% fE M Hr 38—5
(1991. 10. 19

IBM RS/6000 D2 —N—=2AhZ— @Gl rarys3 vy

| K
BA7PA «E— x4 ()

IBM RISC System/6000* (RS/6000) i [AIHFIEATILIE & BEWCER L e A—N—2 HH— -
V—=ORF=vavThB. TOWATHEEN TG, ErOGHRITHM 2 EEL THE
BEERE? L), BFEOHETERBERCIER L, KX E 9, RS/600000 7 — %
FOFv— N=F2x7 O EITL. RicFortran7’ 175 L O EEEE £ ' E T
s 2 MU CRBBHEERR S, ZOFKCE I F 2 -2V FETOBERGIEFED
ANTG—HTOBDENBIRBSTWEDT ' A—=N—=2AHF L' LS BEERED
%,

Hikaru Samukawa
IBM Japan, Ltd.
19-21, Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103, Japan

IBM RISC System/6000 (RS/6000,%) is a highly concurrent superscalar work-
station. To exploit this high degree of concurrency, conventional method for
performance evaluation which assumes constant computational time for each type
of instructions is almost meaningless. This paper introduces the architecture
and hardware implementation of RS/6000, then describes a new approach to evalu-
ate Fortran program performance running on RS/6000 through 'performance
equation’. We propose the term ‘'superscalarization' for the tuning method
based on performance equation, because the focusing point in performance tuning
has so largely shifted from that on conventional scalar processors.

(¥) RISC System/6000 is a trademark of International Business Machines Corpo-
ration.

(1)

1.Introduction

A method of performance evaluation of a Fortran program running on a conven-
tional scalar processor might be carried out based on the assumption that com-
putational time is fixed for each type of instructions. However this method is
no longer accurate, because performance behavior tends to become complicated as
a machine organization becomes complicated. The background of this complexity
is from storage hierarchy (cache) and pipeline enhancements. RS/6000 has one of
the newest scalar processor, having a capability to compute two floating-point
operations in one cycle time. This performance is achieved by the feature
called 'superscalar'. An approach of performance evaluation should be modified
so that the superscalar performance is exploited.

1.1 Data cache: On machines with storage hierarchy, an execution time of an
instruction varies depending on existence of the operand in cache or not. For
example, the performance of the following two programs will differ if an avail-
able data cache size of the processor is in between 16KB and 160KB.

A) Primed cache : x and y are resident in cache after second call

do i=1,1000
z (i) =ddot (1000,x,1,y,1)
enddo

B) Empty cache : x and y should be reloaded into cache for each call

do i=1,100
z (i)=ddot (10000,%,1,y,1)
enddo

For performance evaluation and programming tuning, an effect of the data cache
situation is to be considered first. By testing simple program like above exam-
ple, penalty (average delay of an execution time) due to cache-miss can be
measured. For RS/6000, it is roughly twenty cycles. It is indispensable to
know this number for effective tuning work.

1.2 Processor pipeline: Even in primed cache situation, instruction sequence
may affect on the execution time of certain instruction. Even the same
sequence, it may vary depending on data. These behaviors can be explained
using profound knowledge of how the processor pipeline works. But from a
Fortran programmer's point of view, such kind of knowledge will be felt '"too

much detail’. So, it is required to establish some simple method to evaluate
execution cycles of given Fortran loops through/bypassing instruction
sequences.

The following two chapters describe key factors which affect on performance.

" B execution overlapping
B depth of dependency

(2)

2.RISC System/6000 processor architecture

One of the most notable features of the RS/6000 architecture is the separation
of the components of the processor into functional units, i.e., overlapped exe-
cution among fixed-point wunit, floating-point wunit and branch unit can be
implemented for this architecture (1).

2.1 Superscalarization: It is introduced in (1) and (2) that the following 2D
graphics transform problem can be computed in four cycles per loop iteration on
the experimental version of RS/6000 processor (named AMERICA). The given
Fortran loop and one of the possible instruction sequences are as follows

do i=1,n

xx (1) =bl+allsx (i) +al2%y (i)
yy (i) =b2+a21%x (i) +a22%y (i)
enddo

assume fp8=all, fp7=a2l, fpb=al2, fpb=a22, fpd=bl, fp3=b2

1fdu fp0,rb5=x(r5,8) load x(i), r5=r5+8
fma fpl=fp4,fp8, fpld fpl=bl+allxx (i)
1fdu fp2,rb=y(r6,8) load y(i), r6=r6+8

fma fp0=fp3, fp0, fp7 fp0=b2+a21%x (i)

fna fpl=fpl,fp6,fp2 fpl=fpl+al2%y (i)

