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abstract  In this paper we propose a new timing verification technique named coded time-symbolic simulation,
CTSS. We are concerned with simulation of logic circuits consisting of gates whose delay is specified only
by its minimum and maximum values. We encode cases of possible values of delay of each gate by binary
values with Boolean variables, and reduce the problem into the conventional symbolic simulation. This
simulation technique can handle logic circuits containing feedback loops as well as combinational circuits.
We implemented an efficient simulator by using shared binary decision diagram (SBDD) as an internal

representation. We also propose novel techniques for result analysis of CTSS.
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1. Introduction

Logic design verification is one of the most important
processes for developing reliable digital systems, but it
is, at the same time, one of the most laborious processes.
Especially verification concerned with timing is often
complicated and time consuming. In order to avoid diffi-
culties, large part of a digital system is usually designed
as a synchronous sequential circuit whose timing verifica-
tion is relatively easy. However, there remain some por-
tions, such as communication units, which are designed
as asynchronous circuits. Even if the asynchronous part
is much smaller than the synchronous part, as much (or
more) efforts are required to achieve timing verification
of the asynchronous part.

When behavior of a circuit depends on subtle timing
relations, we have to consider the change of delay value
which may be caused by the difference of of process con-
ditions or the difference of usage environments. In logic
simulation, which is currently one of the most effective
method of dynamic timing analysis, we treat the uncer-
tainty of delay value using the min/max delay model [1].
Although it enables us fast execution, it has been pointed
out that simulation results are often too pessimistic [1]
and that it is very difficult to know if a circuit under test
has design errors.

As one of the solutions to this problem, time-symbolic
simulation has been proposed in [3]. In this technique,
the delay value of a gate is represented by a variable
and simulation is executed with time represented by al-
gebraic expressions. This technique gives us accurate
simulation results without pessimism. It also enables
us to derive the delay conditions under which the cir-
cuit behave expectedly. The algorithm proposed in [3],
however, is based on time first evaluation algorithm [4]
and can handle only combinational circuits without feed-
back loops. This restriction limits the applications of the
technique.

In this paper we propose an alternative to the time-
symbolic simulation which can handle circuits containing
feedback loops. Instead of using the time variables, we
encode possiblities of delay value of an uncertain delay
unit using Boolean variables. Then the time-symbolic

simulation is reduced into usual symbolic simulation [8],

and we can simulate all kinds of circuits by the con-
ventional simulation algorithm. We call our new tech-
nique coded time-symbolic simulation (CTSS). As a rep-
resentation form of Boolean functions appearing in sym-
bolic simulation, we use shared binary decision diagram
(SBDD) [5] which is an improvement on the BDD [6].
The use of SBDD in CTSS drastically reduces storage
requirement, and enables efficient execution.

It is also important to provide aids for analyzing sim-
ulation results, for the simulation results of CTSS are
given in the form of Boolean expressions of coded time
variables. In this paper we also propose a novel tech-
nique to specify an expected behavior, to compare it
with result obtained by CTSS and to display the delay
conditions for the expected behavior of the circuit under
test.

In the following section we discuss the modeling of the
delay uncertainty. In section 3 we describe the details of
CTSS using SBDD. In section 4 we show the techniques
for result analysis. We discuss some issues on implemen-
tation of CTSS and show experimental results in section

5.

2. Modeling of Delay Uncertainty
2.1 Conventional Min/Max Delay Model

Actual gate delay is affected by process conditions or
usage conditions. In order to guarantee the correct be-
havior of asynchronous logic circuits which are based on
sophisticated timing relation, we have to examine the
behavior taking the delay uncertainty into account.

