#HEHEA HHAEES RS
IPSJ SIG Technical Report

2004—HPC—99 (38)

2004781

Phoenix 70453 VO EFIEHOEFTREE

RS

FH i iR AT

SE LN

BT o FRECBVCTETEEO OISV ANAZ VIV) — 2 BHET LT T Y XL
PRRTD, AN VIV R EMICBETI I LICE > TRy b= b RO P =L T
VHFEORVEFBELITVEII LI e MNTES, KBTI 32007 FAFITELNE 168 Bt
BEICENT, ATy —%EBLEANS IV Y — kBT LICHIIL T, BRETEPL
TY XLEMANT Phoenix Ay =Y Ny 7 54T VICRELE 70— Ry 2 MK
BhRaY-2ZELA0Ta— Py 2 bXVBARICRVHERRLAN FANCHMICHEESh
YV —%kBu7o— KEr 2 MRS, - 1

Collective Operations for the Phoenix Programming Model

HiDEO SAITO,!t KENJIRO

TAURAt and TAKASHI CHIKAYAMA ft

In this paper, we propose an algorithm to create spanning trees for use in collective op-
erations in a Grid environment. By creating the spanning trees dynamically, we are able
to continue performing collective operations efficiently even when the topology of the net-
work changes during program execution. In our experiments, we succeeded in constructing
latency-aware spanning trees with as many as 168 nodes in 3 clusters. The broadcast function
that we implemented on the Phoenix message passing library using this algorithm decisively
outperformed a topology-unaware broadcast, although it did not perform quite as well as a
broadcast using static trees that were created a priori.

1. Introduction

1.1 Background

Collective operations are a vital part of parallel
programming based on message passing. Compared
with their counterparts using send-receive primi-
tives, broadcasts and reductions provided as a sin-
gle function are not only easier for the program-
mer to read and write, but also perform better.!)
Collective operations perform better because they
can be implemented with knowledge of the underly-
ing network. In particular, latency and bandwidth
can be used to construct spanning trees in such a
shape that messages are forwarded efficiently from
one process to another.

Early work on collective operations sought to
create operations that were optimal under the as-
sumption that all nodes were equidistant from one

another. This assumption does not hold in Grid

t Department of Frontier Informatics, Graduate School
of Frontier Sciences, the University of Tokyo

it Department of Information and Communication Engi-
neering, Graduate School of Information Science and
Technology, the University of Tokyo

environments—two nodes within the same cluster
may be just a few microseconds apart, while two
nodes located on opposite sides of the globe will be
separated by over 100 milliseconds. Some imple-
mentations of MPI, such as Magpiez) and MPICH-
G2%%) | have implemented efficient collective oper-
ations for wide area networks. These implementa-
tions require advance information about the topol-
ogy of the network to aid the creation of efficient
spanning trees. Yet, in some programming mod-
els for the Grid, resources may join or leave in the
middle of a computation, making it impossible for
topology information to be provided in advance.
The Phoenix message passing library® follows such
a programming model.

In this paper, we propose an algorithm to create
spanning trees for use in collective operations in a
Grid environment. Unlike the spanning trees used
in Magpie or MPICH-G2, our spanning trees are
not created statically a priori. Instead, our algo-
rithm uses latency measured at run-time to create
the spanning trees dynamically during program ex-

ecution. By creating the spanning trees dynami-

—223—

cally, we are able to continue performing collective
operations efficiently even when the topology of the
network changes during program execution. We im-
plemented a broadcast function that uses this algo-
rithm on the Phoenix message passing library. Our
experiments showed that broadcasts using our al-
gorithm decisively outperformed topology-unaware
broadcasts, although they did not perform quite as
well as broadcasts using static trees that were cre-
ated a priori.

1.2 Organization of this Paper

The rest of this paper is organized as follows. In
Section 2, we discuss related work. We then de-
scribe our algorithm in Section 3 and discuss our
experiments in Section 4. Finally, we summarize in

Section 5.
2. Related Work

Topology-aware collective operations have been
implemented in the past. These implementations,
however, have all required advance information
about the topology of the network to achieve ef-
ficiency.

