NANRT 3=V RA
avea—5 vy O
(1995. 8. 25)

HPFa v <A ST a7 740 v 7o 25 A

S a—v R

B#(EK)H P CAH
F211)IEHPEX EEP1015
{syk, shindo}@flab.fujitsu.co.jp

HPF7u75<=iKt->T, 7ur5 a0 BT L2HC, Tus—Cx bbb nit
N— TR BNECEEb 3RS T L OEARF— 2 ¥ NBLEEFTE 72774V v 72 2T L
EWehb KBRXTH, HPFHO 77 7 4 Ly 27 LDBRFLCHOWTIRN, BEILE ML= —F
LTI e 74kt 3B80FEEET a7 7 ANBEOEFGHKSA 75 )DF—~—~y Fax }
EPNILFTEFEHECOWTERTS. ERICIY, P RFL8koEli T2 X FL— L, #F
T/ ur7 4 ) v SECBGBA— N~y FaX B THPRI T & 2RIET S,

A Profiling System for an HPF Compiler

Shaun Kaneshiro Tatsuya Shindo

Fujitsu High Performance Computing Group, Fujitsu Ltd.
1015 Kamikodanaka, Nakahara, Kawasaki 211 Japan
{syk, shindo}@flab.fujitsu.co.jp

To better understand the behavior of their programs, HPF programmers require a profiling tool
which collects and reports detailed execution time data at the procedure level and statement level
for selected statements. This paper describes the design of a complete HPF compiler profiling
system, and addresses the issues in instrumenting optimized code, minimizing the profile library
overhead cost, and succinctly displaying the profile data. Preliminary experiments demonstrate
the basic functionality of the system and verify that only a small overhead cost is associated
with profiling in this implementation.



1 Introduction

High Performance Fortran (HPF) is a high-
level language which simplifies parallel pro-
gramming by abstracting away communica-
tion and synchronization details from the user.
In order to help HPF programmers better un-
derstand the behavior of their programs, they
require a tool which reports details of the ex-
ecution while at the same time revealing the
hidden costs in an effective manner. The pro-
filing system proposed in this paper satisfies
those two requirements.

To .collect profile data, instrumentation
must be inserted into the program code to
mark the profiled constructs. Since the profile
must provide an accurate report of the exe-
cution, the instrumentation must occur after
the original code is optimized by the compiler.
If the instrumentation was performed on the
unoptimized code, the performance would be
markedly different particularly for distributed
memory machine, and is therefore, not an op-
tion. Instrumenting the optimized code is an
involving process, requiring the map between
the optimized code and original code to report
the profile data relative to the original code.
This process is a key feature in this system.

This paper presents a complete HPF com-
piler profiling system consisting of an instru-
mentation module, runtime library, graphic
profile data viewer, and compiler feedback
module. Several design and performance goals
spanning all aspects of the system are incor-
porated in this implementation. The first is
the selection of useful profile constructs and
data. The second is the mapping between the
original source code and the optimized source
code during instrumentation. For the runtime
library, the third and fourth requirement is
the modularity in the library routine interface,
and minimizing the profile overhead. Lastly,
the profile data viewer should display the pro-
file data in a succinct format.

The paper begins with an overview of the
profile system, followed by a description of
the instrumentation component, runtime li-
brary, and profile data usage components in
Sections 3, 4, and 5. Section 6 reports the
profile overhead in the system, and Section 7
briefly describes related work.

2 Profile system overview

Although this system has been designed
specifically for profiling HPF programs ex-

ecuted on parallel distributed memory ma-
chines, it is robust in that it can be used
for profiling other single-threaded languages
such as Fortran90, and Fujitsu’s VPP-Fortran
parallel Fortran dialect. The system also
supports both single processor and multi-
processor executions. Aspects of the system
specific to HPF and distributed-memory ma-
chines are the selection of profiled statements
and the detailed data collected by the runtime
library.

The system has four basic components: au-
tomatic optimized source code instrumenta-
tion module, runtime library, profile data dis-
play application, and compiler feedback mod-
ule. To use the system, the optimized user
code must be instrumented with calls to the
profile runtime library during compilation.
The code is then executed during which time
the runtime library collects the profile data.
After the execution completes, the data can
be viewed by the user or directed back into the
compiler for aiding automatic optimizations.

The system collects profiling data at two
levels, the procedure level and statement level
for selected statements. As is typical of
other profilers, this one profiles conditional
and loop statements. But, to accommodate
HPF-specific constructs in the profiling, array
assignment expressions, WHERE statements,
and FORALL statements are also included
in the profile. These constructs were chosen
with the assumption that the majority of the
execution time will be spent in looping and
communication-intensive constructs.

