ogooooooooo oood
IPSJ SIG Technical Report

20030 HPCO 940 O (2)

20030 60 13

An Ambiguous, Context-Free Grammar for Deterministic Parsing
In Queue-Java Compiler

li.giang.wang ," ben.a.abderazek ,' soichi shigeta ,’
tsutomu yoshinaga * and masahiro sowa *

In this paper, we propose an effective parsing method to generate Queue Abstract Syntax
Tree (QAST) that is used for an optimized QJVM instruction generation in a Queue Java com-
piler (QJAVAC).With the QJAVAC, that using this parsing approach and embedding QAST,
we have successfully compiled the Java source code to the QJVM byte code.We describe the
QAST parsing algorithm implementation and evaluation.

1. Introduction

The definition of the Java programming lan-
guage includes both the definition of the pro-
gramming language itself and the definition of
the virtual machine which can run compiled
Java applications represented in the form of
bytecodes. An application in the Bytecode form
can run on any computer with an implementa-
tion of the Java virtual machine. A Bytecode
for of an application is distributed in class files
which in addition to the bytecodes contain in-
formation required for linking and verification.

On most computers, people want an efficient
execution of Java Bytecodes. But, execution
of typical Java Bytecode, which is stack-based,
with interpretation, with a JIT compiler, or di-
rectly with a special java processor is invariably
constrained by the limitations of the stack ar-
chitecture for accessing operands. Thus, the
conventional stack based applications cannot
take advantage of a pipelined arithmetic logical
unit (ALU), since the result of one operation
must be returned to the top of the stack before
it becomes the operand of the next operation.
Hence, the lack of instruction level parallelism
(ILP) in Java Bytecode streams is the main cor-
nerstone of Java applications.

Several software or/and hardware techniques
were proposed to cope with the lack of instruc-
tion level parallelism within a Java bytes code
streams. When interpreted, the Java bytes code
streams have been seen to be 30 times slower
than optimized C Code, whereas JIT compilers
can provide up to 20 times speedup with re-
spect to interpreted code. However, the mem-

t Graduate School of Information Systems, The Uni-
versity of Electro-Communications

g 70

ory requirement of JIT compilers is extremely
expensive for pervasive applications.

In order to easily and efficiently exploit ILP
without the need of intelligent static scheduling
of byte code streams and sophisticated hard-
ware support, we proposed a Queue-Java sys-
tem that compiles Java source code into Queue-
Java Bytecode(QJBT). A new Java execution
mode named queue-Java based execution model
(QJVM) in JVM has been developed.

Because the QJBT sequence is very different
from Java Bytecode sequence, the previously-
known variants of parsing approaches can not
fit the requirement of QJBT. In this paper, we
will describe a new Type of syntax tree-queue
abstract syntax tree (QAST) and its generation
paring approach from Java language. With our
approach we can keep ambiguous, context-free
grammar of Java. The paring method is imple-
mented for a Queue Java compiler (QJAVAC).

The focus in this paper will be on instruction
paring methods of QAST and its sub-QAST in
case of grammar items in Java language. The
design of QJAVAC was driven by a detailed
examination of the use of customizable proto-
cols and algorithms. We delineate the issues
that must be considered when targeting fast
and effective product queue java instruction in
QJAVAC. Base on it, we had successfully re-
alized the QJAVAC with QAST and suitable
QAST paring methods.

The rest of this paper is organized as follow:
An overview of the QJAVAC compiler follows
in section 2. In section 3, we describe the the
paring of QAST. Section 4 gives the evaluation
results of this approach. In the last section, we
give the conclusion and our future work.

研究会Temp
社団法人 情報処理学会 研究報告IPSJ SIG Technical Report

研究会Temp
2003－HPC－94　　(2)

研究会Temp
2003／6／13

研究会Temp
－7－

2. QJAVAC Compiler Overview

2.1 QJAVAC Implementation Overview

As was mentioned earlier, the queue-based
execution model (QEM) performs most oper-
ations on a FIFO data structure. However, the
stack-based execution model (SEM) performs
most operations on a first-in-last-out (FILO).
The QEM is analogous to the usual SEM.
The QEM has operations in its instructions
set which implicitly reference to an operand
Queue (OPQ), just as SEM has operations,
which implicitly reference an operand stack.
Each instruction removes the required number
of operands from the head of the OPQ, per-
forms some computations, and stores the re-
sults of the computations at the tail of the
OPQ, which occupies continuous storage loca-
tions (described later). That is, the execution
order of instructions coincides with order of the
data in the OPQ.