In logic simulation, we treat the uncertainty by us-
ing the min/max (ambiguity) delay model [1]. It has
been pointed out, however, that this model has serious
shortcomings that the simulation results are often too
pessimistic due to reconvergent fanouts {1]. For exam-
ple, a timing chart in Figure 1(b) is the result of the
min/max delay simulation for the circuit in Figure 1(a).
The unknown states on line D indicate the possibility of
a static hazard, which never occurs in an actual circuit
because the rising edge on C never precedes the falling
edge on B. This overpessimism comes from loss of the

information that the uncertainty in the time of rising
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Figure 1: Overpessimism in min/max delay simulation.

edge on C is partly due to that of falling edge on B, and
we are actually simulating the circuit shown in Figure
1(c), instead of that in Figure 1(a).

There are simulators which detects reconvergences and
can avoid the overpessimism to some extent. But it is
considered to be impossible to solve this problem com-
pletely by a simple extension of the min/max delay sim-
ulation, because the problem of judging the possibility
of hazards for a given combinational circuit and a pair
of input vectors under the assumption of the uncertain

delay model, has been shown to be NP-hard [2].

2.2 Time-Symbolic Simulation

Symbolic simulation is one of the approaches to an ef-
fective solution of this problem. In 3] they represents
the delay time by a variable in the real number domain,
and simulate logic circuits with time represented by al-
gebraic expressions. This symbolic execution enables us
to derive the delay conditions to make a circuit behave
correctly by analyzing the expressions obtained as the
simulation results, as well as it offers us accurate simu-

lation results without pessimism. The algorithm shown

n [3] is efficient but it supports only combinational cir-
cuits. This is because the algorithm is based on the
time-first evaluation mechnism [4].

It is possible to adapt the time-symbolic simulation to
the conventional space first evaluation algorithm, if we
do not mind the efficiency. An algorithm is as follows.
Events scheduled to occur in the future are maintained
in a set Q.

1) Repeat 2)~4) until @ becomes empty.

2) Get an event ¢, out of @, whose occurrence time is
judged to be the smallest. If there are multiple candi-
dates, investigate all the possibilities.

3) Compute the effect of e.

4) Tf there are new events as a result of 3) put them
into @.

In step 3), we do not have to investigate all the pos-
sibilities if the order of occurrences of some events does
not affect the entire behavior of the circuit. However,
we are forced to investigate almost all the possibilities
as long as we take a pessimistic strategy, since it is al-
most impossible to know that in advance. As a result,
simulation speed become so slow that we can not sim-
ulate even a small circuit in practical time. One of the
keys to a breakthrough of this problem is an optimistic
strategy such as in [9], which in turn makes the simula-
tion control complicated.

Our approach, shown in the follwoing section, is com-
pletely different. We do not have to care about the order
of the event occurences, and yet the useless branching are

avoided.

3. Coded Time-Symbolic Simulation
- CTSS

3.1 Coding of Uncertain Delay
by Boolean Variables

We assume time to be descrete as is the usual with
conventional logic simulation. Then we can enumerate
the possibilities of actual delay value of a bounded un-
certain delay. Let us take the circuit in Figure 1(a) as
an example. Each of the inverters B and C, whose delay
is specified as [0,3], will take one of the four delay values

{0,1,2,3}. If we investigate the 16 cases. namely the 4
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cases for B by the 4 cases for C, we can get the com-
pletely accurate simulation result. Total number of the
cases to be examined will be exponential to the number
of uncertain delay components in a circuit. This is in-
evitable because of the complexity of the problem as we
told earlier. We focus our attention on how we can make
the simulation process efficient.

Again in the exampel above, 16 possible signal values
are associated with a signal line at a time period. If we
code the delay of B and C using Boolean variables, such
as delayg = (b, bo) and delayc = (1, ¢o), the 16 signal
values can be seen as a Boolean function of the 4 input
variables. Then the simulation with the uncertain delay
is reduced into the usual symbolic simulation. That is
the basic idea of our coded time-symbolic simulation.

