FEFEN SR
IPSJ SIG Technical Report

W

2008 —ARC—1T77
2008 —HPC—114
2008735

Fault-tolerant FPGA Architecture
with Distributed Internal Configuration-memory Access

Pierre Devautour, Shuichi Sakai, Masahiro Goshima
University of Tokyo

Abstract

As FPGAs are vulnerable to aging and radiation induced
effects that can result in hard errors, they need proper au-
tonomous recovery schemes to become really fault-tolerant.
But current FPGA architectures have not be designed
specifically to support such schemes. This paper presents a
Sault-tolerant FPGA architecture featuring TMR-based er-
ror detection and localization and a distributed internal ac-
cess 1o configuration-memory SUpporting auionomous ve-
covery.

1. Introduction

Reconfigurable hardware devices such as Field Pro-
grammable Gate Arrays (FPGA) are being increasingly
used, not only for ASIC prototyping, but also in applica-
tion domains such as acrospace and defense, cryptography,
medical imagery or computer vision, because they allow
relatively cheap and fast production of prototypes and final
designs in low volume. However, major dependability is-
sues such as vulnerability to radiation induced Single Event
Effects (SEE) limit their deployment in harsh environments
like space or nuclear plants. A careful and targeted use of
Triple Modular Redundancy (TMRY), configuration-memory
scrubbing and other basic fault-tolerance techniques may
help achieve some level of dependability, but important
flaws still remain. Autonomous recovery schemes based on
partial dynamic reconfiguration seem to be the most ade-
quate technique to improve SRAM-based FPGA’s depend-
ability, but current FPGA architectures do not fully support
it.

The aim of this paper is to describe an FPGA architec-
ture with inherent support of autonomous recovery. It first
presents a short overview of FPGAs and dynamic partial
reconfiguration, as well as the dependability issues they
face. Then, it makes a review of currently investigated tech-
niques. In a third section, it describes the novel architec-
ture we propose, and then it makes a rough evaluation of it
before presenting our conclusions and the work left to be
done.

2. Background and Motivation

2.1. FPGA Architecture

The FPGA, or Field Programmable Gate Array, is a semi-
conductor device containing programmable logic elements
called Configurable Logic Blocks (CLB) and a network
of programmable interconnects. Each CLB can be pro-
grammed to perform simple combinational functions using
a set of lookup tables, flips-flops and multiplexers. Con-
nected together through the interconnection network, they
can perform the same computations as an ASIC. The data
describing the function of each CLB and interconnection
switch is stored in a configuration memory.

There are different possible architectures for FPGAs but
conceptually they are all based on the same principles:
the configuration logic blocks are arranged as a two-
dimensional array and are connected with each other
through a hierarchical interconnection network that spans
all the device horizontally and vertically. Spread on all the
periphery of the CLB array, Input/Output blocks act as an
interface between the FPGA and the other digital devices on
the board. In most FPGAs, some additional resources are
included in the device, such as RAM memory blocks and
specialized digital signal processors (DSP), for enhanced
computing power.

2.2. Dynamic Partial Reconfiguration

For reconfigurable computing applications, the configura-
tion of the FPGA has to be partially modified at ran-time so
that the unchanged logic runs continuously. This is achieved
by using a SRAM configuration memory and Dynamic Par-
tial Reconfiguration (DPR).

Xilinx Virtex devices are such SRAM-based FPGAs that
support DPR. Their configuration architecture is described
in [1]: the configuration is stored in a SRAM memory that
can be read from or written to without halting the device.
The smallest unit of configuration memory that can be read
or written is a frame. In Virtex 4 devices, the frame is a 1
bit wide column which spans 16 rows of CLBs, as shown
on Figure 1, which makes it a more flexible reconfigurable
computing platform. It is also important to note that the
reconfiguration process is glitch-less: if a configuration bit

)]
(€]

holds the same value before and after reconfiguration, the
resource controlled by that bit will not experience any dis-
continuity in operation.

FPGAs usually offer several external configuration inter-

DSP blocks Block RAM

\

CLB array 10Bs

\

I

16 CLB rows

Clock region

DDUDDUDEUUUDUDUUDUUUEEEHEHEDDDDEDUGE{
Clock region

0000000000000000000000000000000000000
0000000000000000000000000000000000000

e

Ay
| i\il—)-ﬂ-c— Conliguration frame

Figure 1: Xilinx Virtex 4 configuration frames

faces. As an example, Virtex devices have a Serial interface,
a SelectMAP interface which provides an 8-bit bidirectional
data bus interface to the configuration logic that can be used
for both configuration and read-back, and a JTAG chain. In
addition to these, Virtex devices also offer an interface that
allow an FPGA to access its configuration memory from
within its user logic: the Internal Configuration Access Port
(ICAP). This ICAP allows to implement a reconfiguration
controller, usually in the form of a soft microprocessor, on
the user logic of the FPGA, which is the base of autonomous
systems.