The QJAVA is a high instruction level par-
allelism (ILP) execution environment based on
QEM and Java Platform. It consists of basi-
cally of a language and virtual machine compo-
nents.

In our system, the syntax and semantics of
Queue-Java Language is consistent with the
conventional Java Language Specification re-
leased by Sun Microsystems, to protect Java
Easy-Using and Object Oriented features. The
difference is found in the Virtual Machine envi-
ronment itself.

The high performance of QJAVA comes from
its Queue Java Virtual Machine (QJVM) which
uses QEM. However the conventional Java Vir-
tual Machine uses SEM.

The QJAVAC is a complier, which has a sim-
ilar implementation like other multiple phases
Java Compilers. The QJAVAC overview is
shown in Figure.1. In order to parsing and rep-
resenting the grammars items of Java Language
for the novel QJAVA architecture, a “repars-
ing” stage is added into the front end of JAVAC.
The “reparsing” stage processes the grammar
representations from input and reparse it to
grammar representations for QJAVA.

2.2 Intermediate Representation of

Java In QJAVAC

The intermediate representation (IR) is a rep-
resentation collection for every Java class de-
fined in the input. Every class node contains
references to nodes for all interfaces, fields,
methods and statement and expression defined

8o

QJAVAC

Java ' /"
Source % Scanning

Stage

L. token
-* sequence

Parsing AST reParsing
Stage Stage

QAST

Anal e R optimizati
nalysis
Stage Stage

IR

H]
H '
H "
H .
H "
H .
H .
. -
H e

H -

H e

H Issue e

H Stage >

H s QJAVA
feemeeananas - Byte Code

Fig.1 QJAVAC Compiler Phases

Class IF statement
Method Question statement
While stat t
Loop statement<™ ¢ StAtemen
Statement For statemement
Return statement
IR for a
Java Class Catch statement
onstant Expression
. New Expression
Expression

(basic 0AST) \\ Caste Expression
all Expression
inary Expression

Fig.2 IR and QAST from Java class

for that class as well as some other informa-
tion (access flags, a reference to the super class
etc.). QAST is contained in the intermediate
representation. An overview of IR is presented
in this section.

Figure.2 shows a class hierarchy for a subset
of the classes used in IR. QJAVAC used for the
experiments presented in this paper is imple-
mented in C++ and was successfully integrated
with IR which includes QAST, We will use the
following, very simple example to illustrate how
IR represents Java class.
class simple{

//Class IR
int i=0;
//Constant Expression IR
public simple() {
//Nethod IR
int a = 0;
// Binary Expression IR
super()
//Call Expression IR

}

}
A complete IR representation of class simple
takes care of many details that are required to

研究会Temp
－8－

axXb+(c—d)+e

®
~ G » O
b60dy.-00006
, @
(a) (b) (©)

Fig. 3 Post, Level Traversal Order and QAST

maintain the meaning of the program. The im-
age gets even more complicated by the fact that
some information is replicated so that it can be
accessed quickly.

The IR representation is exactly the same as
the original source. And also, IR corresponds
exactly to the code generated by the compiler.
In our example, the code for the constructor
contains one class IR, one method IR and three
expressions IRs.

All implicit class, method and expressions
are represented explicitly in IR. A class is rep-
resented with an object of a class IR, class
IR which contains lists of objects representing
fields, methods and interfaces. A method is rep-
resented with an object of the method IR. A
statement may contain other statements or ex-
pressions. Expression IR is a QAST with nodes
for every expression in a Java Class All nodes in
the syntax tree are objects of some class derived
from the class Expression IR.

2.3 The QAST In IR

The QAST is a new type of syntax tree that
is optimum for QJAVAC compiler. To compare
the QAST with the abstract syntax tree (AST),
we will use a simple example shown in Figure
3. In Figure 3(a), the instruction generation for
SEM is obtained by traversing the tree in post
order travel. From above traversal, it is very
clear to notice that ASTs provides enough in-
formation for the SEM’s compiler by connection
between two nodes in AST. With the “connec-
tion” lines, the compiler can easily jump to the
children and back to parent to produce instruc-
tions in post order manner. Note that from
some viewpoints, we can call ASTs as a stack
syntax tree.

