
論理式の充足可能性問題における変数の依存関係に基づく効率的な変数決定順序

鴨志田 良和† 田浦 健次朗† 近 山 隆†

論理式の充足可能性問題 (SAT 問題)を解くには，論理式の中の変数をある順番で選んで真理値を
代入して充足されなければ別の組み合わせを選び，可能なすべての場合をチェックするアルゴリズム
が広く用いられている．このようなアルゴリズムでは，どのような順序で変数値を決定するかが効
率を大きく左右する．我々の提案する変数の順序づけの方法は，変数間の依存関係を計算し，他の変
数に依存する変数よりも，他の変数に依存しない独立な変数の値をより早く決定する．この方法は，
SAT 問題の応用分野のひとつであるモデル検証における，状態遷移モデルの構造的な性質を捉えて
おり，8 ビットの乗算回路を用いた実験では，高速な SAT solver である zChaff を 200 倍近く高速
化することができた．

A Variable Dependency-Based Decision Strategy for Boolean Satisfiability Problems

Yoshikazu Kamoshida,† Kenjiro Taura†

and Takashi Chikayama†

Many decision procedures for Boolean Satisfiability problems solve a instance by searching
assignments to its variables. They repeatedly select a free (unassigned) variable based on
some heuristics, and assign a truth value to it. Such algorithms are highly dependent on the
order of selecting variables. In this work, we propose a method for a variable ordering reflect-
ing dependencies among variables, which gives priority to independent variables, rather than
dependent variables of which values can be indirectly determined by assigning truth values to
other variables. Our method calculates the order of variables statically, and can be given as
a hint to existing state-of-the-art SAT solvers easily. Our method captures structured prop-
erties of instances which are derived from state transition models, and experimental results
show that the fast SAT solver “zChaff” which incorporates our decision strategy runs about
200 times faster than the original version on the instance derived from 8-bit integer multiplier.

1. Introduction

The Boolean Satisfiability (SAT) problem con-

sists of determining a assignment to variables which

satisfies a given boolean function, or determining

that no such assignment exists. SAT is not just

a theoretically interesting problem as one of NP-

complete problems, but has many practical appli-

cation domains such as designing logical circuits

and verifying softwares. In recent years we have

seen significant growth and success in research on

search-based SAT solvers. Non-chronological back-

tracking proposed by Silva et al.7) greatly improved

efficiency of the SAT solvers for structured in-

stances, which are derived from real-world appli-

cations. Then optimized solvers such as SATO8),

zChaff6) and BerkMin5) are proposed, which can

† 東京大学
University of Tokyo

solve some of larger SAT instances generated from

industrial applications with tens of thousands of

variables.

The order of selecting variables to be assigned

next is important factor for solving SAT problems

efficiently. Different branching heuristics may pro-

duce drastically different sized search trees for the

same basic search algorithm. We may use depen-

dencies existing between variables in SAT to decide

variables. However, because they are very complex

in general, it is not possible to use them easily. For

this reason many SAT solvers decide the order of

variables with relatively simple criteria such as fre-

quency of appearance in the boolean formulas.

In this work, we define more limited, stronger de-

pendencies among variables, and make it possible to

easily distinguish whether a variable in a formula

is likely dependent to other variables or indepen-

dent. We apply this technique to decision algorithm

–1–

島貫
テキストボックス
2005－HPC－103（16）
　　2005／8／4

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
－91－

for SAT solvers. Dependencies described later cap-

ture properties of state transition models, of which

all state are determined if nondeterministic initial

states are determined. Therefore, our method for

ordering variables is well suitable for structured in-

stances derived from application domains to which

can be applied such state transition models, for ex-

ample, software model checking.

This paper is organized as follows: In section 2,

the definition of CNF and the basic algorithm to

solve SAT problems are introduced. Then section

3 describes our method to order variables based on

dependencies of variables. Section 4 presents our

preliminary experiments examine the effectiveness

of our method. And section 5 closes the paper with

some remarks for future work.

2. SAT Problem

2.1 Problem Specification

In this paper, a boolean function f for a SAT

problem is given in conjunctive normal form(CNF),

for example,

(a ∨ b ∨ ¬c) ∧ (b ∨ c)

∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) (1)

This form consists of the logical AND of one or

more clauses (e.g. “(a ∨ b ∨ ¬c)”), which consist of

the logical OR of one or more literals. The literal

comprises the fundamental logical unit in problems,

being an instance of a variable or its negation. All

Boolean functions can be described in the CNF for-

mat. For f to be satisfied, each clause must be

satisfied.

