HEEA HRMEYS BRI
IPSJ SIG Technical Report

2004—HPC—99 . (40)
2004781

Grid Explorer : A Tool for Discovering, Selecting,
and Using Distributed Resources Efficiently

KENJIRO TAURA® 1t

We describe GXP, a shell for distributed multi-cluster environments. With GXP, users can
quickly submit a command to many nodes simultaneously (approximately 600 milliseconds on
over 300 nodes spread across five local-area networks). It therefore brings an interactive and
instantaneous response to many cluster/network operations, such as trouble diagnosis, parallel
program invocation, installation and deployment, testing and debugging, monitoring, and
dead process cleanup. It features (1) a very fast parallel (simultaneous) command submission,
(2) parallel pipes (pipes between local command and all parallel commands), and (3) a flexible
and efficient method to interactively select a subset of nodes to execute subsequent commands
on. It is very easy to start using GXP, because it is designed not to require cumbersome per-
node setup and installation and to depend only on a very small number of pre-installed tools

and nothing else.

1. Introduction

Working with a large number of distributed
resources is troublesome. Among many diffi-
culties, one that everybody immediately faces
is the lack of tools efficiently supporting ‘ev-
eryday’ operations, such as parallel command
submissions, multi-nodes file replications, and
process cleanup. Of course, there are many
popular tools that execute a single such opera-
tion, such as rsh and ssh® for command submis-
sions, and rcp, scp, rsync, and cvs for file repli-
cations. There are also Grid-oriented version
of some of such tools including globus (globus-
run)® and GridFTP. However, when it comes
to efficiently manipulating many (say, > 100)
nodes spread across multiple administration do-
mains, we need a substantial amount of effort
to combine them. : )

While there have been much progress in Grid
middleware including job schedulers®), Grid-
enabled job submission?), and GridRPC?, rel-
atively little attention has been paid to im-
proving efficiency of daily operations. This po-
tentially keeps potential application developers
away from the Grid, and makes them stick to
more comfortable single cluster or SMPs, de-
spite their small scale. We believe improving
our daily experience on the Grid will accelerate
research and development on all areas of Grid
software.

t Department of Information and Communication En-
gineering, Faculty of Engineering, University of
Tokyo

1t Japan Science and Technology Agency

To this end, we are developing Phoenix Grid
Tools, a set of tools to improve user’s daily
experience on the Grid. This paper describes
one of such tools, GXP (which stands for Grid
Explorer), an interactive shell for the Grid.
Elsewhere, we have described early versions
of a similar tool, VPG” and MPSHY), and
a high performance file replication tool Net-
Sync®. GXP inherits many of the features of
VPG and MPSH and improves upon them in
many areas. Through our experiences with
GXP, we feel GXP is a powerful tool to enhance
the productivity of distributed operation and
programming, and its power comes from the
ability to quickly and instantaneously perform
simple tasks involving many (> 100) nodes.
Moreover, we noticed that many of simple par-
allel tasks (e.g., parameter sweep or master-
worker style computation) can be comfortably
accomplished solely with this tool + simple and
ad-hoc scripting with no or little network pro-
gramming. Section 2.6 gives several interesting
examples.

Rest of the paper is organized as follows. Sec-
tion 2 describes design of GXP. Section 3 shows
performance measurement. Section 4 mentions
related work and Section 5 states conclusion
and future work.

2. GXP Design

2.1 Design Constraints
GXP is designed from the beginning to meet
the following constraints.
e Overcome Connection Restrictions:
It works in typical network configuration

—235—



where many of inter-subnet or inter-cluster
connections are blocked by firewalls and
NATs. It finds their ways to reach nec-
essary nodes, trying nested logins as neces-
sary, without assuming too much help given
by the user.

e No Per-Node Installations, No Dae-
mons: It does not require permanent dae-
mons specific to GXP on each of the re-
sources. This significantly reduces its ini-
tial setup cost. Moreover, it does not re-
quire explicitly installing GXP program on
any of the remote resources. Once instal-
lation on the user’s home node has been
done, s/he is ready to use GXP and it is in-
stalled on each of the designated resources
automatically. Currently the source file of
GXP is a single python file (about 2,500
lines), so installing it on the user’s home
node takes a single file copy or download
to whatever places the user wants.

o Minimum Prerequisites: Along the
same line, GXP is designed so that
it depends only on a small number of
pre-installed software that are considered
“standard” on Unix platforms. It is thus
likely the case that these prerequisites are
already met in the user’s environment.
We detail the current prerequisites in Sec-
tion 2.3.

e Fault Tolerance: It has a simple fault tol-
erance that does not stuck on dead nodes
but leaves them behind.