However, this traversal will not work when
dealing with queue execution model. There-
fore, to get a correct instruction generation se-
quences for the QJAVAC, the traversal of the
above tree is changed as illustrated in Figure
3(b). We call this traversal a level order traver-

0 od

copy(SN,QN)

heck’
QN has
ight brothe,
?
YES

copy(SN,
QN’s right
brother]

S2Q(SN,QN) ——rf

the QN YES
is a blank
node

insert a blank
right brother
to this QN

copy(SN,
QN’s right
brother)

put the
information
from SN to QN

(out)

insert a child
node to QN

S2Q(SN'’s right-child,
QN’s child)
}(out)

Fig.4 Work Flow Chart of parsing Binary
Expression QAST

SN: a node in AST
QN: a node in QAST

sal. So, in order to find the deepest and shal-
lowest nodes, the compiler must traverse the en-
tire tree at first, remember the position of the
nodes, and then load the tree again to emit in-
structions. However, we have to note that, since
there is not relation between the same-level of
nodes, finding the same nodes in instructions
generation stage is very difficult and its algo-
rithm becomes very complex, huge, and “time
hungry”.

In order to cope with this problem and reduce
the instruction generation time, we propose an-
other traversal algorithm. We call it Queue Ab-
stract Syntax Tree (QAST). The QAST for a
simple expression is shown in Figure 3(c). The
right hand part of the above figure is the trans-
lated graph. In the above graph, we have to
note that the connect path (Line) only appears
between two nodes. In addition, the connect
information does not only appear between par-
ent and child nodes; it also appears between
“brother” and “brother” nodes.

3. Grammar Items Parsing from AST
to QAST

3.1 Grammar Item of Parsing Binary
Expression QAST

The Binary Expression grammar items have

a common character-when they act as a node in

AST, they must be a parent-node and have two

研究会Temp
－9－

children and those nodes only emit one Java

Instruction. Parsing the binary AST to QAST

is as follows:

(1) The Relation between parent and right-
child is removed.

(2) The Relation between parent and left-
child may be removed or preserved: if
it is not in most-left side of stack syntax
tree, it will be cut off, if it is just there,
it will not be cut.

(3) A new Relation is inserted between two
children nodes-because they are in same-
level.

With this algorithm, a Binary AST is parsed
to a Binary QAST. Then, by using the Instruc-
tion Emitting Algorithm-we had talked about,
we can very easily get a QEM instruction se-
quence.

3.2 Grammar Item of Parsing Com-

parison QAST

The comparison expression QAST grammar
items (<, <=, ==, >, >=) are parsed by follow-
ing next rules:

e Value produced by the < is true if the value
of the left-hand operand is less than the
value of the right-hand operand, and oth-
erwise is false.

e Value produced by the <= operator is true
if the value of the left-hand operand is less
than or equal to the value of the right-hand
operand, and otherwise is false.

e Value produced by the == operator is true
if the value of the left-hand operand is equal
to the value of the right-hand operand, and
otherwise is false.

e Value produced by the > operator is true if
the value of the left-hand operand is greater
than the value of the right-hand operand,
and otherwise is false.

e Value produced by the >= operator is true
if the value of the left-hand operand is
greater than or equal to the value of the
right-hand operand, and otherwise is false.

Here, the false means 0; the true means 1.

The comparison QAST sometimes is very
similar to a binary item; its parents have two
children. For integer numeric comparison, there
are several instructions for different comparison
case in QJVM, so it is very easy. But for long
and double numeric comparison, there is one
comparison instruction, so one time compari-
son operation has those steps:

(1) Get all of three comparison -status of two
numbers (less -1, equal- 0, greater 1)

0 100

(2) According to the operator type, load 1 or
0 to queue
(3) Compare the result we had got and the
1(or 0) that we load in Setp2, according
the operator type, load the correct value
to queue.
With this, the Long type numeric comparison
becomes a common integer type numeric com-
parison.
3.3 Grammar Item of Parsing Ques-
tion Statement
Question statement expression uses the
Boolean value of one expression to decide which
of two other expressions should be evaluated.