2.3. Dependability Issues

Shrinking feature size allowed improved performances and
functionalities but also made FPGAs more valnerable to ag-
ing and radiation effects. Time dependent dielectric break-
down, electromigration, hot carrier effects, stress migra-
tion and thermal cycling are examples of accelerated aging
mechanisms that cause dysfunction in semiconductor de-

vices by altering the gates’characteristics, eventually lead-
ing to hard errors. Total ionizing dose (TID) is the accumu-
lation of ionizing radiations over time and causes a degrada-
tion of the performance parameters of the device, eventually
resulting in permanent failures.

Single Event Effects (SEE), in the other hand, result from
the strike of a single high energy particle which can gen-
erate both soft and hard errors. Single Event Upsets (SEU)
result in firm errors. A high energy particle strikes the semi-
conductor device causing the ejection of heavy ions that can
create a momentary pulse in the signal. A SEU occurs when
the parasite pulse is latched in a memory cell. Errors caused
by Single Event Upsets are called firm errors because in FP-
GAs, as the functionality of the device is described in the
configuration memory, errors can alter the functionality of
the device so these can no longer be called soft. Figure 2
shows how an upset of a bit within the configuration mem-
ory modifies its behavior.

\
.rf +] 8
oo < Rt
ng sgnal
1 LUT eenflg.
e} 2]

Figure 2: SEU’s effects on FPGAs

3. Related Work

Manufacturers have proposed several solutions to mitigate
the upsets in the configuration layer. 1In [2] is used a
Cyclic Redundancy Check (CRC) feature to detect corrupt-
ing SRAM bits. This feature enables a reconfiguration
whether a SEU is detected, thus correcting the configura-
tion bits.

In [3] is proposed a detection/correction method based on
the read-back feature. The principle is similar to [2]. What
is different is the need of an external controller to perform
the checking and to enable the reconfiguration of the device.
The triple modular redundancy (TMR) with voting uses
three identical modules that perform the same task with cor-
responding outputs compared through a majority voter cir-
cuit. This scheme can be applied to different level of mod-
ules: device, design or gate.

In the test community, several techniques have been pro-
posed to test and diagnose FPGAs [4], [5], [6]. In addition,

some authors have proposed fault recovery mechanisms and
self-repair capabilities for bypassing one or several faults
occurring in a fault-tolerant design [4], [7]. The main idea
is to use the re-configurability nature of FPGAs for bypass-
ing the faults.

As an example, in [4] is proposed the use of Roving STARs
in fault-tolerant designs. Roving STAR method has been
proposed to perform on-line testing and fault diagnosis in
FPGAs. The FPGA can be divided into two areas: work-
ing area and self-testing area (STAR). The STAR is com-
posed of non configured resources, i.e. those not involved
in the design. At each time, the STAR is moved. At the
same time, the functionality of the working-part under test
is moved into the discharged STAR. This process is done
by dynamically reconfiguring a part of the device and this
is done without disturbing the operation in the rest of the
application. In [4], the self testing area is composed of two
full rows and two full columns.

4. Proposed Architecture

The problems with the techniques mentioned above is that
most of them allow a fault latency that can not be tolerated
in some critical applications. Some of them also rely on
a recovery managing unit that becomes a single point of
failure.

Our approach is to eliminate fault latency using TMR and
to reduce the number of single points of failures by also
triplicating the unit in charge of the recovery and providing
a distribuied internal access to the configuration-memory.

4.1. TMR for error localization

The voting logic in basic TMR systems takes three inputs
and sends as an output the value given by the majority of
the three inputs. To use TMR for error localization in order
to support autonomous recovery, we want a TMR system
to be able to send information about the localization of the
error to the recovery manager so that appropriate measures
can be taken to repair or relocate the faulty unit. Figure 3
shows a TMR system that is able to tell which of its inputs
is faulty, if any. The error signal then has to be forwarded
fo the reconfiguration manager so that appropriate measures
can be taken. How this is done will be described later.

4.2. Tile-based architecture

The TMR system described above is the base of our fault-
tolerant architecture. As the voting logic is a single point
of failure of the device, it should be implemented as static
hard-wired logic, with thick gates if possible. However,
TMR is not enough to provide acceptable dependability,
and it should be accompanied by an autonomous recov-
ery mechanism. To support such a mechanism, we define
a novel FPGA architecture that will support fine grain logic

il &

in2 I l

in3

out

Y

ErrQ

(\/)
Errl

Figure 3: TMR for error localization

local relocation, which seems to be the most efficient recov-
ery scheme. Our architecture is based on a building-block
called a tile. Figure 3 describes such a tile.

