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Abstract

Derivative expressions for multi-layer neural networks are already known, however, their application
fields are restricted. Because, neural networks give correct responses at learning points, but the reliability at
unlearning points are not so certain. The information about the unlearning points is used in various
industrial applications. The problem is arisen by the unsymmetrical character of learning equation. Since it
is property of the conception of the equation, and that is inherited from the neuron system, we can’t avoid
the unsymmetrical character; then, we couldn’t use the information enough. For complex processing, the
scale of neural networks becomes large. In that case, the BP-learning is not so effective. We find a necessity
to divide the neural network under reasonable CPU resource. If we divide a neural network, the learning
methods among plural networks are interacted each other. The interactions should be controlled by the
continuous condition and the tangential consistencies. Neuron computers that are constructed of
combinations of neural networks are well worth considering as a non-Neumann’s machine. The
combination is not a plain assemble of independent networks, but interacted each other. To discuss the
interactions, the derivative expressions for multi-layer neural networks are useful terms.

We derive the expressions until fifth order, and by using them, we introduce explicit learning
equations for interacted neural networks.
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1. Introduction

Derivative expressions for multi-layer neural networks have already known [1]. However,
their applications are not completed yet. Because the expressions give information around
learning points, therefore, if the information had not important certainly, the applied fields
would be restricted [2]. Neural networks give correct responses at learning points, however,
the reliability for responses around the learning points are not certain. The problem is arisen
by the unsymmetrical character of BP-learning [3]. Since it is the property of BP, that is
inherited from the neuron system, we can’t avoid the problem; then, we must pay an attention
to the information. For complex processing, the scale of neural networks is large. In that case,
the BP-learning is not so effective. We find a necessity to divide the neural network under
reasonable CPU resource [4]. If we divide a neural network, the learning methods among
plural networks are interacted each other. The interactions should be controlled by the
continuous condition and the tangential consistencies. Here, we find an application for the
derivatives of neural networks.

2. Derivative of 3-layer neural network

A 3-layer neural network is a function that has plural input/output arguments. If
differential functions are adopted for conductions of neurons in the networks, the differential
actions of the 3-layer neural network are derived. The differential expression was already
published, however, the higher order derivatives are not done; then, we show that.

The 3-layer neural network is a forward propagator, then we write the propagations as,

Pi=2Vij*Xi, Yj=f(P)),

where X is input datum, V is connection matrix between Ist and 2nd neuron’s layers, f is
neuron’s function on 2nd layer, and Y is output vector of 2nd layer. The expression between
2nd and 3rd-layers is,

Qk=2 Wjk*Yj, Ok=g(Qk),

where the meanings of g and W are same as that of f and V. On the expressions, we derived
differential forms that are listed in appendix A, B.

SPj=Vij* 8 Xi, & Yi=f( 6 P)=3n{f™(Pj)*{Vij* & Xi}"/n!}={Appendix A}
Where Vij* 8 Xi=Uij, and /™ is nth derivative of function f.
8 Qk=Wjk* 8 Yj, ¢ Ok=g( & Qk)=3n{g™(Qk)*{Wjk* & Yj}"/n!}={ Appendix B}

Then, the differential expressions are 0 Ok/ 3 Xi=g’Wf'v=3 j{g™(Qk)Wkif (P Vii},

and higher order terms are listed in Appendix C. The expression is defined at kth and ith
neurons on 3rd and 1st layers.

3. Clustering and BP-algorithm
3.1 Traditional BP
The back-propagation is a useful algorithm, but it is applicable to small neuron systems.
If we wish to investigate complex problems, the target system would be large and include



more than 10* neurons, and the number of learning data would be 10° orders. It is difficult to
generate such large systems, when it sometimes requires huge CPU times until convergent on
learning. For large system, the back-propagation algorithm is not practical. When it is
necessary, it is natural that the learning data set is divided to some clusters, and plural neural
networks are learned for each cluster. Such networks are called “multi-modal.” For learning
data set, the divided neural networks give correct responses; but for unlearning data, the
responses are not always precise. The precision depends on reasonability of clustering.
We consider a following energy that is evaluated by a learning datum,

E=(1/2) 3 k(Ok-Tk)*.
We differentiate the E-term by Wik.
d B/ @ Wik=(Ok-Tk) © Ok/ @ Wjk=(0k-Tk)g""(QKk)yj= 4Kj,

If Akj—0, then an iterative equation, Wik'®’=Wik* - ¢ Akj, where e is a small coefficient,

makes a stationary matrix Wjk; that is BP-algorithm. The iteration is defined on each learning
datum. If you wished to define the iteration for all learning data, the following equations
would be got.

