Conjugate Gradient STABle) method is a nonsymmetric linear solver recently proposed
by Van der Vorst [19]. Numerical experiments, using some convection-diffusion equations, show that the method
converges more smoothly and at least as fast as the CGS method [14] (see also [20]).
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46 4 26 47 9 31 52 10 36 57 15 37 62 20 42 63
24 45 3 25 50 8 30 51 13 35 56 14 40 61 19 41
1 23 4 2 28 49 7 29 54 12 34 55 17 39 60 18

Fie. 1. Multicolor ordering with 3 colors for a 4 x4 x4 grid. The three colors correspond, respectively, to three
sets of nodes: {1,...,22}, {23,...,43} and {44,...,64}.

which is given on a rectangular domain 2. By discretizing (2.1) with the standard 7-point
finite difference approximation on an ng X ny X n, grid, a linear system Au = b is obtained.
Assume that the unknowns are numbered in such a way that described in § 1, then the i¢th row
(i=1,...,N(=ngXnyxn,)) in the left-hand-side Au can be written as

(2.2) (Au); = @iimngny, + bitlion, + cittic1 + ditt; + €iuig1 + fillitn, + Gillitngn,-

2.2. Multicolor ordering. Let p(7,7,k) be a node in the grid (1 < i < n;,1 < j <
ny,1 < k < n;), and P be the set containing all nodes. Define disjoint subsets, Sy, Sz,...,Sc
(P =U§_,51), by

(2'3) p(i’j, k) € S{i+j+k—3(mod c)}+1-

Here, cis in the range of 2 < ¢ < n, +ny +n, —2. Since coefficients in A corresponding to nodal
connections within a single subset S; are zero, the forward substitution (1.4) corresponding
to individual S; can be computed in parallel. (The same applies for (1.5).) Hence, if 4 is
renumbered in such a way that nodes in a younger subset are numbered earlier than nodes in
an older subset, then this numbering provides a multicolor ordering. Note that, if ¢ = 2, the
multicolor ordering (2.3) results in the popular red-black ordering, while it results in the row
ordering if ¢ = ng +ny +n, — 2.

In order to vectorize the substitutions corresponding individual subsets effectively, data
units corresponding to nodes in individual subsets should have a constant stride in memory.
Under the assumption described in § 1, this requirement is achieved if

(2.4) ng(mod ¢) = ny(mod ¢) = 1.

Figure 1 illustrates a numbering satisfying (2.4).

2.3. Multicolor incomplete factorizations. If (2.4) holds, then the factorization (1.2)
for (2.2) based on the ordering (2.3) is written as follows:
fori=1:N:c
A; = d;
end
fork=2:¢-1
fori=Fk:N:c
A; =di — aigi—ngn, [Divngny — bifi—ng /Di-n, — citi—1/Biy
end
end
fori=c:N:c
A =di— aigiongn, [Dimngn, = bifimng,[Di—n, — ci€i—1/Ai



—eiCiy1/Div1 — fibiyn,[Dign, — GiGitnany [Ditngn,
end

In the present program, a Gustafsson-type modification is additionally incorporated, in
which two relaxation parameters, @ and 3, are used [3]. This modification results in the unmod-
ified ILU factorization if & = # = 0, and it results in the standard modification if a = 3 # 0.
In [3], it is shown that a choice a # [ sometimes provides better convergence than the choice
o = f3. For more detailed discussion, see [3].

The forward and backward substitutions are written as follows:

MCINV routine.
fori=1:N:c
vy = wiA;
end

fork=2:¢—-1
fori=k:N:c
v; = (Wi — @Vimnyn, — biVin, — ciVi_1)/A;
end
end
fori=c:N:c
v; = (Wi— @;Vi—nyn, — biVin, — Vi1
—€iVit1 = fiVitn, = GiVidngn,)/Ai
end
fork=c—-1:2:-1
fori=k:N:c
v; = v — (&Vig1 + fiVitn, + 9iVigngn, )/ Ai
end
end
fori=1:N:c
Vi = Vi— (@Vi—nyn, + bivicn, + Vi
+eivit1 + fiVitn, + GiVitnan, )/ i
end

Here, the loops for 7 can be vectorized, where the vector length is N/c and the stride in memory
access is ¢. (In the real program, the division by A; is replaced by a multiplication by 1/A;; i.e.,
the factorization program calculates 1/A;.)