Expressionl R7ExpressionIR : ExpressionIR
The question statement has three operand ex-
pressions: the “?” appears between the first
and second expressions, and “:” appears be-
tween the second and third expressions. The
first expression must be the type of Boolean.

At run time, the first operand expression of
the conditional expression is evaluated first; its
Boolean value is then used to choose either the
second or the third operand expression:

e If the value of the first operand is true, then

the second operand expression is chosen.

e If the value of the first operand is false, then

the third operand expression is chosen

For example, expression f(a)?f(b) : f(c) +
f(d) + f(e), if F(a) is greater than 0 then the
value of expression is f(b) + f(b) + f(e),else the
value is f(c) 4+ f(d) + f(e), its AST is shown in
figure 5(a), In SEM, because the result of the
left part of the question-mark is pushed to the
stack, and the value of select-controller is also
saved on the top of stack, the branch-direction
can be decided at once.

The parsing of the Question Statement AST
to QAST normally will cause failure of evalu-
ating the expression, because the results of the
left part of ”judgment” result is lined in the
front of it, the select-controller can get value to
decide which direction should jump to. So we
choose a speculation model to deal this case:
three expressions are evaluated in parallel, at
last, when the three results come the head of
queue together, we can select one correct re-
sult, if the first value in the queue-head is true,
it means the first expression’s result is true, and
we should select the second expression’s result
as the correct result, the selection step as fol-
low:

(1) Duplicate one time ,copy the correct re-

研究会Temp
－10－

a+b+c?d:e

Fig.5 Parsing Question statement from AST to
QAST

sult to the tail of the queue

(2) Pop two times, to discard the correct(it
had been saved) and incorrect result if
the first value in the queue-head is false,
it means the first expression’s result is
false, and we should select the third ex-
pression’s result as the correct result, the
selection step as follow:

(a) Pop one time, to discard the in-
correct(the result of second expres-
sion)

(b) Duplicate one time ,copy the cor-
rect result(the result of third ex-
pression) to the tail of the queue

(c) Pop one time again, to discard the
correct (it had been saved)

The Algorithm of this conversion is that:
(1) Get a stack syntax tree’s node and a

queue syntax tree’s node

(2) Check whether the stack syntax’s node is
question mark operator
(3) Ifitis,

(a) Get the child-level node of current
queue syntax’s node

(b) Append the first expression into
the most right end of the child
node of queue node

(c) Append the second expression into
the most right end of the child
node of queue node

(d) Append the third expression into
the most right end of the child
node of queue node

(e) Append a select node to current
queue syntax’s node as its right-
brother.

Although the parallelism is very high in spec-
ulation model, it can cause no useful comput-
ing, for example, because we only use one of
results of f(d) and f(e), so the part of calcula-
tion must be no useful computing. But, after
all we can execute the question mark correctly.

0110

>
T
usec

~ =
T, T
time=

nodes in a expression IR
1 1 1 1 1

1 2 3 4 5 6 1 8 9 10

Fig.6 Parsing QAST Experiment for a Expression IR

4., Evaluations Results and Discus-
sions

We have developed the QJAVAC compiler
with ANSI/ISO C++ language. The above
compiler was successfully ported to Windows
(with Visual C++6.0), Red Hat Linux 7.1J and
SunOS 5.6 (with GNU C++ Compiler 2.7).

4.1 QAST Parsing Speed

We have experimented the QAST parsing
speed from AST over a number of nodes. The
above experiment is shown in Figure 6. From
this experiment we conclude that: with the in-
creasing of the nodes in a AST expression, we
need more time to pasring the QAST, and this
increasing is not a proportional one. For ex-
ample, for a AST expression with 10 nodes, we
need 15.7usec to parsing it from AST to QAST.

4.2 Compilation Speed and Space

Unfortunately the compiling speed of the
QJAVAC compiler was found to be slower than
the well-known JAVAC compiler. This speed
degradation comes from the fact that a repas-
ing stage to parsing an abstract syntax tree to
the queue abstract syntax tree is added. That
is in order to get a correct instruction sequence
we must “re-parse” the AST to QAST. This
extra-phase consumed nearly 30% of the total
compilation time. However, the above overhead
maybe reduced if there is a parsing algorithm
that can directly generate the QAST from token
sequences that produces from scanning stage.