The data reported by the system is in the
form of elapsed time, frequency counters, and
dynamic call tree. Parallel execution reports
include the classification of elapsed time into
function-based categories: user code, com-
munication, synchronization, runtime library,
and global operation. The classification is in-
tended to aid the user in locating inefficient
code requiring a large amount of communi-
cation and synchronization time. Frequency
counts are used for counting the number of
invocations, iterations, and taken conditional
branches.

3 Automatic instrumenta-
tion of optimized code

The purpose of the optimized code instrumen-
tation module is to map the original source
code to the optimized code which requires
minimum transformation history maintenance

—98—



HPF code
L

Parser

»

Profile data
initialization

—

Parallelization
and optimization

E 3

Mapping and
instrumentation

R 3

Code
generation

R J

Fortran90 code

Figure 1: In the compiler, the profile initial-
ization takes place prior to any optimizations
and the profile instrumentation occurs after
all optimizations are completed.

in the compiler optimization modules. The
data structures used to maintain the source
code information and the transformation his-
tory are described in this section followed by
the code transformation, mapping algorithm,
and instrumentation algorithm.

3.1 Source code data representation

Two data structures are used to maintain the
original source code and transformation his-
tory information, referred to as StmtInfo and
SetDfStmtInfo, respectively. The StmtInfo
information is collected for each original state-
ment prior to any code optimizations during
the initialization stage, shown in Figure 1.
StmtInfo contains information to identify the
statement location, aid in the mapping of orig-
inal code to transformed code, and report the
profiled data in a readable format. The struc-
ture consists of a filename, file line number,
unique serial number, pointer to the enclosing
parent statement’s StmtInfo, statement type,
flag indicating whether the statement contains
an array expression, and string description.
To maintain the code transformation history,
each current statement is augmented with a
list of StmtInfo, called Set0fStmtInfo. The
inclusion of a StmtInfo in the list indicates
the current statement is derived from the
StmtInfo statement.

3.2 Transformation history

Five basic transformations on the source code
are performed by the compiler: null, merge,
eliminate, expand, and move. FEach trans-
formation corresponds to an operation per-
formed on the SetOfStmtInfo as described
below. It is assumed that statements inherit
the Set0fStmtInfo of their enclosing parent
statement.

e The null transformation is the introduc-
tion of statements into the code which
have no relationship to any original state-
ments. The Set0fStmtInfo for the intro-
duced statement is empty.

o The merge transformation is a transfor-
mation in which multiple statements are
condensed into a single statement or set
of statements. The SetO0fStmtInfo for
the newly created statement is the union
of the SetDfStmtInfo of the merged
statements.

e The code elimination transformation is
the removal of statements from the code.
The Set0fStmtInfo is not altered.

e The expand transformation is the expan-

sion of a statement into a single state-

ment or several statements. The gener-
ated statement’s SetOfStmtInfo should
be a copy of the original statement’s.

The code movement transformation is the

modification of the statement ordering. If

the movement is from within to outside
of a statement body, the Set0OfStmtInfo
in the statement being moved is aug-
mented with the enclosing statement’s

Set0fStmtInfo. Otherwise, no adjust-

ment is necessary.

3.3 Mapping algorithm

After all optimizations are completed in the
compiler, the mapping algorithm is applied to
the optimized code and its transformation his-
tory recorded in SetOfStmtInfo. For each
original statement, the algorithm identifies
the related original statements and optimized
statements by iteratively building a set of orig-
inal and optimized statements which contain
each other. From there, for the loop and
conditional cases, the algorithm identifies the
"true” loop or "true” conditional among the
group of related optimized statements which
correspond to the original statement. In the
case where the original statement is signifi-
cantly transformed so that the “true” state-
ment cannot be identified, the statement is



profiled as a region for loops, and is not pro-
filed at all for the conditional case. The algo-
rithm makes conservative assumptions about
the code transformations in order to ensure
the profile report is correct.

3.4 Instrumentation algorithm

During the instrumentation phase, the profile
runtime library routine calls, shown in Ta-
ble 1, are inserted into the optimized code
based on the statement mapping information.
Because the mapping phase identifies the re-
lated statements and the optimized state-
ments which correspond to the “true” loop or
“true” conditional, the insertion of the start
and end subroutine calls is a straight-forward
process. If the loop or region area is non-
contiguous, the contiguous areas are first iden-
tified and then instrumented ensuring the in-
vocation count is incremented properly.

4 Profile runtime library

The profile runtime library collects the pro-
file data during execution based on the in-
strumentation inserted in the user code. In
this section, the library interface and internal
organization are presented.