To assign 1 (or True) to x is to delete all clauses

which contain the literal x and to remove the literal

¬x from the clauses which contain the literal ¬x.

To assign 0 (or False) to ¬x is to delete all clauses

which contain the literal ¬x and to remove the lit-

eral x from the clauses which contain the literal x.

To assert the literal l is to assign the truth value to

the variable to make l be True. On removing the

literal from a clause, the size of the clause (number

of literals in the clause) may become zero. Such a

clause is called a “empty clause.” The formula of

which one of the clauses is empty is unsatisfiable

because we cannot satisfy the empty clause. Sim-

ilarly, a clause of size one is referred to as a “unit

clause.”

while (true) {

if (! decide ()) { // if no free vars

return SATISFIABLE;

}

while (deduce () == CONFLICT) {

blevel = analyze_conflicts ();

if (blevel == 0) {

return UNSATISFIABLE;

} else {

back_track (blevel);

}

}

}

Fig. 1 Pseudo code of Backtrack Search for SAT solver

Each satisfiable formula has at least one model,

i.e. a way of deciding the truth value of every vari-

able which let a given CNF evaluate to True.

2.2 SAT solvers

SAT solvers are programs which implement the

algorithms to solve SAT problems. Although the

above example (1) is very small, the formulas aris-

ing from the real-world applications may indeed

contain thousands of variables, and millions of

clauses. Most of SAT solvers employ one of two

main strategies to solve problems. Namely, SAT

solvers are divided into two types: complete solvers

and stochastic solvers. In this paper, we consider

mainly on backtrack search-based complete solvers,

which can correctly decide unsatisfiability of the

formula.

2.3 Backtrack Search

Backtrack search algorithm for SAT problems

was originally proposed by Davis et al.4) in 1960’s,

and is the basis of most of the existing com-

plete SAT solvers. This algorithm is described

as the pseudo-code fragment (augmented for non-

chronological backtracking7)) in Figure 1.

The function decide chooses a free variable,

which is not assigned a truth value, based on var-

ious heuristics. Each decision has a decision level

associated with it.

The function deduce simplifies a formula propa-

gating the effect of the assignment to the variables.

After making a decision, some clauses may become

unit clauses. The literal in a unit clause must be

–2–

島貫
テキストボックス
－92－

asserted to be True to avoid an immediate contra-

diction. This assignment may results other clauses

to be unit, so this rule have to be applied repeat-

edly until no unit clause exists or conflict is en-

countered. All variables assigned as a consequence

of implications of a certain decision will have the

same decision level as the decision variable.

If conflict is encountered (some clauses become

empty clause), then the analyze_conflicts func-

tion is called to analyze the reason for the conflict

and to resolve it. It also obtains some knowledge

from the current conflict (this is referred to as con-

flict directed learning), and returns a backtracking

level to resolve this conflict. The returned back-

tracking level indicates the wrong branch decision

made previously and back_track will undo the bad

branches to resolve the conflict. A zero backtrack-

ing level means that a conflict exists even without

any branching. This indicates that the problem is

unsatisfiable.

3. Variable Dependency-based Deci-
sion Ordering

Currently, state-of-the-art SAT solvers select a

variable and its value to be assigned with some

heuristics. Most solvers select variables in dynamic

way which allow to change the variable to be se-

lected according to states of present solvers.

On the contrary, our method computes an order

of variables statically based on dependencies among

variables. This is not intended to be invoked every

time a decision is made, but to be invoked as pre-

processing of a SAT instance. The result of compu-

tation is passed to a SAT solver. The SAT solver is

modified to receive a list of ordered variables and

decides a variable according to the order in the list

while any free variables exist in the list. We do not

include variables into the list which have no depen-

dencies we can detect. Therefore, if all variables

in the list are assigned, the SAT solver decides a

variable in the original way to the solver.

Our algorithm finds independent variables, which

can be assumed to be dependent on no other vari-

ables (the definition of dependency is described in

3.1). It is important to decide independent vari-

ables rather than dependent variables, of which val-

ues are implied by other assignment. This is be-

cause we can reduce a number of times to decide

variables by deciding independent variables.

The variable ordering reflecting dependencies

among variables is done by following step:

(1) Extract dependencies among variables from

a formula

(2) Resolve multiple and mutual dependencies

(3) Find variables which can be assumed to be

dependent on no other variables(independent vari-

ables)

(4) Sort the list of independent variables from

the variable that is depended by more variables

It is not necessary to decide the order of all de-

pendent variables because their values are implied

if values of independent variables are decided.

In later in this section, we describe the definition

of dependencies and the method to obtain indepen-

dent variables in detail.