The QJAVAC space is the compiler source
size, compiler binary size and the memory re-
quirement. The QJAVAC compiler source size

研究会Temp
－11－

Table 1 QJAVACI[Compiler[Size

Compiler Function source Head source
components size (KB) size (KB)
Lexical scanner 709 339
AST parsing 219 294
QST reparsing 291 30
Code generator 789 30
Others 822 123
Total 2897 789

is shown in Tablel. It is classified into transla-
tion category and instruction generation cate-
gory. They are about 1140KB (1080KB source
size and 60KB head define source size). The
compiler binary size is 2401KB compiled by Vi-
sual C4++46.0 under Windows2000. From the
test benchmarks, the running peak memory re-
quirement is also found to be bigger because the
QJAVAC must save AST and QAST attributes
and status information.

We have to summarize that the reparsing
QAST costs, which mainly includes the peak
run time memory requirement and the compiler
binary size, are all found to be worse when com-
pared with JAVAC compiler. This also comes
from the additional reparsing stage, mentioned
earlier, to translate an abstract syntax tree to
the queue abstract syntax tree.

Finally, we note that the AST generation al-
gorithm can be easily realized because there are
many mature full-grown system that can help
to construct it (YACC, BISON, etc. are some
examples.), but QAST is not so.

5. Conclusions and Future Work

In this paper, we proposed a parsing ap-
proach for generating QAST that is used for an
optimized instruction generation in a QJAVAC
compiler.

We first presented an overview of QJAVAC
compiler. Then we presented the parsing QAST
algorithm and its evaluation over a ranges of
nodes. The evaluation of the QAST algorithm
is also given.

With the QJAVAC compiler, we have success-
fully compiled some Java source code programs
to QJVM byte codes. The compiling speed of
the QJAVAC compiler was found to be slower
than the well-known JAVAC compiler. This
speed degradation comes from the fact that a
reparsing stage to parsing AST to the QAST is
added. The above extra-phase consumed nearly
30% of the total compilation time. However,
the above overhead can be reduced if there is

0120

a parsing algorithm that can directly generate
the QAST from token sequences that produces
from scanning stage. This will be our future
work.

References

1) Tremblay, M. and O’Connor, M.: picoJava' ™M:
A Hardware Implementation of the Java Vir-
tual Machine, Proc. of IEEE Symp. on High-
Performance Chips (1996).

2) Radhakrishnan R.: Java Runtime Systems
Characterization and Architectural Implica-
tions, IEEE Trans. on Computers, Vol. 50,
No.2, pp. 131-146 (2001).

3) Radhakrishnan R, Talla D, and John L.K.: Al-
lowing for ILP in an embedded Java processor,
Proc. of the ACM 27th annual Intl. Symp. on
Computer Architecture, pp. 294-305 (2000).

4) Radhakrishnan R, Vijaykrishan N, John L.K,
and Sivasubramanium A.: Archiitectural Issues
In Java Run Systems, Proc. of 6th Intl. Symp.
on High-Performance Computer Atchitecture,
pp. 387-398 (2000).

5) Krall A, and Gra R.: CACAO-a 64 bit
JavaVM Just-In-time Compiler: Concurrency
Practice and Experience, Vol. 9, No. 11, pp.
1017-1030 (1997).

6) Sowa M, Abderazek B. A, Shigeta S, Nikolova
K, and Yoshinaga T,: Proposal and Design of a
Parallel Queue Processor Architecture (PQP),
Proc. of 14th IASTED Intl. Conf. on Paral-
lel and Distributed Computing and System, pp.
554-560 (2002).

7) Abderazek B.A, Nikolova K, and Sowa M.:
FARM-Queue Mode: On a Practical Queue Ex-
ecution Model, Proc. of the Intl. Conf. on Cir-
cuits and Systems, Computers and Communi-
cations, pp. 939-944 (2001).

8) Sun Microsystem: The Java'™ Language
Specification, Second Edition,
http://java.sun.com/docs/books/jls/index.html

研究会Temp
－12－