fma fp0=fp0,fp2,fpd fp0=fp0+a22%y (i)

stfdu r7,xx(r7,8)=fpl store fpl to xx(i), r7=r7+8
stfdu r8,yy(r8,8)=fp0 store fp0 to yy(i), r8=r8+8

be CL.0,crl,0x1/1t branch, decrement count register

1fdu : load floating-point double with update
stfdu: store floating-point double with update
fma : floating-point multiply-add
('fma fpt=fpb,fpa,fpc’' performs 'fpt=fpb+fpa%fpc')
be : branch conditional (and count register decrement)
register renaming *: 32 architected registers are mapped onto 40 physical
registers.
floating-point number representation : hexadecimal (AMERICA),
"fully conforming to the IEEE binary standard' (RS/6000).

All of above instructions are compound-function instructions i.e., multiply and
add, load and update, store and update, branch and count. In AMERICA, since
load and store are executed by the fixed-point unit, 'fma' 1is by the
floating-point unit and branch 1is by the branch unit separately, execution
times of three units can be overlapped. Multiplication and addition can be
overlapped in the floating-point pipeline. This overlapped implementation will
only require four cycles for each iteration of the loop.

The concurrency can be simply expressed by introducing a 'performance
equation' so that performance of the Fortran program can be estimated without
inspecting details inside the processor.

#cycles = max (#load + #store , #'fma')

From the Fortran programs, #load and #store can be counted from the observation
of the statements inside of the loop.

(3)

B #load : number of unique array elements indexed with the loop index in the
right-side of the statements

B #store : number of unique array elements indexed with the loop index in the
left-side of the statements

This case, #load is two (x(i),y(i)) and #store is two (xx(i), yy(i)). By sub-
stituting 2 for #load, 2 for #store, 4 for #'fma’, then 4 cycles is obtained.
The former term 1in the performance equation represents a limitation of the
fixed-point wunit, the latter does that of the floating-point unit. Function
'max’ does the overlapped implementation. Since both terms are equal in this
case, execution time of loads and stores is hidden behind that of arithmetic
operations. Tuning method of modifying innermost loop to make balancing two
terms in performance equation can be called 'superscalarization', which appears

in AMERICA in its ideal form.

2.2 Focusing point shifting:
tecture using the same progranm.

Assume B1=bl1,B2=b2,A21=a21,A22=a22 and F6=all,F4=al2

The Architecture is contrasted with S$/370 archi-

TOP LDR F2,F6 F2=all
HD F2,0(R9,R8) F2=F2%x (i)
AD F2,B1 F2=F2+bl
LDR FO,F4 FO=al2
MD F0,0(R9,R7) FO=FOxy (i)
ADR FO,F2 FO=F0+F2
STD F0,0(R9,R6) xx (1) =F0
LD F2,A21 F2=a2l
MD F2,0(R9,R8) F2=F2%x (i)
AD F2,B2 F2=F2+b2
LD FO, A22 F0=a22
MD F0,0(R9,RT) FO=FO0xy (i)
ADR FO,F2 FO=F0+F2
STD F0,0(R9,R6) yy (i) =F0

BXLE R9,R10, TOP branch and increment

There are fifteen instructions, and here, assuming that some scalar processors
take five cycles for multiplication, three for addition, one for load, two for
store and two for branch, more than forty cycles are required for single iter-
ation of the loop. The method of performance evaluation for processors of this
type would be accurate enough with assuming fixed number of cycles for each
type of instructions (if primed cache situation were provided). Since a ratio
of number of cycles of the floating-point arithmetic operations to the rest of
the instructions 1is large, focusing point for tuning work on such processor
would be concentrated on arithmetic operations. On the superscalar processor,
however, it becomes equally or more important to reduce load and store oper-
ations.

3.RISC System/6000 processor pipeline

The actual implementation of production machine (RS/6000) made 'performance
equation' more complicated. The most significant change from AMERICA to RS/6000

(4)

was that floating-point stores were required to proceed through the
floating-point unit (2), i.e., store instruction is executed by both fixed- and
floating-point unit. Corresponding to this change, the second term in the per-
formance equation should be revised with adding #store.

#cycles = max(#load + #store , #'fma' + #store)

The 2D graphics example is evaluated to be six cycles from this revised
equation. However, actual testing in primed cache situation reveals seven
cycles are required (2).