3. Timing tests. Since the MCINV routine dominates the overall computational speed
in a multicolor PCG program, we perform timing tests in the MCINV routine on the SX-3/14
(single processor with four sets of pipes). The outline of this machine is described as follows:

Clock cycle Peak performance Memory size Memory banks
2.9 nsec 5.5 GFLOPS 1 Gbyte 512

The 5.5 GFLOPS performance is attained if 16 vector pipes (operating in a 2.9 nsec cy-
cle) are filled with vector data. (Each set of vector pipes contains 4 pipes, resulting in 16
pipes.) Measurement will be made on how vector length and stride in memory access affect the
computation speed. In this program, the vector length is N/c and the stride is c.
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F16. 2. Vector speed versus vector length N/c in the MCINV routine.

Vector speed versus vector length. Figure 2 shows the timing results with 64-bit arithmetic
for 4 < n < 100 (64 < N < 1000000), where n, =n, =n, =n and c=n — 1. It shows that
the speed is saturated for the vector length Ij;,,, ~ 2500. The speed achieved then is about 1.89
GFLOPS.

Vector speed versus stride in memory. Another important factor for attaining high vector
speed is the stride in memory access. The following table shows how the speed depends on this
stride. From this table, it is almost necessary to use odd stride in order to attain the best vector
performance.

Stride Odd Even
3 2 4 8 16
Speed(Mflops) 2035 1496 873 480 253

(Ratio)  (1.00)  (0.74) (0.43) (0.24) (0.12)

4. Numerical experiments. This section reports results of numerical experiments. Model
problems are in the form (2.1). Examples 2 and 3 are borrowed from [4].
Example 1: © = (0,1) x (0,1) x (0,1). Dirichlet boundary conditions are imposed on 9.
Model parameters are constants. They are chosen as follows:

Case k, ky k

z Y z
1 1 1 1 0O 0 O
2 100 1 1 0o 0 ©
3 1 1 1 100 0 O
4 100 1 1 10000 0 O

Robustness in methods will be examined using anisotropic parameter cases.
Example 2: @ =(-1,1) x (=1,1) x (=1,1). ke =ky =k, =

vy = —cpeoyz(1l — z2)2(1 — y2)(1 — 2%)(n, — 1).

vy = cperzz(l — 22)(1 — y2)2(1 — 22)(n, — 1).

v, = cperzy(l — z2)(1 — y?)(1 — 22)%(n, — 1).



TABLE 1
Results of experiments for Ezample 1.

Number of Iterations CPU time (sec)
o B HYP MC(75) MC(25) MC(5) HYP MC(75) MC(25) MC(5)
Case 1 :

0 0 46 54 50 54 2.60 0.88 0.81 0.87
0.98 0 16 30 35 49 1.04 0.49 0.57 0.78
0.98 0.98 - 32 37 52 - 0.52 0.60 0.83

Case 2

0 0 28 31 38 64 1.66 0.51 0.62 1.02
0.98 0 19 74 52 66 1.19 1.20 0.84 1.05
0.98 0.98 - 29 36 72 - 0.48 0.59 1.15

Case 3 .

0 0 29 32 32 36 1.71 0.52 0.52 0.58
0.98 0 13 20 20 31 0.88 0.33 0.33 0.50
0.98 0.98 - 17 19 30 - 0.28 0.31 0.48

Case 4

0 0 5 9 9 21 0.46 0.15 0.15 0.34
0.98 0 4 8 9 20 0.41 0.14 0.15 0.32
0.98 0.98 -~ 27 28 38 - 0.44 0.46 0.61

“HYP”: Hyperplane ordering. “MC(c)”: Multicolor ordering with ¢ colors.

co =27/2, ¢1=c0/2, ¢ =05, ny,=ny=n,
B.C: u=100 if z=—-1, u =0 otherwise.
This example is a modeling of heat conduction in a box where a side is heated and the
flow is rotating.
Example 3: Q =(0,20) x (—1,1) x (—=1,1). ky =ky =k, = 1.
Ve = —Cpnco(l — ¥ (1 — z4)(ne — 1).
vy = —cpe12(1 — y2)%(1 — 22)(ny — 1).
v, = cpery(l — ¥?)(1 — 22)%(ny — 1).
co=10.1, c1=3v3/2, (cpsscp)=(0.5,1.0), ny=n,.
BC:u=uy if =0, du/dz=0 if z =20,
OufOn = —H.(u—wug) if y==1 and z==%1 (Hc=1).
This example is heat conduction in a pipe where the flow is along the = axis and rotating
in the y-z plane. The linear system resulting from this example is anisotropic: matrix
coefficients are dominant in the y and 2 directions. )

These model problems are discretized with the standard 7-point finite differences on a 76 x
76 %76 grid, resulting in 438976 unknowns.