3.1 Dependency among Variables

In a SAT instance, each variable in a clause has

a dependency that its value is decided by a unit

clause rule if the values of the other variables are de-

cided to specific values. However it is very difficult

to use naively this fundamental notion of depen-

dency because each dependency is complexly inter-

twined. Therefore, we introduce stronger definition

of dependencies which is simple to apply, and decide

the order of variables based on these dependencies.

Our definition of dependency is inspired by state

transition model. If its initial state is given, the

following state is decided one after another. Sim-

ilarly, we find a variable x and a set of variables

a1, ..., am such that the value of x is determined at

any assignment to a1, ..., am.

Here, we define a dependency among variables as

follows:

Definition 1 (Dependency among Variables)

A variable x is dependent on variables a1, ..., am

if the value of x is always implied when any as-

signments to each of a1, ..., am are made. Later in

this paper, we write [x ← a1, ..., am] to represent

such a dependency.

Let g be a set of clauses which include a vari-

able x and do not include any variables other

than x, a1, ..., am, and h be a formula made from

g by removing all occurrence of x. The relation

[x ← a1, ..., am] is equivalent to unsatisfiability

–3–

島貫
テキストボックス
－93－

(a ∨ ¬c)

(b ∨ ¬c)

(¬a ∨ ¬b ∨ c)

=⇒ [c ← a, b]

Fig. 2 Example of the dependency among variables

(a ∨ b ∨ c)

(a ∨ ¬b ∨ ¬c)

(¬a ∨ b ∨ ¬c)

(¬a ∨ ¬b ∨ c)

=⇒
[a ← b, c]

[b ← c, a]

[c ← a, b]

Fig. 3 Example of symmetric dependencies

of h. The variables included in h are a1, ..., am. If

h is unsatisfiable, any combinations of assignments

to a1, ..., am produce at least one empty clause. In

other words, at least one unit clause is produced

from g under any combination of assignments to

a1, ..., am, and then x is implied to either positive

or negative value.

For example, if we remove c from three clauses

in Figure 2, we get “(a)(b)(¬a ∨ ¬b).”

This formula is obviously unsatisfiable, therefore

[c ← a, b] holds.

3.2 Mutual Dependency

Variables can depend on each other under our

definition of variable dependencies. For example,

two clauses (a ∨ ¬b), (¬a ∨ b) express equiva-

lence relation. If one of two values in the equiva-

lence relation is decided, the other value is decided.

In addition, three clauses in Figure 3 also rep-

resents symmetric dependencies among three vari-

able a, b, c. Whenever either two values of a, b, c are

decided, implication for the value of the remain-

der is made. In general, two variables x, y have a

mutual dependency if both [x ← y, a1 , ..., am]

and [y ← x, b1 , ..., bn] hold. In addition, we say

that these two rules are mutually dependent. On

the other hand, a dependency rule which does not

have any mutually dependent rule is referred to as

a unique rule. To arrange variables by analyzing

dependencies statically it is also necessary to give

a order to each mutual dependent variable by some

means. To solve this problem, we introduce two

heuristics: eliminating redundant dependencies and

frequency-based ordering.

3.2.1 Eliminating Redundant Dependen-

cies

If a variable is dependent under more than one

[a 8 x]

[b 8 x]

(1) [x ← a, b]

(2) [x ← y]

(3) [y ← x]

=⇒

[a 8 x]

[b 8 x]

(1) [x ← a, b]

(3) [y ← x]

Fig. 4 Elimination of Redundant Dependencies

dependency rules, we say that redundant depen-

dencies exist. For example, when two dependen-

cies, [x ← a, b , c] and [x ← y, z] exist, it is

necessary that either a, b, and c or y and z are as-

signed to determine the value of x. So, these two

dependency rules are redundant.

Our first heuristic rule for simplifying mutual de-

pendencies among variables is elimination of redun-

dant dependencies. When one of the rules which are

mutually redundant is a unique rule, we remove the

other redundant rules expecting some mutual de-

pendencies among variables are resolved. The elim-

ination process may make some rules be unique, so

this process should be applied repeatedly.

In Figure 4, rules (1), (2) are redundant, rules

(2), (3) are mutually dependent, and rule (1) is a

unique rule. In this case, we eliminate (2) to sim-

plify dependencies.

3.2.2 Frequency-based Variable Ordering

In the case that mutual dependencies remain af-

ter elimination of redundant rules, the second rule

for simplifying is applied. This rule is a heuristic or-

dering based on the power to decide values of other

variables. We count the frequency of each vari-

able that appears on the being depended side (the

right-hand side of dependency rules). Variables ap-

pearing at higher frequencies are assumed to have

higher power to decide value of other variables and

we delete the dependency rules for which these vari-

ables depend (appear on the left-hand side).

