INAINT = VR
AvEa—F4 Y
(1998. 5.

Pentium Pro Cluster Z{E > =B Fa1— F(D'\"‘l/?"?—b
[eLBH, ZEEAE
AEREETERIESR

Particle-In-Cell % L < i3 Particle-In-Mesh $IF 33— FOWEFILIXE < DFFTOWFIFHEH T
HREISNTETWA. £z, IEERMETFEICHA TE 3 Pentium Pro, Pentium II ##D/3Y 2
CHERLTERE., chbosY ay OHEERITERMIZII—HRETS L) LEWIEFIEFE
B L Btk CPU CRIBEL LOMEES B - TV 5, AR TIRREIZFIZIZV S Pentium Pro /3—
VARl —kRy NI — I ICoREWTIERE L B ER o — FEFMEL THE.

Parallel-Particle-In-Cell code using PentiumPro Linux Cluster
QuanMing Lu and DongSheﬁg Cai

The university of Tsukuba, Institute of Inflrmation Sciences, Tsukuba, 305, Japan
Email:{qmlu,cai}is.tsukuba.ac.jp

Particle-In-Cell or Particle-In-Mesh code has been parallelized in many advanced parallel
computers. On the other hand, many new high-performance PCs have been introduced recently.
In this report, using our test Skelton PIC code we have measured the performance of these
personal PCs in parallel and in single. -

1 Skelton PIC code

Ever since the emergence of parallel computers, particle-in-cell (PIC) or particle-in-mesh (PIM)
particle simulation has been recognized as a practical tool that scientists in disciplines such as
fluid dynamics and plasma sciences can use to study the complex dynamics of such particles as air
molecules or sub-atomic ions and electrons. A usual PIC code maps a spatial simulation domain
onto a grid. Particles are represented as moving within the grid, while both the properties that
are tracked by the grid points and by the particles are updated. On a parallel computer, one can
decompose either the particles or the grids onto the processors as the primary decomposed data
structure. In the first case, each processor is responsible for tracing the properties associated
with the assigned particles, which we will call the particle data. The properties tracked at the
grid points, which we will call the grid data, are made available to the particles, which is so-
called a ‘gather’ part of the computation. On the other hand, if the grid is chosen as the primary
data structure, each processor is responsible for keeping track of a subsection of the simulation
domain, and the particle data are made available to the grid points, which is so-called a ‘scatter’
part of the computation.

A skeleton PIC code has been proposed by Decyk [1] as a testbed where new algorithms can
be developed and tested and new computer architecture can be evaluated. This code has been

deliberately kept minimum, but they include all the essential pieces for which algorithms need

to be developed. The code contains the critical pieces needed for depositing charge, advancing
particles, and solving the field. The code moves only electrons, with periodic electrostatic forces
obtained by solving Poisson’s equation with the fast Fourier transforms. The code uses the
electrostatic approximation and magnetic fields are neglected. The only diagnostic is particle

T1—4
15)

and field energy. The basic structure of the main loop of the skeleton code is illustrated in
Figure 1. The grid data are chosen as the primary data structure and decomposed into a
one-dimensional processor array.

2 Two-dimensional Skelton PIC code benchmark results

The skelton PIC code has been benchmarked in many advanced parallel computers [1]. We
have developed a network-clustered Pentium Pro PC system with Linux operating system to
measure the performance of the two-dimensional skelton PIC code. The PCs are HP Vectra UX
with two 200 MHz Pentlum Pro processors SMP and 64 Mbyte EDO DIMMS memories. The
networks are connected via 10 Base-T HP switching Hub. As shown in Fig. 2, the benchmarks
have been done in three cases. In (1) the first one:and (2) the second one, we used the GNU f77
compiler that is essentially a GNU c preprocessor and comes with Linux operating system with
free. The second one is tune-uped code for the RISC processor [2]. In (3) the third case, we
used pgf77 instead of Gnu f77. Here pgf77 is a commerical version of f77 compiler from Portland
Group Inc. As indicated in the figure, the networked-PC-clusters are nothing so bad comparing
with the theoretical peak performace of Power PC processor used in SP-2. As indicated in the
Table 1, they are, respectively, 266 MFlops and 200 MFlops. In the table we also show that
some new benchmarked results of RISC-optimized two-dimensional Skelton PIC code (private
communication with Professor Viktor Decyk of UCLA). In due course, in Fig. 2 we expect the
SP-2 bechmarked result should be 66% faster than the one shown in the figure if we use the
RISC-optimized code (indicated in Table 1).

Reference
1.V.K. Decyk Computer Physics Communcxatmn, Vol.87, p.87-94,1995,
2.http://olympic.jpl.nasa.gov:80/Reports/SNOptPics.html.

Acceleration| — |Particle Manager |— Deposit
Field Manager Field Manager

T , |

FFT P R— Possion | FFT

Fig.1. Structure of the main loop of skeleton codes.

‘Single RISC Processor Benchmark

Computer name Compiler & option | “dusty deck” RISC-optimized | Theoretical
| version(MFlops) | version(MFlops) (MFlops)
Cray T3E-900 cf77? 63 188 ?
IBM SP2 - ‘ Cxf? 59 98 266
Cray T3D . cf777? - 17 1 48 . 150
Intel Pentium Pro/200 unknown 36 43 200
‘ Gnu 77 : 10 T T
Gnu f77-03 26 - 37.
___ peflT i 31 45
pgf77 =02 ~Munroll - 36 ¢ - - 47
—tp p6 -Mnofrmae)

Table 1: Benchmarks run with a 2D electzros;tatié' PIC 'codé; comparing Intel
Pentium Pro/200 with some other machines used in high-‘performancé computing.

log(total time)

2D PIC Code Benchmark

)) 1 1 ' 1 M 1 M]
36 IPSC /860 y
Paragon
" (1) ’)
)
ol \ -
' SP1
24 - (3) 7
T3D
1.8 |- SP2 o -
| 1 1 1 1 M 1 L 1 1
2 3 4 5 6 7 8
log2(nproc)

‘Fig. 2: Total time versus number of processors on log-log
sclale for various machines for the 2D benchmark. (1), (2)
,(3) are benchmarks with PentiumPro Linux Cluster, (1)is
benchmark with "Gnu 77 -O3" with no RISC-optimization,
(2) is benchmark with "Gnu {77 -O3" with RISC-optimization,

- (3) is benchmark with “pgf77 -O2 -Munroll -tp p6 -Mnoframe"

with RISC-optimization.

