NART g —= VA 59—
AV —F 4T T

(1994, 7. 22)

VPP Fortran% f\» 7 NAS Parallel Benchmark® %4k &
AP1000% FH\n» 7 5

S —v D
(BR)E-LDBFZEET A FAHEBIZE+ v % —

AFE T, NAS Parallel Benchmark % 351k U 7 #%5% % 31c, AP1000fKVPP Fortrana Itk
T MREICBE T 2 32 T4 5. SETA - 2 WFULH R DI R RN, v F<—2 T a2
7 LADETREREREHETS. £2HE LT, VPP FortranDFBIK DO W THEEL, £ OITMEEN
FRET K E S HHET B DO EEOXBIRICOWTHR~S.

NAS Parallel Benchmark Implementation and Evaluation
Using VPP-Fortran on the AP1000

Shaun Kaneshiro Tatsuya Shindo
Fujitsu Parallel Computing Research Center
Fujitsu Laboratories Ltd., Kawasaki, Japan

This study evaluates the usability and performance of the VPP-Fortran language-Fujitsu’s
parallel Fortran dialect-based on our experience in parallelizing and tuning the NAS Parallel
Benchmark programs for the AP1000 parallel computer. We outline the parallelization scheme
used in this study, and report the execution time results for the benchmark programs. We
conclude the paper by summarizing our observations on the VPP-Fortran features, as well as,
language enhancements which would greatly improve its usability and flexibility.

5



1 Introduction

The VPP-Fortran language was first made
available for the AP1000 parallel computer in
January 1994. This study evaluates the us-
ability and performance of the VPP-Fortran
language based on our experience in paralleliz-
ing and tuning the NAS Parallel Benchmark
programs for the AP1000 parallel computer.

The paper is organized as follows. First,
an overview of the VPP-Fortran language,
the AP1000 parallel computer, and the NAS
Parallel Benchmark is presented. Next, we
outline the parallelization process applied in
this study, and report the benchmark execu-
tion time results. Finally, we summarize the
lessons learned from this study from a pro-
grammer’s point of view followed by a discus-
sion of enhancements to the language.

2 Background

2.1 VPP-Fortran Language

In this study we port the NAS benchmarks
to VPP-Fortran, Fujitsu’s parallel Fortran di-
alect, which is based on the FORTRANT7
standard [2][3]. The language is designed for
data parallel computation, providing the user
with directives for partitioning and distribut-
ing loops and arrays in block or cyclic manner,
and performing barrier synchronization and
global operations across nodes within a region.
VPP-Fortran also includes several features for
performance tuning to aggregate data commu-
nication, and to eliminate unnecessary global
address calculation and barrier synchroniza-
tion [4]. We take advantage of these features
in the parallelization scheme applied in this
study.

2.2 AP1000 Parallel Computer

The AP1000 is a massively-parallel message-
passing MIMD computer. Each node is based
on a 25MHz SPARC processor with custom-
designed modules for memory and network
controllers, and 16 MB of memory. The nodes,
arranged in a two-dimensional torus config-
uration, can communicate via three different
networks: the T-net, a two-dimensional point-
to-point torus network, B-net, a hierarchical
broadcast network, and S-net, a binary tree
synchronization network. A single configura-
tion can have up to 1024 processors.

2.3 NAS Parallel Benchmark

The Numerical Aerodynamic Simulation
(NAS) Parallel Benchmark [1] is a collection
of five kernels and three applications common
to computational fluid dynamic (CFD) appli-
cations. The benchmark was primarily devel-
oped to compare the performance of highly-
parallel, distributed-memory computers. This
study includes the parallelization of five kernel
programs and two of the CFD applications in
the version 4.2 benchmark:

Embarrassingly Parallel (EP) generates
228 pseudo-random numbers, and character-
izes the generated numbers.

Multigrid (MG) computes approximations
to a discreet Poisson problem on a 256 X
256 x 256 grid using four iterations of the V-
cycle multigrid method with periodic bound-

“ary conditions.

Conjugate Gradient Method (CG) cal-
culates the smallest eigenvalues of a symmet-
ric, positive definite sparse matrix using the
power method to solve the system of linear
equations. The 14000 x 14000 input matrix
contains 1853104 pseudo-randomly generated
non-zero elements.

3-D FFT (FT) solves the given partial dif-
ferential equation using forward and inverse
FFT on a 256 X 256 x 128 imaginary matrix.
Block: Tridiagonal CFD (BT) computes
the solution to independent systems of non-
diagonally dominant, 5 x 5 block tridiagonal
equations.

Scalar Pentadiagonal CFD (SP) com-
putes the solution to independent systems of
non-diagonally dominant, scalar pentadiago-
nal equations.