3.3 Ordering Independent Variables

After analyzing dependencies among variables,

each variable is in either of the following state:

(1) It appears only on the being depended side

(2) It is dependent under a dependency rule

(3) It does not appear in any dependency rules

The variables in the first state are assumed to be

independent. We obtain the list of the independent

variables by sorting them by the power to decide

–4–

島貫
テキストボックス
－94－

int main () {

unsigned char a, b;

unsigned int result = 0, i;

a = nondet_uchar ();

b = nondet_uchar ();

for (i = 0; i < 8; ++ i) {

if ((b >> i) & 1) {

result += (a << i);

}

}

assert (result == a * b);

return 0;

}

Fig. 5 Source Code of 8-bit Integer Multiplier in C

described above.

4. Experiments

To examine the effectiveness of our method, we

used a CNF formula generated from a multiplier

of 8-bit integer. It was generated using cbmc,

ANSI-C Bounded Model Checker3). This tool can

generate boolean formulas in CNF from ANSI-C

programs. The C program for input is shown in

Figure 5. Cbmc allows to model user-input by

means of non-deterministic choice functions. In

this source code, nondet_uchar returns a nonde-

terministically chosen value of type unsigned char.

Cbmc will evaluate all traces arising from all pos-

sible choices. Cbmc rewrites the input code before

translate it into a boolean formula. First, cbmc un-

winds all loops, and then rename variables on each

assignment. Arithmetic operations are converted

to equivalent bit vector equations. The 8-bit inte-

ger multiplier program is transformed into a CNF

formula with 2,392 variables and 7,758 clauses.

All experiments were done on an Opteron

2.4GHz, running Linux 2.6.11 with 1G byte of phys-

ical memory. We used zChaff6) version 2004.11.15

for the original SAT solver to be modified. The

code for dependency analysis is a perl script of

about 500 lines. This script finds all dependen-

cies represented by clauses of which size were not

over 4. We tried to solve a formula of the 8-

bit multiplier described above and 58 structured

instances randomly selected from the benchmark

instances of sat-2002/2003 competition1) of which

solving times erre from 20 seconds up to 300 sec-

onds with the original SAT solver. We can analyze

shuffled instances in benchmarks because our de-

pendency analysis algorithm is not dependent on

variable IDs.

Table 1 shows the maximum decision level and

the solving time of the original SAT solver, the

time for analyzing dependencies among variables,

the maximum decision level and the solving time

of the SAT solver with the list of independent vari-

ables, and number of independent/dependent vari-

ables for each instance. “Speedup” equals to the

solving time of the original SAT solver divided

by the sum of the analyzing time and the solving

time. “Timeout” at speedup column means that

the solving time for the instance exceeded the time-

out limit, 300 seconds.

22 of 59 instances could be extracted any depen-

dency rules. We omitted instances from the ta-

ble which could not be extracted dependency rules

from at all because running times of such instances

are the same as the original SAT solver.

The maximum decision levels of the solver with

our variable ordering were smaller than those of

the original solver in 14 of 22 instances. This in-

dicates our variable ordering can effectively reduce

the number of variables assigned independently at

the same time. On the contrary, the number of

independent variables were much larger than the

maximum decision level. This is because some vari-

ables were mistakenly assumed to be independent

for the limitation in size of examined clauses. Es-

pecially in “w10 60,” the maximum decision level

increased to three times that of the original solver

as a result.

Improvements in speed were observed in 10 of 22

instances. It is remarkable that the solver ran 200

times faster in 8-bit integer multiplier.

5. Conclusion and Future Work

Our variable ordering method for solving SAT

reflects dependencies among variables. Dependen-

cies among variables for this method are based on

the substitution relation on state transition mod-

els. We extract dependencies by statically analyz-

ing given CNFs. This method yields better running

–5–

島貫
テキストボックス
－95－

Original Original Analyze Max Solve Indep. Dep.