The Bi-CGSTAB method [19] is used as a basic iterative method, where the multicolor
MILU and the traditional hyperplane MILU [15, 17] preconditioners are incorporated. In the
hyperplane method, the forward and backward substitutions are vectorized (using the gather-
scatter operations) for nodes (¢, j, k) satisfying ¢ + j + k = constant. The average vector length
(indicated with an asterisk in the table below) is n%/(3n — 2). The stride in memory access is
n — 1 (mostly). In the multicolor method, the vector length is n3/c and the stride is ¢. The
number of colors examined are 75, 25 and 5 (which satisfy the condition (2.4)). Note that all
colors tested provide vector length longer than lj;,, &~ 2500.



TABLE 2
Results of ezperiments for Ezample 2.

Number of Iterations CPU time (sec)
@ B HYP MC(75) MC(25) MC(5) HYP MC(75) MC(25) MC(5)
0 0 71 71 82 91 3.91 1.16 1.34 1.46
0.98 0 - 23 49 49 79 1.40 0.80 0.80 1.27
0.98 0.98 - 46 53 80 - 0.76 0.87 1.28
TABLE 3
Results of ezperiments for Ezample 3.
Number of Iterations CPU time (sec)
o 8 HYP MC(75) MC(25) MC(5) HYP MC(75) MC(25) MC(5)
0 0 102 100 112 124 5:53 1.63 1.82 1.98
0.98 0 83 154 175 200 4.54 2.51 2.85 3.19
0.98 0.98 - 166 200 200 - 2.70 3.25 3.20
Method Number of Colors Vector Length Stride in Memory
Hyperplane - 1942* 75
Multicolor 75 5853 75
25 17559 25
5 87795 5

All the computations were carried out in 64-bit arithmetic with standard FORTRAN 77.
The relaxation parameter sets (a, 8) tested were (0, 0) (resulting in unmodified ILU), (0.98, 0)
and (0.98, 0.98). Iterations were terminated when H'r“z/“sz < 1078, The starting vector u(®)
was diag(4)~1b.

The total amount of computation is

T6 X Np XNy X Ty X Titer

Here, the number 76 comes from the number of operations per node per iteration in the
(M)ILU/Bi-CGSTAB method for the matrix of the form (2.2). From this equation and timing
results in tables, the computational speed can be calculated: it is slightly more than 2 GFLOPS.
No significant difference in GFLOPS rate can be observed between the methods with different
¢, since vector performance is saturated for all the cases.

In Tables 1-3, the number of iterations tends to decrease as the number of colors increases.
This tendency agrees with results presented in [2, 8]. This decrease in the number of iterations
hence contributes directly to the reduction in computational time.

With respect to the Gustafsson’s modification, it more effectively reduces the number of
iterations in the hyperplane method than the multicolor method. Within the multicolor method,
the modification is more efficient for lager c. This observation agrees with results presented in
{3]-

As for the total computational time, the multicolor (M)ILU/Bi-CGSTAB method with
¢ = 75 is the fastest of all the cases. The method is 2 to 3 times faster than the traditional
hyperplane method. The multicolor method with ¢ = 75 is additionally robust against anisotropy
in model problems.



5. Conclusion. The large-numbered multicolor MILU preconditioner has been introduced
for a sparse matrix of the 3D 7-point difference form. The advantage in the usage of the large-
numbered multicolor ordering is that the PCG-type method based on this ordering tends to
require fewer iterations (to reach the same accuracy) than the same method based on a small-
numbered multicolor ordering, while both orderings spend almost the same computational time
per iteration if the problem is sufficiently large.

Numerical experiments have been carried out on the SX-3/14, using some convection-
diffusion equations discretized on a 76x76x76 grid. The large-numbered multicolor (M)ILU/Bi-
CGSTAB method has achieved a computational speed exceeding 2 GFLOPS (with 64-bit arith-
metic). The present method is 2 to 3 times faster than the Bi-CGSTAB method preconditioned
by the traditional hyperplane (M)ILU factorization.
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