Figure 4: A tile: building-block of the FPGA

Each tile contains n slices, which are the equivalent of
simple CLBs, that are in charge of the actual computation.
An input local switch matrix feeds these slices with the
proper inputs coming from the global interconnection net-
work, while a local output switch matrix sends the outputs
of the slices to k hard-wired voting and error localization
units. The voted outputs are then sent to other tiles through
the global interconnection network while the error signals
are sent to the recovery manager.

The configuration memory of this tile is called a frame and
is the smallest portion of the configuration memory that can

be read from or written to. It contains the configuration data
of the global switch matrix, the two local switch matrices,
and the slices.

Such a tile-based architecture is suitable for autonomous re-
covery mechanisms: if a certain number of the slices are left
unused as spare units, simple manipulations on the content
of the tile’s configuration frame allow to copy configuration
data from one slice to another and to re-route the output of
the spare slice to the right voting unit.

4.3. Autonomous recovery mechanism

In the system we propose, a unit responsible for the man-
agement of the recovery process (recovery manager) is im-
plemented on the user logic of the FPGA and is triplicated
like the rest of the design. A general purpose soft-core pro-
cessor such as Microblaze is suitable for this task. The re-
covery process that we propose is as follows:

e The recovery process starts upon error detection by a
voting logic. The associated error localization logic
sends to the recovery manager a signal specifying
which one of its three outputs is faulty

The recovery manager orders a read-back of the con-
figuration frame of the tile where the error has occurred

o The recovery manager extracts appropriate informa-
tion from the configuration data of the programmable
switch matrix to determine the slice where the error
may have occurred and the healthy copies of this slice

o The recovery manager reconfigures the supposedly
faulty slice with the configuration data of one of its
healthy copies

o If there is no more error signal from the voting logic,
then the error was just a firm error in the slice’s con-
figuration memory and no other measure needs to be
taken. Else, if the error signal persists, then we can
either suppose that an hard error occurred within the
slice, or that its inputs have been misrouted

o Then the recovery manager relocates the supposedly
faulty logic in a spare slice of the tile, extracting ap-
propriate information from the configuration data of
the input switch matrix to re-rout the inputs of the slice
correctly

If there is no more error signal from the voting logic,
then the error was probably a hard error within the
logic of the slice, like a bit stuck at 0, or a short circuit
for example, and no other measure needs to be taken.
However, if the the error signal persists, either the in-
put of the slice was misrouted and there is no way to
determine which signal should be taken as an input, or

the spare slice used to replace the faulty slice is faulty
itself

o If another spare slice is available, the recovery man-
ager makes a second attempt to relocate the supposedly
faulty slice

If there is no more error signal, the recovery is success-
ful: the first spare slice used for relocation was proba-
bly faulty itself and is marked as such by the recovery
manager. If the error signal persists, a test can be run
on the slice to check for hard error (such a process is
possible but not described here). If the slice is diag-
nosed as healthy, then we suppose that its inputs have
been misrouted

4.4. Distributed
memory access

internal configuration-

The feasibility of the recovery process described above de-
pends on whether we are able to send error localization in-
formation to the recovery manager and to send reconfigura-
tion data from the recovery manager to the faulty tile.

To solve these problems, in our system, we propose a com-
munication network connecting all the slices to each other,
in the shape of a token ring as shown on Figure 5.

oken
Master P‘ ¥

24 5 5

Taken ring network

Figure 5: A token ring for distributed internal configuration
memory access

Each tile contains a local interface to this token ring net-
work, including the tile on which the recovery manager is
implemented. Error signals and reconfiguration data are
sent from tiles to tiles on this network. here is a descrip-
tion of the communication protocol:

e an error is signaledin a tile T

o the network interface of tile T assembles a packet con-
taining an error report and waits for the token

e when the token arrives, tile T catches it, sends its
packet, and switches to a state where it is ready to re-
ceive a packet containing a request for local memory
read-back

o the tile Mu where the recovery manager is imple-
mented intercepts the packet,forwards the error report
to its slices, and sends on the network a packet con-
taining a read-back request

tile T still has the token so it intercepts the packet con-
taining the read-back request which is sent to the local
memory access controller

e tile T assembles a packet containing its configuration
data, sends it on the network, and switches to a state
where it is ready to receive a packet containing recon-
figuration data from the the tile Mu

o tile Mu intercepts the packet, forwards the configura-
tion data to its slices, and wait until the slices have
computed new reconfiguration data. It then assem-
bles a packet containing this reconfiguration data and
a write operation order and sends it on the network

tile T still has the token so it intercepts the packet and
forwards the write operation order and the reconfig-
uration data to its local configuration memory access
controller

if no further error is observed, tile T can release the
token

Provided with such a communication structure and pro-
tocol, our architecture can really support the autonomous
recovery mechanism described in the previous paragraph.