4.1 Profile runtime library interface

The main goals in designing the profile inter-
face is modularity and simplicity in order to
minimize the code restructuring by the instru-
mentation module to the optimized code. As
described in the previous section, the instru-
mentation module inserts library subroutine
calls, and passes the original source code in-
formation via the introduced variables.

The profiling runtime library interface con-
sists of eleven subroutines shown in Table 1,
which mark the beginning and end of the pro-
gram, procedure, loop, and region, and mark
the start of the conditional branch. Region
is a term for a general looping construct like
a FORALL, WHERE statement, array ex-
pression, and merged loop. The start and
end routines are used to control the coun-
ters as well as timers because the timing is
collected via starting and stopping timers,
as opposed to instruction pointer sampling.
The name argument in the start routines
points to the original source code description,
and the record argument caches the profile
record pointer. The value argument for the

Runtime library subroutine -
end_loop
end_procedure
end_profile
end region
incr_loop
start_arith_if(name,record,value)
start_profile(name,record)
start._procedure(name,record)
start_log if (name,record,value)
start_loop(name,record,entry)
start_region(name,record,entry)

Table 1: Profile runtime library subroutines
the program, procedures, regions, loops, and
conditionals.

conditional interface is the conditional value,
and the entry argument for the loop and re-
gion indicates whether the invocation count
should be incremented for the profiled con-
struct. Since the end routines and incr_loop
operate on the records at the top of the run-
time library internal stack, they require no ar-
guments.

4.2 Execution organization

The profiled run is divided into three ma-
jor phases—initialization, user program ex-
ecution, and cleanup—which separates the
time-sensitive user code from the profile run-
time system initialization and cleanup op-
erations. The profile execution commences
with a call to start_profile and ends with
end _profile, delimiting the phases by the
start_procedure and end_procedure calls to
the main subroutine.

The initialization phase initializes the in-
ternal profile data structures, and starts the
timer for the user code. In the user pro-
gram execution phase, the code is executed
while collecting profile data until the call to
end_profile. It is during this phase when
the profile overhead cost is kept to a mini-
mum, and no communication is performed for
profiling purposes. In the cleanup phase, the
profile data is summarized across all proces-
sors, the statistics are output to a file, and
memory is deallocated.

4.3 Minimizing overhead

To implement the profile runtime library sub-
routines, the runtime system maintains an
internal stack, heap, and caller-callee table.

—100—



The stack maintains caller procedure informa-
tion, the heap allocates the profiled statement
records, and the caller-callee table manages
the procedure information based on the caller-
callee pair.

The main goal in the runtime library imple-
mentation is to minimize the profile overhead
and keep the costs constant in the time-critical
phase. More concretely, the goal is achieved
by reducing the frequently-performed opera-
tions to simple calculations and counter in-
crements, as described in the following three
points. The first is manually managing an
internal heap, eliminating the unknown cost
associated with memory allocation. The sec-
ond is the underlying implementation of the
stack, heap, and table data structures as a
table of large pages for dynamic allocation
support. The initial page is allocated during
initialization, and subsequent pages are allo-
cated as needed. Although the dynamic allo-
cation of pages introduces an unknown over-
head cost, the allocation does not occur fre-
quently and the allocation cost is relatively
small. Lastly, record lookup is entirely elim-
inated by caching record pointers in source
code variables. The only lookup occurs when
locating specific caller-callee records. To re-
duce this cost, a two-dimensional table in-
dexed by the caller and callee is implemented
as a one-dimensional table keeping the lookup
cost small and constant.

5 Using the profile data

To complete the profile system description,
this section turns towards the components
which use the profile data: the profile graphic
display tool and the compiler feedback li-
brary. The graphic display, unlike other ex-
isting ones, guides the user to bottlenecks in
the code by graphically displaying (1) the ex-
ecution time at the procedure and statement
level, and (2) the average, standard devia-
tion, minimum and maximum values of the
function-based categories of the elapsed time,
user code, communication, synchronization,
runtime library, and global operations. The
standard deviations for each category value
across processors indicate the degree of load
balancing for each procedure and statement.
The profiler viewer, partially shown in Fig-
ure 2, can be used in conjunction with a source
code browser tool.

The profile data can also used by the com-
piler to aid in automatic optimizations based

Figure 2: The timing and conditional profile
information for a procedure is graphically dis-
played to the user.

on the collected data. The feedback library
reads the profile report and relates the infor-
mation to the original source code.

