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Abstract

A general algorithm for the direct inversion of data to yield unknown functions
was recently developed by Caudill, Rabitz and Askar. We apply the technique to
study non-linear, coupled kinetics models. This paper is a preliminary report on

our findings.
1. Introduction and Problem Formulation

The problem considered in this talk lies in a very active area of research known as
inverse problems. All inverse problems are associated with a forward problem, which is
often much easier to solve. For example, consider a simple system studied by Euler and
Bernoulli: given the density, length and tension of a plucked string, determine the tones
produced. An associated inverse problem is to determine the density of the string from its
tones, length and tension [D]. Inverse problems appear in a wide range of scientific areas
which include: the reconstruction of images in X-ray tomography, the determination of
the shape of flaws or cavities in metal castings, the modelling of groundwater, the study
of potential flows and heat conduction, the determination of material properties of a
beam from its vibrational modes, the recovery of a cross-sectional area of the vocal tract
from measured data, the determination of the density inside the earth from seismographic
data, scattering problems in physics, and mathematical inverse problems [IP],[K].[T).

The main topic of this talk is inverse problems in chemical kinetics. Chemical kinetics

systems are often described by evolution-type equations of the form:

ou P - _
% = T(V,u(1)) for t>0, (1)
°U = for t=0, (2)

where u is a vector representing the concentration of chemical species and V' describes
other parameters, e.g. diffusion and kinetics rate constants [A]. The standard textbook
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or forward problem consists of determining u for a choice of V. In actual laboratory
situations some of the V; may not be measurable, even though we would like accurate
approximations of their values under various conditions, e.g. temperature, pressure. This
quandary may be formulated as a mathematical inverse problem; determine V', given a
set of data measurements d = {d;}, which are related to V" through equations of the

form:
Lj(u,V) = f;(dj,u); j=12,...,m, . (3)

where each L;(u, V') is a, possibly non-linear, operator acting on u and V.

The remainder of this paper is organized as follows. An algorithm for determining a
numerical solution to the inverse problem described above is given in the next section.
Implementations of the algorithm to study a simple explosive kinetics model and a non-
linear, coupled 28-step reaction model are discussed in the final section. This paper is a

preliminary report.
2. An Algorithm for Direct Inversion

An algorithm proposed by Caudill, Rabitz and Askar [CRA] to solve the inverse

problem given in the previous section consists of three steps:

(i) Formally invert the system (3) to express the unknown V" in terms of the

data d and the (unknown) forward solution w:

V =vld, ] . (4)

(ii) Input (4) into equation (1) and solve the resulting system for u.

(iii) Substitute the solution u obtaired in step (ii) into the right-hand-side of
(4) to determine V" explicitly in terms of the data d.

Since the algorithm is based on system identities, it should be of no surprise if it yields
excellent results for fairly nice, clean and complete data sets. Through implementation
studies, we seek to determine its ability to reconstruct desired parameters from ideal as
well as incomplete or noisy laboratory data.

This algorithm can be used to solve a variety of inverse problems, which can be
mathematically modeled by equations of the form (1) — (2) with measurable laboratory
data (3). Three applications: heat conduction, age-structured population dynamics,
and molecular dynamics are discussed in [CRA]. Computer experiments with chemical

kinetics models are described in the next section.



3. Numerical Experiments

In this section we describe results from the implemention of the algorithm from the
previous section to solve the inverse problem for recovery of kinetics parameters. In our
first set of experiments, a simple explosive reaction model is investigated. The model is
based on the assumption that an infinite reservoir of the principal reagent is available,
and no or negligible back reactions take place. A more sophisticated non-linear, highly
coupled 28-step reaction mechanism for the oxidation of carbon monoxide in the presence
of hydrogen proposed by Yetter, Dryer and Rabitz [YDR] is examined in our second set

of numerical experiments. We use real laboratory data whenever it is available.

An Explosive Kinetics Model:  Consider the simple explosive reaction model:

A+2X = 3X ( propagation )

X = B ( termination ),

where the forward and backward rate constants for the propagation and termination

reactions are ki, ko, ks, and k4 respectively. The rate equations for the system are:

A = KA = bl Bl B] = bolX]
a4 9 2, 1 v)?

o = Rl kY]

%?l = k3[X] — k4[B] .

For propagation to occur at a reasonable rate, [4] > [X] > 0 for t > 0 and k; > k.

Termination occurs if k3 > k4. All of our numerical experiments consist of 4 steps:

1. Given all rate constants and initial concentrations of all reagents, solve the
forward problem, i.e. determine concentrations of all reagents for finite
times t: 0 <t < o00.

2. Select data for concentrations of reagents at various times
D=t <1 <... <ty .

3. Formulate the inverse problem and apply the algorithm from section 2.

4. Compare the computed algorithm from step 3 with the actual solution

from step 1.

To solve the forward problem, we use the forward Euler method to compute the concen-

trations of X, 4 and B. A subset of the data generated from the forward solver will



be used to solve an inverse problem. We consider the following inverse problem, which
can be "solved” using the algorithm described in the previous section: Given the rate
constants k;, ks, ks and the concentrations of A and B, determine the concentration of

X and the rate constant k3. First, determine X numerically from:

AX] Bl . e e
o = ~ o+ kAT — kelX]

using a simple forward difference scheme:
.Y,j.H = '—Bi+l + B; + X; + kllﬁfA,'.Y,? — LzAf.Y,a .

where the subindex i indicates the concentration of reagents at time ¢t = t;, the i*" time
step in the simulation. The rate equation for kj:

ky = [_‘1<_] (@jwuw]) :

is discretized using the simple difference scheme:

1 Bii1 — B; )
N ki S| k4B,
ks X, ( AL + k4B

The values for .X; computed above are used to evaluate k3.