5. Evaluation

The architecture described above is designed specifically
for fault-tolerance and to support autonomous recovery. A
study of its behavior in errors occur allows a rough estima-
tion of its survivability. Figure 6 shows a representation of
the behavior of a tile. After an error occurs, the tile goes
to a transitional state while the recovery manager attempts
an on-site reconfiguration of the supposedly faulty module.
If another error occurs in the same TMR system during this
process, it leads to a fatal failure. If the reconfiguration suc-
ceeds in recovering from the error, then the tile goes back
to its initial state. If not, it the supposedly faulty module is
relocated and the tile goes to a state where all the TMR sys-
tems are healthy again but one spare sliced has been used.
This process can be repeated N times where N is the initial

Figare 6: Behavioral model

number of spare slices.

In fact, the time used by the recovery manager to either re-
configure or relocate a faulty slice is about seconds, while
the time between two failures is about days. As a conse-
quence, the length of a transitional state is negligible com-
pared to the mean time between failures. So we can simplify
the model described above as follows. A tile is in state k,
with k from O to N, when k of the N initial spare slices have
been used. And the mean time of transition between two
consecutive states is T, where T is the mean time to failure
for persistent errors. With such a model, it is easy to esti-
mate that the mean time to failure of the device is (N + 1)
T . As T depends of the environment and of the device, we
can not give precise figures to illustrate the dependability of
our architecture, but we can estimate that it will survive N
+1 times longer than a non fault-tolerant design, with N the
number of spare slices in a tile.

6. Design of an experimental platform

In the previous chapter, we have made a very rough es-
timation of the survivability of our architecture. But the
only way to perform a better evaluation of our proposal and
to demonstrate its capabilities is to make a prototype of it
and measure its performances. In this chapter, we describe
such an experimental platform. It consists in a multi-FPGA
board. We want to use this board to demonstrate the ef-
ficiency of the fault-tolerant schemes supported by our ar-
chitecture. An ideal demonstration would be to observe a
design performing correctly continuously while we trigger
failures on the device.
Our experimental board will be consisting of two arrays
of FPGAs: one to implement the tiles, and one to imple-
ment the token ring network to simulate a distributed inter-
nal configuration memory access scheme.
To implement a tile on an FPGA, we used the modular
flow for dynamic partial reconfiguration: independent mod-
ules are implemented for slices, switch matrices and voting
logic.

To each tile-FPGA corresponds a network-FPGA which
will be its interface to the token ring network and its access
port to the reconfiguration memory.

| oting and
Error
ke 1 Lecalization §

Logic

Figure 7: Tile FPGA

7. Conclusion and Future Work

In this paper, we proposed a novel FPGA architecture with
inherent support for autonomous recovery schemes. The
main contribution of this paper is the description of an error
localization and reporting method relying on a distributed
internal configuration memory access and a token ring
network, We roughly evaluated the survivability of our
proposal and described a prototyping board. We hope that
this paper will be used as a basis for further investigation
eventually leading to the implementation of a prototype.
We left a few questions unanswered, such as the feasibility
of a recovery scheme able to repair errors occurring in
the global routing resources, and also concerning the
performance overhead generated by our architecture.

Acknowledgments :
This research is supported by JST, CREST.

References

[1] S. Kelem. Virtex series configuration architecture user guide.
Xilinx Application Note, (151), 2003.

[2] Altera. Error detection using crc in altera FPGA devices. Ap-
plication Note, (357), 2004,

[3] Xilinx. Correcting single-event upsets through virtex partial
configuration. Xilinx Application Note, (216), 2000.

[4] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya, and
V. Verma. Using roving Stars for on-line testing and diagnosis
of FPGAs in fault-tolerant applications. IEEE Int. Test Conf.,
pages 973-982, 1999.

{51 F. Lomardi, D. Ashen, X. Chenn, and W.K. Huang. Diagnos-
ing programmable interconnect systems for FPGAs. ACM Int.
Symp. On Field-Programmable Gate Arrays, pages 100-106,
1996.

[6] C. Stroud, E. Lee, and M. Abramovici. Using ILA testing for
BIST in FPGAs. IEEE Int. Test Conf., pages 68-75, 1996.

[7] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Low over-
head fault-tolerant FPGA systems. IEEE Trans. On VLSI Sys-
tems, vol. 6, pages 212-221, 1998,