E=(1/2) = A Sk (O(A)k-T( A)k)>
The E-term can be derived as following, 0 E/0 Wjk=3 A(O( A )k-T(A)k)2 O( A)k/ 2 Wik
=3 A(O(k-T( g (Q(MK)yj=S A A(A)kj, then 3 2 Akj—+0; so we get,

Wik® =Wk D e 5 2 A( Ak
Similar equations are also given by Vij, and make a stationary matrix.

In case of O E/ 0 Vij, we introduce following replacements.
{ (Ok-Tk)— 3k (Ok-Tk)g(QWik, gM(Qk)—fV(P), yj—>xi}, so we get,
9 B/ 3 Vij=[ =k (Ok-Tk)g Q) Wikl fV(P)) xi= Aj, Aij—0, VijF=Vij*D- ¢ Ajj.

Where & is a positive small number. For all learning data, the following iteration is
obtained.

S A Aij—0, Vii®=vii¥ e 3 A A

3.2 Clustering BP
We consider a link between two neural networks, “1” and ‘“2”, whose junction is defined

at a specify datum that is written by u. At the u-point, the outputs from the two neural

networks must be equivalent each other; then, the difference E is define as,



E=(1/2) 3 k(O1( 42 )k-02( p)k)*.
The E-term must be zero when the junction is completed for infinitesimal change of Wjk,

B E/ 0 W1jk=(01( p)k-02( 1 )k) @ O1( )k/ 3 Wik

=(01( p )k-02( 4)K)gI V(QI( p)k)ylj= A 1( p .
This is formed for network “1.” The similar equation is derived for network "2.”

9 E/ 8 W2jk=(01( 1 )k-02( 1 )k) @ 02( p)k/ @ W2jk

=(01( 12 )k-02( 1 ))g2(Q2( 0 )K)y2i=A2( p)kj.
The two conditions must be satisfied at the same time, therefore,
{41kj}—>0, { 42Kj)—0; WK D =W1jk'é V- ¢ A1( p)kj, W2k O=W2jk* - & A2( p)kj.

This is a BP-algorithm for a linked neural network.
The tangential E-term must be zero when the junction is completed precisely for
infinitesimal changes W 1jk, W2jk, V1ij, and V2ij. On first order differentials, we get,

E=3k[ Sjlgl( )" QI W IKA( p )V (PL( )iV 1ij)

-3 3{g2( p ) Q2 W 2ikf2( 41 J (P2 p)iV2ij)} 12
Then, we can derive followings,

OE/O W1jk=23i{gI( p) QI )OWLKfI( ¢ ) '(P1( p)iV 1ij)

gl ( ) QIUOKFI( p )PPV Iij)= A1 K,
OB/ 0 W2jk=-23i{ g2( 4)"(Q2( pOW2kf2( ) (P2( )iV 2ij}

*{g2( 1 )M(Q2()f2( ) V(P2( 1)iV2ij)=A2( p K,
OB/ 3 V1ij=2 5 k{gl( 4 ) QI )OWLikfI( )" (PL( p)iV1ij)

(gl 1) (QUUDOWLKFI( g )P p)i) = A 1 p )i,
O E/ 3 V2ij=2 3 k{ g2( st )" (Q2( 0 YkYW2kif2( p )/ (P2( )iV 2ij)}

*(g2( 1 )" (Q2UOW2kF2( p J (P2 p)i) = A2 p)ij,
{A1(p)Kj)—0, {A2(p)kj} =0, { AL(p)ij}—0, { A2( )ij}—0; then, we get,
WK O=W1jkE - e A1(p)kj, VI1i§©=V1ij“ - e AL(p)ij,

W2k E=W2ik & - e A2(p)kj, V2ijF=V2ij* - & A2( w)ij.