3 Parallelization process

In this section we outline the general paral-
lelization strategy, and briefly summarize the
special cases requiring transformations other
than the default ones described here. The
steps basically include parallelization and op-
timization steps which integrates all data and
control flow information available. For more
details on the parallelization process, see [5].

3.1 Pre-parallelization transforma-
tions

The process of porting the NAS Benchmark to
the AP1000 required several syntactic changes
in order to meet VPP-Fortran specifications,
and to accommodate array partitioning in the



next phase. This section summarizes four
modifications, some of which lead to a tremen-
dous blowup in the source code size, hindering
the readability of the resulting VPP-Fortran

code.

e The shape and partitioning for arrays
must be known at compile time. Because
the shape of partitioned arrays cannot be
parameterized as an argument, a proce-
dure was defined for each array shape.

e The shape of a partitioned array must
remain constant throughout the entire
program. In FT, for example, instances
where the array shape is modified was
eliminated by defining additional arrays
for each different array shape.

¢ Only one index partitioning can be de-
fined for a partitioned array. In cases
where portions of an array are used for
different computations and each portion
requires a different partitioning, the orig-
inal array was separated into distinct ar-
rays for each respective computation.

e Subarrays of global partitioned arrays
cannot be passed as real arguments.
Those instances were decoupled into two
separate arguments—global partitioned
array name and array index offset.

3.2 Partitioning phase

The array and loop partitioning and distribu-
tion were selected so that the number of re-
mote data accesses is minimized. The analysis
was performed manually taking into consid-
eration the optimizations that are done dur-
ing the next phase, described in the next sec-
tion. In the cases where conflicts between
partitionings occur, preference was given to
partitionings in the heavily executed areas
within the timed region. In order to deter-
mine which partitioning yields the best run-
ning time, preliminary versions of the bench-
marks were written varying the partitioning.

3.3 Optimization phase

The optimization phase is divided into four
steps: removing unnecessary global address
calculation, aggregating data communication
and removing unnecessary barriers synchro-
nizations. These optimizations were incor-
porated into the parallelization process based
on the tradeoff between the time invested in

implementation and execution time improve-
ment reported in Section 5.

1. This optimization step effectively remove
unnecessary global address calculation by
referencing a partitioned array using its
local name (as opposed to its global
name) when the reference is known to be

local.

2. Aggregating data communication is one
of the most effective optimizations. Be-
cause an overhead is associated with each
remote data transfer, reducing the num-
ber of transfers, reduces the execution
time. In this step, the SPREAD MOVE di-
rective was used to aggregate individual
remote data accesses into larger blocks.

3. Overlap areas were incorporated into the
data partitioning and the OVERLAPFIX di-
rective was inserted to aggregate data
communication. This optimization is a
more specialized data aggregation for a
more specific, but common data access
pattern.

4. Unnecessary barrier synchronizations are
removed. By default, synchronizations
occur before and after a parallel loop, and
after a remote data transfer completion.

3.4 Conflict resolution

This section describes three of the problems
encountered when parallelizing the bench-
mark programs using the described paral-
lelization scheme. The first problem, due to
conflicts in the partitioning in the FT, BT,
and SP benchmarks was resolved using data
redistribution. Since the amount of computa-
tion performed between each data redistribu-
tion is large, redistribution proved to be effec-
tive for those cases. Secondly, the partitioning
for SP and BT benchmarks could have been
done across either one or two dimensions of
the arrays. The tradeoffs in partitioning over
two dimensions are performance improvement
for larger machine sizes versus more memory
and more time spent in redistribution, if per-
formed. For SP and BT, even with data re-
distribution, the best performance of the 2-D
partitioned version still exceeded that of the 1-
D partitioned version. Lastly, for the CG and
MG benchmarks, changes to the data repre-
sentation were necessary in order to improve
the runtime performance. The changes basi-
cally minimized the amount of remote data
accesses.



Table 1: NAS Benchmark problem size A ex-
ecution time for the AP1000

Bench- | Mach. | Runtime Total Mem.
mark size (sec) | (64-bit words)
EP 512 30.4 67.1
256 60.7 33.6

128 121.4 16.8

64 242.7 8.4

FT 256 38.0 92.7
128 54.3 . 925

CG 512 159.3 38.6
256 146.3 26.0

128 136.4 19.7

BT 512 571.5 91.8
256 976.3 81.3

128 1631.7 76.0

64 2874.7 73.4

SP 512 688.3 36.7
256 1128.3 26.2

128 1624.2 21.0

64 2790.6 18.3

4 Benchmark Performance

After applying the parallelization steps de-
scribed in the previous section, the execution
time for each NAS benchmark were measured
for different machine configurations shown in
Table1. 1 23

5 Hints to the VPP-Fortran
User

In this section we summarize the lessons
learned from this experience which will be
beneficial to the VPP-Fortran programmer
in making partitioning and implementation
decisions. We first comment on methods
of improving the program performance, and
then describe the relative costs of basic VPP-
Fortran operations.