Magpie? is a library of collective operations opti-
mized for wide area systems. It achieves high per-
formance by using algorithms that are wide area
optimal—every data item incurs only a single wide
area latency, and every data item is sent at most
once across each wide area link. To use these wide
are optimal algorithms, Magpie must be told how
many clusters there are and which process is lo-
cated in which cluster. Yet, in some programming
models for the Grid, this information changes over
time, and we cannot rely on it to optimize our
algorithms. Phoenix, the message passing library
that we are targeting, follows such a programming
model. Thus, in our work, we aim to create trees
that are wide area optimal, without being explicitly
told the topology of the network.

MPICH-G2%* implements multilevel topology-
aware collective operations. While Magpie only dis-
tinguished between two levels of communication,
“intracluster” and “intercluster,” MPICH-G2 aims
to achieve higher performance by introducing more
levels of communication. In order to accomplish
this, each process is assigned a topology depth and
a color. The topology depth is the number of net-

work levels that a process is associated with (wide
area, local area, system area, etc.). Using these
topology depths, MPICH-G2 groups processes at
a particular level through the assignment of col-
ors. Two processes are assigned the same color at a
particular level if they can communicate with each
other at that network level. Topology depths and
colors are told to MPICH-G2 via a script called the
Resource Specification Language (KSL) script.®
Thus, once again, in cases where the topology of
the network may change, this approach cannot be
used.

3. Algorithm

In this section, we will describe our spanning tree
algorithm. The idea is for each process to be the
root of a spanning tree. For each tree, each node
remembers its parent and children. In 1-to-N op-
erations, such as broadcasts*! and scatters®?, mes-
sages are sent down the tree from the root to the
leaves. In N-to-1 operations, such as gathers®? and
reductions™, messages are sent up the tree from
the leaves to the root. We have not yet consid-
ered how N-to-N operations, such as all-to-alls and
barriers, fit into our work.

3.1 The Main Algorithm

The spanning trees are created and updated in a
distributed manner. For each spanning tree, each
node looks for a suitable parent, changing parents
as it finds more suitable ones. The criteria for suit-
ability are described in Fig. 1.

Fig. 1 (1) and (2) together keep the spanning
tree wide area optimal. At first, the spanning tree
may have many connections between the same clus-
ters. Yet as it is updated, all but one of those con-
nections will be replaced by ones within the same
cluster, because nodes within the same cluster have
lower latency.

Within a cluster, a binomial tree, such as the one

used in MPICH?, offers optimal performance by

#1 A broadcast is an operation in which one node sends
the same data to all other nodes.

%2 A scatter is an operation in which one node sends dif-
ferent data to cach of the other nodes.

w3 A gather is an operation in which one node reccives
data from cach of the other nodes.

#4 A reduction is an operation in which one node receives
the result of a computation, such as summation, on
data held by cach of the nodes.

—224—

Given a node n with a parent p and a parent can-

didate ¢ for the spanning tree with r as the root,

¢ is a more suitable parent than p if it satisfies all

four of the conditions below:

(1) cis connected to the spanning tree with r as
the root

(2) latency, . < latency,,

(3) latency, ,,00 < latency, o0

(4) serialcroot = serialn, root

Here, latency, , denotes the latency between z and

y, and serial; , is the largest serial number that z

has received from y.
Fig.1 Criteria for choosing whether a parent candidate is
more suitable than the current parent.

maximizing the amount of overlapped communica-
tion. Meanwhile, Fig. 1 (1) and (2) alone create
trees that are too sparse and deep. Fig. 1 (3) pre-
vents a node from choosing a parent that is farther
from the root than it is, thereby keeping the span-
ning tree from becoming too deep.