2.2 Using GXP

Using GXP involves the following steps.

e Preparation: Write a configuration file
describing a small number of “key nodes”
and the user’s login names. This is neces-
sary only for the first time or when it must
be modified. Details are in Section 2.3.

e Explore Phase: Launch GXP, which
brings up a GUI like Figure 1. With this
GUI, the user can explore the network, dis-
covering other nodes, selecting nodes the
user wants to use later, and building a con-
nection tree among them. Details are in
Section 2.4.

o Shell Phase: The user enters an interac-
tive shell in which s/he can dynamically se-
lect nodes to execute commands on and is-
sue command lines to the selected nodes,
as many times as desired. Details are in
Section 2.5. The user can switch back and
forth between the explore phase and the

s

Fig.1 GXP GUI

shell phase.

2.3 Preparation

GXP configuration file basically specifies a
list of nodes the user wants to use, along with
login names suitable for each of them. However,
literally listing all nodes is already overwhelm-
ing and error-prone for users. It is particularly
so if the user uses different sets of nodes for dif-
ferent jobs. We would like to retain configura-
tion files mostly static, while allowing selection
of desired resources per session.

To this end, GXP can start with a small num-
ber of manually specified nodes and find their
neighbors automatically. We currently use NIS
for neighbor discovery where available. As a
consequence, a typical GXP configuration file
only specifies one node for each LAN (NIS do-
main, to be more precise). When a user has
an access to a remote cluster or a LAN, s/he
typically remembers a designated gateway host
to login, from which other hosts in the same
cluster or the LAN can be reached. GXP con-
figuration file naturally fits this model.

2.4 Explore Phase

This phase is an interactive process in which
the user, through the GUI, is presented with
a list of node names and their status, checks
nodes s/he wants to use, and launches an “Ex-
plore” command, which tries to reach them.

See Figure 1 again. GXP displays all nodes
whose names have been found, along with their
statuses on their left column. A status is ei-
ther reached, indicated by a character ‘o’ in
the column, or not yet reached indicated by
a checkbutton. Initially no nodes have been
reached (except for the local node, which is not
displayed). All nodes that have been reached
are connected by available remote shell sessions.
They form a tree whose root is the user’s home
node and children of a node p are the nodes
directly reached from p by one of the available
remote shell command. While our current im-

—236—



plementation recognizes only ssh and rsh as a
remote shell command, GXP can use any com-
mand that can remotely invoke an arbitrary
command line and gives the local process han-
dles to the standard input/output/error of the
remote process. We hereafter call this tree the
login tree. It is initially a singleton tree whose
only node is the user’s local host.

When users wish to reach additional nodes,
they check their buttons and presses the “Ex-
plore” button in the top row. Then GXP tries
to expand the login tree to include them. On
each of the newly reached nodes, GXP searches
for names of its neighbor nodes and newly dis-
covered names are displayed in the GUI. The
user repeats this process (i.e., check buttons
and then press the Explore button) until s/he
reaches all the wanted nodes.

2.5 Shell Phase

When the user presses “Enter Shell” but-
ton in the GUI, GXP enters a shell phase and
prompts the user for a command. Table 1 sum-
marizes the list of available commands. Among
them, the most basic is.the ’e(xec)’ command
which executes a given command on all the “se-
lected” nodes. We detail later how selected
nodes are determined. For now, it suffices to
say all nodes that GXP reached are selected by
default. Thus, the command
e hostname
executes hostname command on all nodes, dis-
playing all reached host names on the user’s
terminal.

An argument of ‘e’ command can be an ar-
bitrary shell command syntax including pipes,
redirections, environment variables, and com-
mand substitution. In addition, ‘e’ command
accepts an extended syntax, which we call “par-
allel pipes” discuss below.

2.5.1 Parallel Pipes

Running an identical or a similar command
on all nodes is already useful in many circum-
stances, but through our experiences, we found
that the ability to connect inputs/outputs of
parallel commands to local commands makes
GXP much more powerful. This is a natural
extension to Unix pipes, so we call this facility
parallel pipes.