3.1 'fma' dependency: On RS/6000, two types of dependent operations exist.
The first type of dependent operations 1is the one where a source operand
depends on the result of a previous floating-point operation (3).

additional execution depth of
INST. FRT=FRB+FRA%FRC cycles in pipeline dependency
fma fpl,---, -, -—- DMAVW FRB case
fma ---,fpl,---,--- +] DDMAW 2
fma fpl,--=, ===, -~ DMAW
fma -—=, ===, fpl,--= +2 DDDMAVW
-- FRA case
fma fpl,---,———,-——- DMAV 3
fma e Rt DMAVW
fma -==, ===, fpl,--- +1 DDMAW
fma fpl,---, -, -~ DMAVW FRC case
fma --=,---,---,fpl +1 DDHAY 2

D ;3 floating-point decode

M ; floating-point multiplication

A ; floating-point addition

W i write the result to floating-point register

3.2 Store dependency: The second type of dependent operations is related to
stores. When a store enters decoder and the preceding arithmetic operation is
still computing the result for the target register content, a subsequent store
will stall in the decoder until after the preceding instruction has placed its
result in store queue. This is the reason for the 2D graphics example takes
one additional cycle over 'six' obtained from the performance equation.

additional execution

INST. FRT=FRB+FRA%FRC cycles in pipeline
fma fpl,---,-~~, - DMAVW

fma fp0,---,---,--- DMAV
stfdu frl D

stfdu fp0 +1 DD

3.3 Depth of dependency: Thus, in particular instruction sequences, number of
execution cycles may increase according to the preceding instructions. The nunm-
ber of 'fma' instructions that influence each other is called 'depth of depend-

(5)

ency’'. In case of actual tuning work, dependent 'FRA' operands may seldom
occur because of the compiler's dependent operation considerations. Consequent-
ly, the depth of dependency to be cared is at most "two'. Depth of two can be
often resolved by one-more-way unrolling. The following two-way unrolling is
effective in 2D graphics transform problem to remove one additional eycle
caused by the store dependency, so that six cycles per one transform is
achieved.

do i=1,n-1,2
xx(i)=bl+allxx(i)+al2xy(i)
xx(i+1)=bl+allxx (i+1)+al2%y (i+1)
yy(i)=b2+a2l%*x (i)+a22%y(i)
yy (i+1)=b2+a21%x (i+1)+a22%y (i+1)
enddo

........................

In actual tuning work environment, such tuning margin can be found by measuring
kernel program running in primed cache situation.

4 .Example of superscalarization

The typical scenario of superscalarization on RS/6000 would be as follows ;

adopting block algorithm (making primed cache situation)

outer-loop unrolling to reduce loads/stores till minimizing cycles obtained
from the performance equation

inner-loop unrolling to remove additional cycles caused from dependency

.1 Example: Matrix-matrix multiplication with size of 1, m, n can be blocked
o that submatrix of A (11 by mm) fits into an effective cache capacity (4),
i.e., two loops are applied stripmining with size of 11 and mm.

0 w DO —

do kk=1,m-1,mm
do ii=1,1-1,11

do j=1,n do Jj=1,n
do i=1,1 do i=ii,min(l,ii+11-1)
do k=1,nm do k=kk,min(m, kk+mmn-1)
c(i,d)=c(i,j)+a(i,k)*b(k,J) .. = .. +a(i,k)
enddo enddo
enddo enddo
enddo enddo
enddo
enddo

Since the portion of inner three loops of the modified program can work in
nearly primed cache situation, further tuning becomes very effective. In this
case, #load is two (a(i,k) and b(k,J)), #store is zero. The second term is one.
The ratio of the second and the first term (1/2) can be enhanced with applying
two-by-two unrolling on Jj(column) and i(row) loops, so that the number of
loads/stores is decreased until balanced with that of the second ternm.

do Jj=1,n-1,2
do i=ii,min(l,ii+11-1)-1,2

(6)

dO k=kkn min (lll, kk"'mlll“l)
c(i ,J J=eli ,Jj J+ali, K=b(k,J)
c(i+l,j)=c(i+l,j)+a(i+l,k)*b(k,J)
c(i ,j*D)=c(i,j+*1)+a(i, k)%b(k,j+1)
c(i+l,i+l)=e(i+1,j+D)+a(i+1,k)%b(k, j+1)
enddo
enddo

.............

In the kernel loop (k-loop), #load is four (a(i,k),a(i+1,k),b(k,J), b(k,j+1))
and #'fma's is four as well. They are balanced and free from dependent opera-
tion effects. As a result, eight floating-point operations are carried out in
four cycles. Actual testing on RS/6000-550 (41MHz), roughly 74 mflops is meas-
ured. Note that final version of tuned program is given finer tuning such as
temporary scalar (compiler persuasion) and data compaction (5) applied on sub-
matrix of A (for contiguous access). By using this multiplication routine at
the hottest kernel of the recursive block Crout formulation (4), LINPACK prob-
lem (TPP) of solving linear equations sized 1000 can be solved with 64 mflops.
More sophisticated program (ESSL:Engineering and Scientific Subroutine Library)
has a capability to solve this problem with 73 mflops.