5.1 General Comments

5.1.1 Communication aggregation

In the current language implementation, when
using the SPREAD MOVE directive, the de-
gree to which communication aggregation is

'The runtime system version rel.940530, and op-
erating system version 1.4.1 were used to collect this
data.

2These timings have not been officially submitted
to NASA.

3The MG timings are currently not available.

performed is solely dependent on the user-
specified ordering of the loop iterators and
the partitioning of the contained arrays. As a
result, the difference in runtime performance
between the worst case and optimal ordering
and partitioning combination may be larger
than 200%, due to the larger number of re-
mote data requests, and the overhead asso-
ciated with each request. Because the exe-
cution time can be significantly affected by
the amount of communication aggregation, we
warn the user to give special attention to the
ordering of the SPREAD MOVE loop iterators.
To maximize the amount of aggregation, the
general rule of thumb is the outermost loops
should iterate over the partitioned dimensions
of the global array in the SPREAD MOVE, and
the innermost loops should iterate over the
other dimensions.

5.1.2 Data redistribution

As discussed in Section 3, data redistribu-
tion was applied to resolve array distribution
conflicts. Because no sophisticated paralleliz-
ing and performance tools were available at
the time of this study, resolving such conflicts
were manually done on a trial-and-error basis.
For the SP, BT, and FT benchmarks, because
the amount of calculation performed between
redistributions was relatively large, the ver-
sion with redistribution yielded a better run-
time performance than the version without re-
distribution. We recommend to the user to
consider data redistribution to resolve parti-
tioning conflicts.

5.2 Basic operation costs

5.2.1 Barrier synchronization .

We first consider the cost of a hardware
and software barrier synchronizations imple-
mented in the current runtime system. If
the barrier is across all nodes, the synchro-
nization is done in hardware using the S-net.
Otherwise, it is done in software using the
T-net. The table below shows the relative
cost of the two types of barrier synchroniza-
tion with respect to number of nodes involved
in the barrier. Basically, hardware synchro-
nizations require the same amount of time re-
gardless of the machine size, whereas the soft-
ware synchronizations depends on the num-
ber of nodes involved in the synchronization,
log,(node) x 32 x 10~% seconds.

Based on these measurements, the user
should keep in mind that when parallelizing




Table 2: Barrier synchronization timings

Barrier Num. of | Time
type nodes (1075 sec)
Hardware 512 1.0626
(across all 256 1.0615
nodes) 64 1.0640
Software 256 266.9067
(across a 64 | 224.2551
subregion 16 150.1888
of nodes) 4 64.5072
2 32.6328

a program which requires many barrier syn-
chronizations before and after parallel loops,
the synchronization across a subregion of pro-
cessors is slightly more expensive than one
performed across all nodes. In other words,
the default synchronizations associated with a
parallel loop which is partitioned over a single
dimension will be faster than one partitioned
over multiple dimensions.

5.2.2 Global and local array name ref-
erences

As a parallelization step, the global array
names which access a local region of a par-
titioned array were replaced by their corre-
sponding local array names. The difference
between the two types of references is the
global reference must first calculate the node
on which the array element resides and the
local array offset prior to the actual array ac-
cess. This optimization basically eliminates
the cost of the node and offset calculation.

Table 3 summarizes the time required for
node and address calculation based on the
time for a local array access using both the
global and local array name. The global
address calculation requires 1.37 x 10~ to
1.86 X 10~* seconds. Like the barrier synchro-
nization optimization, this one can potentially
reduce the execution only by a small fraction
of the running time.

5.2.3 Block-cyclic distribution

When deciding whether an array should be
distributed in a block or cyclic manner, the
programmer should keep in mind the fea-
tures available for the different distribution
schemes. Of the two, the cyclic scheme has
the most restrictions: overlap area cannot
be used with the cyclic distribution, and the
cyclic width can only be of unit length. In

Table 3: Global array address calculation tim-
ings

Array Global | Local Global
oper. ref. ref. addr. calc.
Block (10~¢ sec
Read 1.7213 0.0065 1.7148
Write 1.3808 | 0.0049 1.3759
Cyclic (10~7 sec
Read 1.8655 | 0.0081 1.8574
Write 1.4020 | 0.0065 1.3955

terms of performance, the address calculation
for elements in a cyclically distributed array
is slightly higher than the block distribution,
about 101.4%-108.3% times slower according
to the timings in Table 3.