The full syntax of the ‘e’ command is as
follows.

eL{{P}}R
where L, P, and R are all Unix shell command
syntax. The behavior is as follows (see Fig-
ure 2).

Fig.2 Behavior of Parallel Pipe L{{P}}R

e L and R are executed locally.

e P is executed in all selected nodes.

e Standard outputs of L is sent to the stan-
dard input of each of P. That is, the output
is broadcast.

e Standard outputs of P are merged and sent
to the standard input of R. This merge is
undeterministic and by default, the gran-
ularity is a single line (i.e., a single line is
not intervened by other characters).

Here are some default rules.

e When L is omitted, it defaults to a ’:’ com-
mand (a command that immediately termi-
nates). »

o When R is omitted, it defaults to cat, which
effectively displays the outputs of P.

o When both L and R are omitted, the user
can simply abbreviate {{ P }} to P.

Simple examples are given below.

o e {{ hostname }} sort will list all se-
lected host names in an alphabetical
order. This is often easier to read
for human beings and more appropri-
ate for configuration files that must list
machine names (e.g., MPI’s machines-
file). e {{ echo ‘hostname‘:2 }} sort
will exactly generate a MPI's machinesfile
(two CPUs for each node).

e e cat file {{ cat > remotefile }} willef-
fectively copy a local file named file, to
each of the selected nodes under name
remotefile. This is very useful to copy
sources/configuration files/input data of
parallel applications.

e tar cvf - directory {{ tar xvf - }}
will do the same thing for a directory.
We will see more interesting combinations later
in Section 2.6.
2.5.2 Node Selection
Another feature that turned out to be vital is
an efficient mechanism to select nodes on which
parallel commands are run. Nodes on which
a command should be run differ depending on
tasks and stages. For example,

—237—



e cmd
1 cmd
cd dir
led dir

smask
rmask

export var=val

execute cmd on selected nodes

execute cmd on the local node

change directory to dir on selected nodes

change directory to dir on the local node

set environment variable var to val on selected nodes
select nodes whose last command status are zero
select all nodes

bomb

clean up processes (see text)

Table 1T Summary of GXP commands in shell phase.

e for many of the file system operations such
as file/directory transfers and compiling
applications, a single node should be se-
lected for each (NFS-shared) file system.

e in heterogeneous environments, we may
sometimes need to work separately for each
architecture, this time on Linux, this time
on Solaris, etc.

e it will be common to drop busy nodes from
the selection.

o for testing and debugging, a small number
of nodes are often selected.

o for testing and debugging, only nodes in a
single cluster are often selected.

e for production runs, as many nodes as pos-
sible will be selected.

It is difficult to anticipate in advance what kind

of node selections will become useful, so the

users must be able to select nodes interactively
as the needs arise.

For this purpose, we introduce a builtin com-
mand called smask (set mask). Its effect is to
select nodes on which the last command suc-
ceeded (i.e., exited with status zero). There-
fore, to select some nodes, the user performs
the following steps.

(1) issues a command that should succeed on
(and only on) nodes the user like to se-
lect, and

(2) issues smask command. Then, subse-
quent commands will be executed on the
nodes on which the first command suc-
ceeded.

(3) To doublecheck, after a selection has
been made, issuing e hostname will show
the nodes actually selected.

GXP’s prompt shown in Figure3 displays the

number of nodes on which the last command

succeeded, therefore the user often can have
some confidence about the selection before is-
suing smask.

smask - does the reverse. It will select nodes
on which the last commands failed. Command
rmask (reset mask) command will revert to the
default selection of all reached nodes.

—238—

GXP[32/124/211]1>>>
Fig.3 An example GXP prompt. The three num-

bers separated by slashes represent, from left
to right, the number of nodes on which the
last command succeeded, the number of nodes
currently selected, and the number of nodes
reached.

Here are some examples.

e To select nodes in a particular cluster, the
following is often adequate.
GXP[96/96/96]1>>> e hostname|grep do-
main
GXP[32/96/96]>>> smask
GXP[32/32/96]1>>>
The first command succeeds only on nodes
whose names contain a string domain. So if
the user knows a string that discriminates
a cluster, it succeeds on the desired clus-
ter. By looking at the prompt at the second
line, the user will learn it succeeded on 32
nodes. If it matches the user’s knowledge
about the number of nodes in the cluster,
the user will have confidence before actu-
ally issuing smask command.

e The following command will select Linux
nodes.