Fig. 1 (4) prevents parts of the spanning tree
from forming isolated cycles. Each node occasion-
ally broadcasts a serial number down the spanning
tree for which it is a root. Non-root nodes forward
the serial number along with updated latency in-
formation. This ensures that if two nodes have the
same serial number, the node with higher latency
cannot be a descendant of the other node. With-
out these serial numbers, a node may temporarily
have higher latency than its descendant—after it
has changed parents to a node that raises its la-
tency, but before that information has arrived to
one of its descendants.

3.2 Shortcuts

The algorithm described thus far is able to con-
struct spanning trees given any network topology.
For some topologies, however, it may produce span-
ning trees that are not wide area optimal. We show
an example in Fig. 2. We show the latency between
3 nodes in Fig. 2 (a), and a wide area optimal tree
in Fig. 2 (b). Our algorithm, however, would cre-
ate the tree shown in Fig. 2 (c), which is not wide
area optimal. Such a tree is created, because B
chooses A as its parent based on the criterion that
it is closer than other parent candidates, in this case

the root node. The problem is that in doing so, we

100 ms 110 ms

90 ms

(a) Latency between 3 nodes

\ 110 ms

P s
B s

100 ms

6

®
I

(b) Wide area optimal tree

root

100 ms 10 e

3
&

T
[

©
o
3
@

(c) Tree created without shortcuts

Fig.2 An cxample where shortcuts are needed to retain
wide arc optimality.

If a node n with a parent p finds a parent can-
didate c that would shorten latency,, ,.,; by over
10 milliseconds, n can make c its parent, even if
latency,, . > latency,, ,.

Fig.3 Shortcut mechanism to preserve wide arca
optimality.

ignore the fact that B places itself 80 milliseconds
farther from the root node than if we were to choose
the root node as B’s parent.

In order to keep the tree wide area optimal, we
introduce the shortcut mechanism described in Fig.
3. Using this mechanism, B in Fig. 2 would make
the root node its parent, preserving wide area op-

timality.
4. Experiments

In this section, we will discuss the experiments
that we performed to evaluate our tree-creation al-

gorithm and broadcast implementation.

—225—

root

O/ O\ Cluster A

Cluster B Cluster C

(a) One of the nodes of Cluster A as the root

\!v/
- |
ONNNG
7 i !

®
| ®
Cluster A A ’
N\ ‘
Cluster B

Cluster C

(b) One of the nodes of Cluster B as the root

Fig.4 Two of the trees created using 27 nodes in 3
clusters.

4.1 Spanning Tree Creation

First, we took a look at the shape of the spanning
trees created by our algorithm. We used 27 nodes
in 3 clusters (3 nodes in the first cluster and 12
nodes each in the other two clusters) and created a
spanning tree with each node as the root.

Fig. 4 (a) shows the tree created with one of the
nodes in the 3-node cluster as the root. We can see
that the tree is not optimal, but that it is wide area
optimal. We say that it is not optimal, because the

intra-cluster communication deviates from a bino-

mial tree, and because the root node fails to deliver
data to the other clusters directly.

Fig. 4 (b) shows the tree created with one of the
nodes in one of the 12-node clusters as the root.
Once again, we can see that the tree is not opti-
mal, but that it is wide area optimal.

Other trees with other nodes acting as the root
had similar shapes and characteristics—none were
optimal, but all were wide area optimal.

4.2 Low-Latency Broadcast

Next, we modified the Phoenix message passing
library by adding a broadcast function that sends
data down spanning trees created by our algorithm,
and compared it with two other implementations:
a topology-unaware broadcast and a broadcast that
uses a static tree determined a priori.

The topology-unaware broadcast simply imitated
the Grid-unaware approach taken by MPICH—it
used a binomial tree, but as it did not take net-
work topology into consideration, it was an ineffi-
cient one. Data could travel to the same cluster
multiple times—worse yet, data could travel back
and forth between the same clusters.

For our Grid-aware static tree, we used the strat-
egy employed by Magpie. A coordinator node rep-
resented each cluster, and data was delivered to
each coordinator node in a flat tree (in sequential
sends). Inside clusters, a binomial tree was used to
broadcast messages from the coordinator node to
all other nodes.