Instance Name Variables Clauses S/U Max DL Solve Time Time DL Time Variables Variables Speedup

8-bit multiplier 2392 7758 U 16 3886.5 1.5 16 18.7 63 2329 192.4

ferry12 4222 32148 S 437 142.2 3.5 449 0.1 2388 1786 40.1

ferry12u 4133 31464 S 426 27.9 3.3 457 0.0 2338 1748 8.3

lisa19 3 a 1201 6522 S 144 261.5 3.0 25 86.1 420 780 2.9

lisa20 0 a 1201 6522 S 135 80.3 3.0 26 21.4 420 780 3.3

lisa20 3 a 1201 6522 S 111 144.5 2.9 25 53.0 420 780 2.6

ezfact48 2 1729 10952 U 55 25.1 6.8 33 96.6 118 1611 0.2

ezfact48 3 1729 10952 U 116 122.7 6.8 34 66.7 118 1611 1.7

ezfact48 5 1729 10952 U 151 177.3 6.8 30 300.0 113 1616 timeout

ezfact48 6 1729 10952 U 104 244.2 6.8 43 220.6 117 1612 1.1

pyhala-braun-sat-30-4-01 5428 17782 S 260 69.9 3.9 42 24.5 285 5143 2.5

pyhala-braun-sat-30-4-03 5428 17782 S 274 20.1 4.0 34 24.2 297 5131 0.7

pyhala-braun-sat-35-4-01 7383 24247 S 307 38.0 5.4 48 4.0 381 7002 4.0

pyhala-braun-sat-35-4-02 7383 24247 S 312 29.8 5.4 55 34.9 408 6975 0.7

pyhala-braun-sat-35-4-04 7383 24247 S 309 22.9 5.4 57 230.4 381 7002 0.1

qg3-9 729 28215 U 93 39.5 4.7 93 39.5 108 108 0.9

qg6-12 1728 90324 U 241 29.0 15.4 241 29.1 12 396 0.7

Urquhart-s3-b2 44 398 U 27 24.9 0.06 29 300.0 13 6 timeout

Urquhart-s3-b10 43 340 U 27 87.4 0.07 27 300.0 16 8 timeout

w10 60 26611 83415 U 149 27.4 11.7 477 300.0 2037 22492 timeout

rand net40-30-5 2400 7121 U 131 34.1 1.1 39 300.0 40 2360 timeout

rand net40-30-10 2400 7121 U 111 26.5 1.1 40 300.0 40 2360 timeout

Table 1 Statistics for 8-bit multiplier and selected benchmark instances

times for some class of instances.

It is possible that we could not extract sufficient

dependency rules for the instances which made no

performance gain with our method. To extract

more meaningful dependencies, we can examine

larger clauses and exploit weaker dependency rules.

Independent variables obtained as a result of ana-

lyzing dependencies among variables tend to repre-

sent nondeterministic initial states of a state transi-

tion model. When we solve SAT instances derived

from arithmetic circuit, some of independent vari-

ables may be originally expressed as a single word.

The word-level model checking2) verifies models by

processing set of bits as a group with augmented

BDD data structures. It may be interesting to con-

sider if word-aware model checking techniques can

be applied to implementation of SAT solvers as well

as BDD manipulation.

参 考 文 献

1) Berre, D. L. and Simon, L.: The essentials

of the SAT 2003 competition, Proceedings of

the Sixth International Conference on The-

ory and Applications of Satisfiability Testing

(SAT2003) Lecture Notes in Computer Science

2919, pp.452–467 (2003).

2) Clarke, E. M., Khaira, M. and Zhao, X.:

Word level model checking–avoiding the Pen-

tium FDIV error, DAC ’96: Proceedings of the

33rd annual conference on Design automation,

New York, NY, USA, ACM Press, pp.645–648

(1996).

3) Clarke, E. and Kroening, D.: Hardware Verifi-

cation using ANSI-C Programs as a Reference,

Proceedings of ASP-DAC 2003, IEEE Com-

puter Society Press, pp.308–311 (2003).

4) Davis, M., Logemann, G. and Loveland, D.:

A machine program for theorem-proving, Com-

munications of the ACM, Vol.5, No.7, pp.394–

397 (1962).

5) Goldberg, E. and Novikov, Y.: BerkMin: A

Fast and Robust Sat-Solver, DATE ’02: Pro-

ceedings of the conference on Design, automa-

tion and test in Europe, Washington, DC, USA,

IEEE Computer Society, p.142 (2002).

6) Moskewicz, M.W., Madigan, C.F., Zhao, Y.,

Zhang, L. and Malik, S.: Chaff: Engineering an

Efficient SAT Solver, Proceedings of the 38th

Design Automation Conference (2001).

7) Silva, J. and Sakallah, K.: GRASP – A New

Search Algorithm for Satisfiability, Proceedings

of the International Conference on Computer-

Aided Design (1996).

8) Zhang, H.: SATO: an efficient propositional

prover, Proceedings of the International Con-

ference on Automated Deduction (CADE’97),

volume 1249 of LNAI, pp.272–275 (1997).

–6–

島貫
テキストボックス
－96－