6 Language improvements

We present a list of VPP-Fortran language im-
provements, based on our experiences in par-
allelizing the NAS Benchmark, which would
greatly enhance the flexibility and usability
of the language. In this section, we de-
scribe the limitations in the VPP-Fortran
OVERLAPFIX operation, cyclic distribution
constraints, communication aggregation, and
global vector operations.

6.1 Updating overlap regions

In the current language specification, the
OVERLAPFIX directive updates the overlap re-
gions over the entire corresponding array. In
some cases, the overlap area only within a
specified region was necessary, for example,
along a particular array dimension, within a
selected region, or along either the positive or
negative side of the overlap region. To reduce
the amount of data transfer to those which are
necessary, the OVERLAPFIX directive should be
augmented to allow a more detailed specifica-
tion of the region to update.

Due to.a requirement by the OVERLAPFIX
statement and a FORTRAN77 restriction, it
is not possible to specify the array to be
OVERLAPFIX-ed as a procedure dummy argu-
ment. As a result, a copy of the procedure
containing the OVERLAPFIX must be defined
for each array argument, resulting in a severe
increase in code size. The requirement that
the global and local array to be fixed should
be EQUIVALENCEd in the procedure invoking



OVERLAPFIX should be removed. The informa-
tion from the EQUIVLANCE should be obtain by
some other means or instruction.

6.2 Periodic overlap

Based on our experience in parallelizing the
MG benchmark, we propose a periodic option
with the overlap area partitioning. With this
option, the the opposite boundary elements
will also be included in the overlap region up-
date. Using the current language specifica-
tion, it is possible to explicitly implement a
periodic boundary, but because the boundary
elements must be treated as special cases, the
code increases in size and becomes unread-
able. The user should be able to specify the
periodic option in the index partitioning dec-
laration, and reference the opposite boundary
overlap data by using lowerbound-1 and up-
perbound+1 indices.

6.3 Cyclic distribution

Cyclic distribution has several restrictions
which makes it not as flexible as block distri-
bution. The language should be augmented
so that a cyclic width can be specified by the
user, and overlap region can be defined with
this distribution type.

6.4 Communication aggregation

As explained in Section 5, the degree to which ‘

communication aggregation is performed in
the SPREAD MOVE comstruct is dependent on
the ordering of the loop iterators, and the par-
titioned array dimensions. Ideally the user
should not have to know details of the com-
piler implementation in order to attain the op-
timal performance. The compiler should in-
clude an optimizing module which, based on
some heuristic, would attempt to reorder the
loop iterators which best matches the array
partitioning.

6.5 Global vector operation limita-
tion

In the current implementation, global vec-
tor operations use the B-net when transmit-
ting the result to the nodes. Because the
ring buffer length for the B-net is limited to
512K B, vectors of up to 512KB in length can
be involved in a vector global operation. If the
vector exceeds this length, the user must man-
ually divide the array and DO-loop into smaller

chunks. Such implementation-dependent re-
strictions should be eliminated by modifying
the current implementation so that the T-net
is used instead, even at the expense of increas-
ing the basic cost of a global vector operation.

7 Conclusion

This study attempted to evaluate the VPP-
Fortran language by parallelizing and tun-
ing the NAS Parallel Benchmark using VPP-
Fortran. The execution time for the NAS
Benchmark programs on the AP1000 was pre-
sented in this paper. Based on our experience
in parallelizing the benchmark, we presented
advice to the VPP-Fortran user in regard to
performance tuning, and recommendations to
the language designer to improve the VPP-
Fortran’s usability and flexibility.

8 Acknowledgments

The authors would like to thank Mr. T. Doi,
Mr. H. Iwashita, and Mr. K. Hayashi for their
advice on the VPP-Fortran language and im-
plementation, and Dr. M. Ishii, Mr. H. Shi-
raishi, and Mr. M. Ikesaka for their continued
support on this project.

References

[1} D. Bailey, J. Barton, T. Lasinski, and H.
Simon, eds., "The NAS Parallel Bench-
mark,” Technical Report RNR-91-002 Re-
vision 2, NASA Ames Research Center,
Moffett Field. CA 94035, August 1991.

[2] Fujitsu Limited. "AP1000 VPP Fortran
Users Guide,” March 1994.

(3] H. Ishihata, T. Horie, and T. Shimizu.
” Architecture for the AP1000 Highly Par-
allel Computer,” Fujitsu Science Technical
Journal, v. 29, no. 1, March 1993, pp 6-14.

(4] ¥BF Z4z, fEE Eh, and A 8. “VPP
Fortran : 48 2 € J B HEHEE=SEE
JSPP 1994, May 1994, pp. 153-160.

[5] S. Kaneshiro, and T. Shindo. ”The NAS
Parallel Benchmark on the AP1000,”
Technical Report LTM-94-0918-07, Fu-
jitsu Parallel Computing Research Center,
1994.