We consider a combination between continuous and tangential E’s,

E=Sk(O1( 1 )k-02( 1 )k)* + p K[ S jlgl( p) QU p)K)WIKFI( e ) (P 1( e )iV 1if)
- S j{g2( p )(Q2( s )W 2ikf2( 12 ) (P2 p)iV2if)} 1%,

where p is a coefficient. Since the iteration, derived from o E/0 W1jk and so on, would

not converge to true-zero, the coefficient is introduced as emphasizing important terms. The
individual iterations are omitted, that are combinations of previous BP-terms.

4. Conclusions

We discussed the fifth order derivatives of multi-layer neural networks; and using them,
we derived many kinds of BP-learning algorithms for a collective or linked neural network
that was constructed of plural neural networks whose structures have different structures. The
algorithms give iterations to search an object quantity (if we used wording in molecular
orbital, it was the expectation.), where connection weights among neurons are stationary.
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Appendix A:

8 Yj =lf®)) +fP®pULj2 + fAPHUIY6 + fAP)HUIj 24 + fO(P)HUij /120 +O(6)1Uij

(3 Y5’ =(f( 8 PHY’=[{F"P))? + 7)) f2@Uij +{ f(P) ) Uij /4 + f(Pj) £ (P} Uij*/3]
+ 7P fAP)HUI 12+ f7(Pj) £ 16 +£(Pj) f°(Pj)Uij /60
+H2@)) fAPHUL* R4 +{ 2P} Uij36 +O(T))Uif

(0 Yi)’=(f( 8 P)Y’=[{f (P}’ +Br2){ f7®))12 S P))HUij +(3/4) f1PL (P UI?
+U2){ V@)Y @HUL +U8){ fIP)HY UL +(1/2) fU®)) £ ®)) iU
+18){ fP®)) PU+(1/40) { f7(Pi) Y fIPUL* +(1/8) £V P) 2 (P)) £ (P U}
+112f @) PP UL* +(1/8) (2P YAV (P)UT* +O(8)1U35

(3 Y =(fC o PY'=[{ @Y +2{ V@)Y f2P UL +23){ fPi) Y 7Py Uij
+O{ P Y 7P Y Ui +O(N) Ui

(3 Yi’=(f( 8 P)Y’=[{f"(P})}’ +0(6)] Uij’



Appendix B:

8 Ok=g( 8 Qk) == n{g" (QK)*{ Wik* 8 Yj}"/n!}=g"(Qk)Wijk & Yj +g”(QK)(Wik 0 Yj)*/2
+gP(QK)(Wik & Yj)/6+ Q) (Wik 8 Yj)*/24 + gP(QK)(Wik 8 Yj)*/120+0(6)
8 Ok=g™(Qk) = j{Wkj f(Pj)} Vji & Xi
+(1/2) 2 j { g"(QRWK] f2(Pi) +g®(QOWK}*(f(P})*} Vii*( & Xi)®
+(1/6) = { g”(QWkif(P}) +3g™(Qk)WKi’ f/(P)) £ (P}) +g™(QKYWKj*(f"(P}))*} Vii’( 8 Xi)®
+(1/24) 3 j { g (QROWkif“(Pj) +g™ QWK 3(f7(P)))*+4 £ (P)) £ (P))]
+6gP(QRWKI*(F V(P f2(Pi) +“(QOWKj*(f(Pi)* ) Vii'( 8 Xi)*
+(1/120) 2 {g(QR)Wkif”(Pj)+5g™(QK)WKi* £ (P}) £4(Pj)+5¢ P (QK)WK}’[3 f P { f2(P))}?
+2{ fPPHY FPi)] +10g“ QWi { P f7(Pi) +g° QWK (f”(P)}* }Vii’( 8 Xi)® +O(6)

Appendix C:

970K 8 Xi'=(1/2){g" "W +g "W’ (f")"} V’=(1/2) 2 j (g (QR) Wkif (Pi) +£(QR) Wi " (f*(PD) "} Vi*
0’0k @ Xi’=(1/6) {g"Wf V+3g " W fV+g "W (1))} v
2 °0l/ @ Xi*=(1/24) {g" Wi +g "W 3(FP) +4 ff N+ 6g P W (/) P+ W )y v*
8’0k 0 Xi’=(1/120) {g""Wf*™ +5g W " fH+5 VW3 fU )2 +2(f) £
+0gW SIS +g W) )V