GXP[211/211/211]1>>> e uname|grep Linux
GXP[160/211/211]>>> smask
GXP[160/160/211]>>>

e A more tricky but frequently used tech-
nique is to select a single node for each
file system. Suppose for the sake of sim-
plicity that the current working directory
of all nodes are the user’s home directory,
which may or may not be shared between
nodes. Typically, nodes within a single
cluster share a home directory, and nodes
across clusters do not. We would like to
elect a single node from each shared home
directory, to perform subsequent file oper-
ations safely. An interesting trick is to use
mkdir command.

GXP[211/211/211]1>>> e mkdir xxxx
.. many error messages
saying directory already exists ...



GXP[5/211/211]>>> smask
GXP[56/5/211]1>>>

Command 'mkdir’ should succeed for one
node per a physically distinct home direc-
tory. We regularly use this technique to
deliver files to all nodes, compile sources
on each cluster, etc.

e Combinations of Unix commands give us
powerful ways to select nodes dynamically.
For example, the following will select nodes
based on their load averages.
GXP[211/211/2111>>> uptime \

| awk ’{if($(NF-2) > 0.5)print "H"}’ \

| grep H
GXP[1/211/211]>>> smask
GXP[1/211/211]>>>
Command uptime will display the host’s load
average of the past one minute in the third from
the right column (obtained via $ (NF-2) expres-
sion in the awk command). The first command
will succeed on nodes whose load averages are
higher than 0.5. Such selections are often useful
in cluster troubleshooting.
2.5.3 Process Cleanup
One of the biggest headaches in developing
cluster/Grid software is process cleanup. Due
to software bugs or operation errors, processes
that should terminate might keep running, pro-
cesses that terminated might leave as zombies,
etc. Although fixing software bugs so that they
almost never happen is an ultimate solution, in
practice, we sometimes have to act retroactively
or periodically so as to clean up (i.e., kill) what-
ever processes should have terminated. Doing
so on every single cluster node is a nightmare.
GXP supports a command, called bomb, which
kills all processes of the user, except those con-
stituting the current GXP session. In our expe-
riences, this command is vital for making clus-
ter/Grid programming productive.
2.6 Experiences
We have found thorough our experiences a
number of interesting ways to use parallel pipe
constructs. The essence is that, the parallel
pipe construct of GXP establishes communi-
cation channels between processes on behalf of
the user and make them available through stan-
dard input/output. Therefore, it often happens
that no network programming is necessary to
implement a simple coordination between pro-
cesses, and even existing Unix tools fit for a pur-
pose. This is again analogous to Unix redirec-
tions/pipes where the programmer can manipu-
late files and communicate with other processes

Lazeacy of Short Jobs in & Single Cluster (hostname)

10 lbop /6 nodes & 3 bop/ 112 nodes

12

1 . .
g 08
706 4.
g . A a Py aa,

:: P amthand aasspat? A,A‘...‘M:‘pu‘
o P LA 0 B0 P s il
o 20 40 60 80 100 120

Trials

Fig.4 Latencies of hundred invocations of hostname
commands in a single cluster (average: 82 msec
on 6 nodes and 260 msec on 112 nodes).

without knowing the details of how they are
done at the lower level. GXP brings this con-
cept to distributed/parallel programming set-
ting, where standard input/output of processes
connect to those of processes of other nodes or
even of other clusters, hiding much more com-
plexities than the regular Unix setting. Such
applications/templates include:

e A master-worker scheduler that distribute
commands to available resources. As op-
posed to executing the same command on
all available resources, this application exe-
cutes a given command on a single available
resource. Communication between master
and workers are done through the parallel
pipe.

e An MPI-like parallel program launcher in
which processes should know each other’s
contact address (hostname and its listen-
ing port number) to begin with. Gath-
ering announcements of contact addresses
and broadcasting them to all processes are
done through the parallel pipe.

3. Basic Performance Measurement

Our primary interest is latencies of short jobs.
Figure 4 is the record of one hundred invoca-
tions of hostname commands, inside a single
cluster. The latency is the time between the
point the command was issued at the local host
and the point all standard output have been
sent to the user’s terminal.