4.2 Observations and considerations

Sensitivity: On conventional processors, performance gain would be negligibly
small, because an instruction set consisting of two operand instructions inhib-
its loads/stores reduction. This explicates that performance of a Fortran pro-
gram is more sensitive to the program modification on superscalar processors
than on conventional processors.

Semantic gap: On conventional scalar processors, the number of storage/cache
references 1is difficult to be estimated from the Fortran program. This kind of
problem is often called the semantic gap, a measure of the difference between
the concepts in high-level languages and the concepts in the computer architec-
ture. RS/6000, on the other hand, can estimate that number for the simple pro-
grams exemplified in this paper. This difference resulted from the efforts to
minimize the performance impact of the data transfer from storage/cache to reg-
isters, carefully made by the architects of RS/6000 in search for the ultimate
concurrency. To be more specific,

| 'fma' having four register operands and enough number of registers reduce
storage/cache accesses,

B The sophisticated way of operand address update simplifies scaler pipeline
design.

These items not only are the key factors for performance optimization, but also
play an important role to shrink the semantic gap, which is helpful for Fortran
programmers to be able to evaluate their execution performance in terms of pos-
sible program modifications such as by unrolling. And the importance of code
movement by the compiler cannot be looked over as well.

It is added that this optimized architecture is named POWER (Performance Opti-
mized With Enhanced RISC) architecture.

5.Comments

(1)

5.1 Register renaming: The floating-point register cannot be overwritten until
all prior floating-point instructions which refer the old value of the register
have accessed that value. The capability of the register renaming resolves the
interlock caused by this floating-point register conflict, which often appears
in tight loop. And, even in high degree of overlapped implementation, a pre-
cise interruption is still held by the register renaming.

5.2 Data dependent performance: Computational time for some floating-point
numbers that require reserved exponent expression such as denormalized numbers
is longer than normalized numbers.

5.3 Relation to the Fortran compiler capability: According to the XL Fortran
rule for constructing arithmetic expressions, since order of multiple additions
in single executable statement is from left to right (6). In case of 2D graph-
ics transform example, if the statement is written in the form
'wx (i)=allxx (i) +al2%y(i}+b1l', one of the 'fma's splits into 'multiply' and
'add' instructions. XL Fortran preprocessor provides a capability called asso-
ciative transformation which automatically changes expressions to the form
"xx (i) =bl+allxx (i)+al2%y (i) ".

Other preprocessor functions such as 'unrolling' and 'stripmining' are pro-
vided to help automatic program modifications exemplified in the previous sec-
tion.

6.Conclusions: A method of performance evaluation is substantially architec-
ture/hardware dependent. An effective approach to tune a Fortran program run-
ning on the machines with storage hierarchy and superscalar processor is
shifted from that on conventional scalar processors. For the storage
hierarchy, knowing the magnitude of cache-miss penalty and adopting blocking
algorithms are effective. For the superscalar, evaluating performance through
the performance equation in order to take overlapped execution into account,
and reducing loads/stores by unrolling are effective. Then measure in actual
run in the primed cache situation to find additional cycles. If found, apply
unrolling again to remove these additional cycles. Since this procedure is
specific to superscalar processors, it can be called 'superscalarization'.

Acknovledgments: We are grateful to Brett Olsson, Steve White and Richard Fry
(IBM/Austin) for providing us a detailed information of RS/6000 processor.

References

1. R.R.Oehler and R.D.Groves,"IBM RISC System/6000 Processor Architecture,”
IBM J.Res.Develop.34,23-36(1990)

2. G.F.Grohoski,"Machine organization of IBM RISC System/6000 Processor,” IBM
J.Res.Develop.34,37-58(1990)

3. B.Olsson,R.Montoye,P.Markstein and M.NguyenPhu, "RISC System/6000
Floating-Point Unit,” IBM RISC System/6000 Technology, Order Number
SA23-2619(1990), available through IBM branch offices.

4. H.Samukawa, "Programming style on the IBM 3090 Vector Facility considering
both performance and flexibility," IBM Systems Journal 27,
No.4,453-474(1988)

5. B.Liu and N.Strother, "Programming in VS Fortran on the IBM 3090 for Maximum
Vector Performance,” IEEE COMPUTER, JUNE, 65-76(1988)

6. "AIX XL FORTRAN Compiler/6000 Version 2 Language Reference” and " User's
Guide,” Order Number SC09-1353 and ~1354(1991), available through IBM
branch offices.

(8)