We used 168 nodes in 3 clusters (100 nodes in the
first cluster, 65 nodes in the second cluster, and 3
nodes in the last cluster), and our broadcast mes-
sage size was 1KB.

Fig. 5 shows the time before each of the 168
nodes returned from the call to the broadcast func-
tion. Our implementation decisively outperformed
the topology-unaware implementation, although it
did not perform quite as well as the implementa-
tion using static trees determined a priori. Our im-
plementation was able to outperform the topology-
unaware implementation because it was wide area
optimal. It was not able to match the performance
of the static/a priori implementation because its
intracluster trees strayed too far from the optimal

binomial trees.

—226—

Time (ms)

(a) Topology-Unaware

60

40

Time (ms)

n
o

(b) Our Implementation

60

40 {

Time (ms)

20

(c) Static/A Priori

Fig.5 DBroadcast over 168 nodes in 3 clusters.

5. Summary and Future Work

In this paper, we have proposed an algorithm to
dynamically create topology-aware trees that can
be used for collective operations in a Grid envi-
ronment. We modified the Phoenix message pass-
ing library to create such trees, and implemented
a broadcast that uses these tress. Our experiments
showed that broadcasts using our algorithm deci-
sively outperformed topology-unaware broadcasts,
although it did not perform quite as well as broad-
casts using static trees that were determine a priori.

This work is in its early stages, and much remains
to be done. Our broadcast operation could be opti-
mized by using the spanning tree in a smarter way.
Currently, each node forwards to its children in the
order that it encounters them. If we send to the
children that have the most descendants first, we
may be able to overlap more communication with
each other.

We can also improve our work on collective oper-
ations by taking the size of messages into account.
This entails not only switching algorithms for small
and large messages as MPICH does, but also mea-
suring bandwidth and using that information to
create trees.

One immediate area of concern is implementing
a complete set of collective operations, not just
broadcast: scatter, gather, reduction, and all-to-all.
Scatters, gathers, and reductions can immediately
make use of the topology-aware trees proposed in
this paper. All-to-alls may require a different strat-
egy.

Another area of concern is extending our tree-
creation algorithm for use in other Grid-related ap-
plications. We believe that other message passing
models, such as MPI, can also take advantage of
our algorithm to reduce the amount of necessary

configuration.

References

1) Sergei Gorlatch. Send-receive considered
harmful: Myths and realities of message pass-
ing. ACM Transactions on Programming Lan-
guages and Systems, 26(1):47-56, 2004.

2) Thilo Kielmann, Rutger F. H. Hofman,
Henri E. Bal, Aske Plaat, and Raoul A. F.
Bhoedjang. Magpie: Mpi’s collective commu-

—227—

nication operations for clustered wide area sys-
tems. In PPoPP’99, pages 131-140, 1999.

3) Nicholas T. Karonis, Brian Toonen, and Ian
Foster. Mpich-g2: A grid-enabled implementa-
tion of the message passing interface.

4) N.Karonis, B.deSupinski, I. Foster, W.Gropp,
E. Lusk, and J. Bresnahan. Exploiting hierar-
chy in parallel computer networks to optimize
collective operation performance. In Proceed-
ings of the 14th International Parallel and Dis-
tributed Processing Symposium, 2000.

5) Kenjiro Taura, Toshio Endo, Kenji Kaneda,
and Akinori Yonezawa. Phoenix: a parallel
programming model for accomodating dynam-
ically joining/leaving resources. In PPoPP’03,
pages 216-229, 2003.

6) K.Czajkowski, I. Foster, N. Karonis, C. Kessel-
man, S. Martin, W. Smith, and S. Tuecke. A re-
source management architecture for metacom-
puting systems. In The 4th Workshop on Job
Scheduling Strategies for Parallel Processing,
1998.

7) MPICH-A Portable Implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich/.

—228—