In this single cluster setting, GXP maintains
a perfect quintanary tree, so it reaches 6 nodes
with < 1 hop, 31 nodes with < 2 hops, and
156 nodes with < 3 hops. Since the cluster’s
node count is 112, we experimented with 6 and
112 nodes. We also had experimented with 31
nodes, but the result was not essentially differ-
ent from the 112 nodes case. Mean values are

—239—



Latency of Short Jobs (hostname) across Five Clusters

12
1 B
o
0.8 > o
O,
06 OWMWWO%
04
02

Latency (sec)

Fig.5 Latencies of hundred invocations of hostname
commands in five clusters (average: 611 msec
on 327 nodes).

82 msec on 6 nodes and 260 msec on 112 nodes.

Figure 5 shows the case where nodes are
spread across clusters. GXP built what
seemed the “best” tree with some user inter-
actions. That is, the local host directly reached
each of the cluster gateways, from which all
other cluster nodes are reached. The node
count was 327 and the most distant node was
five hops away from the local host. The average
latency was 611 msec.

These numbers indicate GXP actually main-
tains an interactive response even for very shot
jobs, at least up to this number of nodes.

4. Related Work

Prior to GXP and MPSH, MPD reports the
best result?) regarding quick process invocation
on a large number of nodes (approximately two
seconds on a 211 nodes cluster). The target
of MPD is a single cluster environment. Gf-
pmd® aims at fast process invocation across
clusters. An interesting difference is that
whereas MPD/Gfpmd assume a daemon is per-
manently servicing all (or at least many) users
on each node, GXP assumes each user brings
them up in the Explore phase. This allows us to
get rid of authentication on individual job sub-
missions, even when machines are spread across
multiple administration domains. This model
also significantly reduces installation cost.

5. Conclusion and Future Work

We described GXP, a shell for Grid environ-
ment. Getting started with GXP requires a
setup only on a local host, so it has a very
low entry barrier. It features a fast command
submission (611 msec on 327 nodes across five
LANs), a flexible model of node selection, and
a powerful parallel pipe syntax. These features
together enhance the productivity of many in-

teractive cluster/Grid operations. GXP makes
simple coordination of processes trivial with no
or little network programming. GXP will be
available for download by the end of 2004 3Q
from the author’s home page.

Acknowledgement

We are very grateful to the group of GXP
initial users for their discussion and feedback.
The ideas of writing master-worker programs in
GXP is largely due to my colleague Yoshikazu
Kamoshida.

References

1) Ando, M., Taura, K. and Chikayama, T.:
A Command Shell for Supporting Parallel
Job Submission in Grid Environment, Pro-
ceedings of Symposium on Advanced Comput-
ing Systems and Infrastructure (SACSIS2004),
Vol. 2004, pp. 225-232 (2004). (in Japanese).

2) Butler, R., Gropp, W., and Lusk, E.
A Scalable Process-Management Environ-
ment for Parallel Programs, available from
http://www.mtsu.edu/ rbutler/.

3) Buyya, R., Abramson, D. and Giddy, J.: Nim-
rod/G: An Architecture of a Resource Manage-
ment and Scheduling System in a Global Com-
putational Grid, HPC Asia 2000, pp. 283-289
(2000).

4) Globus Home Page: http://www.globus.org/.

5) Hoshino, T., Taura, K. and Chikayama, T.:
An Adaptive File Distribution Algorithm for
Wide Area Network, Proceedings of Workshop
on Adaptive Grid Middleware (2003).

6) Iwasaki, S., Matsuoka, S., Soda, N., Hirano,
M., Tatebe, O. and Sekiguchi, S.: Implementa-
tion and Evaluation of a Scalable Job Manage-
ment Architecture for Large-Scale PC Cluster
on the Grid Environment, Proceedings of Hokke
2002 (2002). (in Japanese).

7) Kaneda, K., Taura, K. and Yonezawa, A.: Vir-
tual private grid: a command shell for utilizing
hundreds of machines efficiently, Future Gen-
eration Computer Systems, Vol. 19, No. 4, pp.
563-573 (2003).

8) OpenSSH: http://www.openssh.com/.

9) Tanaka, Y., Nakada, H., Sekiguchi, S., Suzu-
mura, T. and Matsuoka, S.: Ninf-G: A Refer-
ence Implementation of RPC-based Program-
ming Middleware for Grid Computing, Journal
of Grid Computing, Vol. 1, No. 1, pp. 41-51
(2003).

—240—