6 Perturbance measurement

To measure the overhead introduced by the
profile runtime library, the execution time for
the Livermore kernel7 and SPEC CFP92 tom-
catv and swm256 benchmark programs were
collected on the Fujitsu AP1000, a paral-
lel, distributed-memory machine. The bench-
mark versions in Table 2 are similar to the
original benchmark but differ in parallel an-
notations and data distribution.

The data in Table 2 refers to three execu-
tion types, NoProf, TimeLib, and Prof. The
NoProf version is the basic execution with no
data collection. The TimeLib version is No-
Prof with the maintenance of several timers,
categorizing the elapsed time based on the
performed functions (e.g. user code, com-
munication, synchronization, runtime library,
and global operation). The Prof version is im-
plemented on top of TimeLib, collecting the

—101—



Benchmark | Prof(s) ﬁ;{,‘%{)—; T%
kernel7.auto 1.197 1.008 1.004
swm256.1dim1 10.398 1.136 1.035
swm256.1dim?2 5.412 1.149 1.022
tomcatv.hpf 203.735 1.236 1.111
tomcatv.intrin 10.577 1.274 1.064

Table 2: Elapsed time on the AP1000 for
benchmarks without profiling, with timing li-
brary, with profiling excluding summary, and
profiling.

profile data using the T'imeLib timers.

The benchmarks were executed on a 16 node
configuration AP1000. Table 2 shows the raw
execution time for the Prof version, and the
profile overhead with respect to the NoProf
and TimeLib versions. Since Prof uses the
timers maintained by TimeL1b, the ::: T
ratio provides an accurate cost of the pro-
file library overhead. The overhead is small,
ranging from 0.4% to 11.1% of the TimeLib
execution. The variation is a function of the
presence of profiled constructs in the program.
When considering the profiling system as a

whole, the f "’r{, 7 ratio is more appropriate.
Although the only difference between the Prof
and TimelLib is the time function calls and
counter increments, the TimeLib overhead is
significant because the time function imple-

mentation on the AP1000 is expensive.

7 Related work

This section briefly discusses the related work
in instrumenting optimized code, runtime li-
brary organization, and profile data viewer ap-
plication.

In many implementations, compiler opti-
mizations are disabled when profiling to sim-
plify instrumentation and eliminate the map-
ping between the original code and optimized
code. Since there is little literature on pro-
filing optimized code, literature in debugging
optimized code, which also requires the map-
ping between the original and optimized code,
was considered. In [1], the compiler maintains
a detailed history of each code transformation
which is later processed and interpreted in the
debugger. This system is based on a simpler
version of this approach.

The runtime library interface, organization,
and basic data structures are similar to other
existing implementations(3][4], but differ in
the data collected and caller-callee pair main-
tenance. Existing systems report processor

averages of the elapsed time and function-
based classification, and allocate the maxi-
mum number of caller-callee pairs during ini-
tialization based on processing of the object
code, whereas this system collects additional
information and maintains the caller-callee
pairs dynamically.

Several text and graphic-based profile
data viewers are currently available, APR
Forge90[2], and Fujitsu F90 Workbench. This
system’s viewer application adopts and im-
proves the best features from those tools.

8 Summary

This paper presents an overview of a profil-
ing system for an HPF compiler which aids
the user in understanding the behavior of pro-
grams and locating bottlenecks. The sys-
tem consists of an optimized code instrumen-
tation module, runtime library, profile data
graphic display, and compiler feedback mod-
ule. Each module was successfully designed
and implemented satisfying the initial func-
tional and performance goals. Performance
data collected for this prototype shows the
overhead of the profile runtime library is rel-
atively small, ranging from 0.4% to 11.1% of
the non-profiled execution time.

9 Acknowledgments

The authors would like to thank members
of the compiler group—Mr. Iwashita, Mr.
Doi, Mr. Hagiwara, Mr. Taguchi, and Mr.
Miyoshi—for their fire fighting efforts. A spe-
cial thanks goes to Dr. Ishii, Mr. Shiraishi,
and Mr. Tkesaka for their continued support.

References

[1] G. Brooks, G. Hansen, and S. Simmons.
“A New Approach to Debugging Optimized
Code,” in SIGPLAN ’92 Conf. Programming
Language Design and Implementation, pp 1-
11, 1992.

[2] FORGE Explorer User’s Guide, Version 1.2,
Applied Parallel Research, May 1994,

{3] S. Graham, P. Kessler, and M. McKusick.
“gprof: a Call Graph Execution Profiler,” in
SIGPLAN ’82 Symposium on Compiler Con-
struction, pp 120-126, June 1982.

[4] C. Ponder, and R. Fateman. “Inaccuracies
in Program Profilers,” Software-Practice and
Experience, 18(5), 459-467, May 1988.

—102—