We simulated an infinite reservoir system by taking [B] = 0, [X] = 0.1, k; = 2,
k3 =1, ky = kg = 0 at time ¢ = 0, the concentration of 4 to be constant at [A] = 500,
and dt = 0.00001. As A and B react, the concentration of X, and consequently, D, take
off. We consider the associated inverse problem and implement the algorithm described
above to recover the concentration of X for 0 < t < 0.005 and the rate constant k3. Not
surprisingly, recovery of [X] and k; is near perfect when ki, k2, k4 and [4] are known
and all of the data generated in the forward solver for [B] is used. We next consider the
inverse recovery problem using partial data. Results from experiments using all points
for [B], every other point, every fourth point and every eighth point are denoted by X1,
X2, X4, X8 respectively in figure 1, £3 — 1, k3 — 2, k3 — 4, k3 — 8 in figure 2. Figure
1 shows that the recovery of [X] is good, i.e. less than 10% relative error for ¢ < 0.004,
before the explosion begins to take off. For times 0.004 < ¢ < 0.005, the relative error
remains below 100%. A more sophisticated scheme or finer mesh would decrease the

error associated with a linear discretization of the derivative terms.

A 28-step CO-Hydrogen-Oxygen Reaction Mechanism: In our second set of
numerical experiments, we study a 28-step CO-hydrogen-oxygen reaction mechanism
proposed by Yetter, Dryer and Rabitz [YDR], given below. Although the mechanism has

been validated for a wide range of conditions, the regions of calibration differ for each of



the reactions. One of the motivations for our work is to examine the reaction mechanism
under a range of conditions, some of which may not be experimentally validated. A
second motivation is the study of the sensitivities of the reagents and rate constants to

changes in experimental conditions.

CO, H,, O, Reaction Mechanism

H,y, O5 Chain Reactions
1. H+ 0, =0 + OH
2.0+ Hy,= H + OH
3. OH + H, = H + H,0
4. OH + OH = O + H,0

H,, O, Dissociation-Recombination Reactions
Sa. Hy + M = H + H + M(N,)

5b. Hy+ M = H + H + M(Ar)

Ga. O + O + M = Oy + M(Ny)

Gb. O+ O + M = Oy + M(Ar)

7. O+H+M=0H+ M

8a. H + OH + M = Hy0 + M(N,)

8b. H + OH + M = H,0 + M{Ar)

Formation and Consumption of HO,
9a. H + Oy + M = HOy + M(N3)

9b. H+ Oy + M = HOy + M(Ar)

10. HOy + H = Hy + O,

11. HO, + H = OH + OH

12. HOy + O = OH + O,

13. HO; + OH = H,0 + 0,

Formation and Consumption of H,0,
14, HO; + HOy = Hy0y + O,

15a. Hy0y + M = OH + OH + M(N,)

15b. HyOy + M = OH + OH + M(Ar)

16. H,0, + H = H,O 4+ OH

17. HyO, + H= H, + HO,

18. HyOp+ O = OH + HO,



19. Hy0, + OH = H,O + HO,

Oxidation of CO

20a. CO + O + M = COy + M(N,)
20b. CO+ O+ M= COy + M(Ar)
21. CO+0,=C0Oy+ 0O

22. CO+0OH=COy+ H

93. CO + HO, = CO; + OH

Formation and Consumption of HCO
2c. HCO + M = H + CO + M(N,)
24b. HCO + M = H + CO + M(Ar)
25. HCO + Oy = CO + HOy

26. HCO + H=CO + H,

27. HCO+4+0=C0O+ OH

28. HCO + OH = CO + H,0O

Forward and backward rate constants for the reaction were computed using data
from [HH],[J],[YDR] and the Arrhenius rate formula k = AT™exp(—E./RT) , where
A is the pre-ezponential factor (which is independent of temperature, or nearly so), T
is the temperature, n a power index, E, the activation energy, and R the gas constant.
For reactions 4 and 22, we use the formulae ky = 5.46 X 10 exp (0.00149 x T) and
Jigs = 6.75 X 1019 exp (0.000907 x T) given in in table III of [YDR] in lieu of the values for
A, n and E, * Even when temperatures selected for study do not necessarily fall within

the calibration range given in the table, we use them as a best estimate.

We follow step 1 of the procedure outlined for the study of the explosive kinetics model
and simulate the forward problem. Since this system is very stiff, a simple finite difference
scheme will lead to poor results [HW]; the LSODE package of Hindmarsh [H] yields good
results for small temporal meshsizes. We are currently investigating formulations of
solvable inverse problems. Both noisy and incomplete data will be considered.

1There are different ways to compute backward ratc constants, but the method given above ap-
pears to be the best.  Another mcthod, which rclics on the thermodynamic cquations AH(T) =
AH(298.15) + [ogiscp(r)dr . AS(T) = AS(298.15) + [y 5(cp(T)/7)dr . AG(T) =
AH(T) — TAS(T) ., and k. = kg cxp(—AG/RT'), yiclds considerably diffcrent rate constants.
which lcad to poor simulation results. Errors from computation of the exponential term may be the

causc.
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Figure 1: Reconstruction of {X]: B=0, X = 1.015, k1=2, k3=1, k2=k4=0 at t=0, dt=0.00001, A=100
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Figure 2: Reconstruction of k3: B=0, X = 1.015, k1=2, k3=1, k2=k4=0 at t=0, dt=0.00001, A=100
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