For the convenience of explanation, we assume with-
out loss of generality that a gate in a circuit is either a
pure functional gate with delay 0 or a pure delay gate
with a signle input and a signle output. Let us denote
the signal value on a line s at time ? as o,{t]. Then the
signal value on the output line y of a functional gate g

is computed by the following equation:

av[t] = fﬂ(axl [t],dn[i],-“,dn[i]), (1)

where f, is the Boolean function of g, and 21,22, -+, 2
are the signal lines which feed g.

As for a delay gate, we can interpret the coding of
delay as shown in Figure 2. Namely the time variables
b; and bg are the selection inputs to choose one of the four
delay possibilities. Then the definition of a delay gate ¢
is also straightforward. Let y and z be the output line
and the input line of g, min, and maz, be the minimum
dg,(I =
[log,(maz, — ming + 1)]) be the time variables coding
the delay of g. Let us also define d,;(k) and Dy(k) as

and maximum delay value of g, and dgg,---,

follows.

if i-th bit of the binary
dgi(k) =

representation of k is 0,

dg; otherwise.
Dy(k) = dyo(k) - dyi (k) - - dg(k).

The output value of a delay gate g is computed according

to the equation :

[0] by bo
X [ y - X [1] I l
(0:3] 2] selector |2

(3]

Figure 2: An interoretation of the coding of delay.
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Figure 3: An example of the simulation.
a,lt] = Dy(0): o [t — ming]
+ Dy(1)- 0.t — ming — 1]
+ Dy(maz, — ming) - 0,{t — maz,). (2)

Figure 3 shows an example of the simulation of the
circuit in Figure 1(a). We gave the rising edge at time 0.
C at time 0, for example, indicates that the value is 1
when b, = by = ¢; = ¢g = 0, namely delayp = delayc =
0, and otherwise the value is 0. The signal value on D
is always 0 which is the accurate result we expected. In
CTSS, the variables of a delay does not appear in the
formula to represent the signal value on a line s at time
t, as long as the delay does not affect s at time ¢. So
we can automatically avoid the useless comparison and

branching.



3.2 Representation of Boolena Functions

by Shared Binary Decision Diagram

Good representation of Boolean function is a key to
efficient symbolic simulation. In our implementation we
use shared binary decision diagram (SBDD) [5], which is
an improvement on the binary decision diagram [6]. In
the SBDD all the possible subgraphs are shared among
multiple functions, as shown in Figure 4. The SBDD has
the follwoing merits besides those of the BDD.

1) Many functions can be efficiently expressed simul-
taneously.

2) Many of the operations can be done much faster
than in the BDD. Especially, equivalence of the two func-
tions are checked by simply comparing the pointers while
the isomophism should be examined in the BDD.

Those two merits are very much suitable for our pur-
pose. Since in CTSS we have to represent many Boolean
functions to express signal values on signal lines, the
property 1) is very favorable. Figure 5 shows the repre-
sentation of the signal values in the simulation of delay
units connected in cascade. We can see how well the
subgraphs are shared. The property 2) is also favorable
in detecting changes of signal values in symbolic simula-

tion.

4. Result Analysis of CTSS

Although CTSS offers accurate simulation results,
they are represented by Boolean functions and it is often
hard to understand the meaning of the Boolean functions
and to tell if there are errors. For example, in Figure 3

the signal values on C satisfies the following relation.
0= 0(7[0] C Uc[l] C 0’0[2] C - C 0’0[6] = 1.

From this relation, we can conclude that there is always
a single rising edge on C regardless of the combination of
delay values. However, it seems to be hard to derive the
fact only by looking at the expressions. It is important to
prepare a mechanism to analyze simulation results and
tell if simulation results match expected behavior of the
circuit under test. In this section, we discuss methods
of the result analysis. We propose a novel technique to

match the simulation results with expected ones, and a
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Figure 4: Shered binary decision diagram.
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Figure 5: Representation of signal values by SBDD.

technique to dispay the delay conditions for the expected

behavior.

4.1 Matching Simulation Results

Using Finite Automata

In [3] they compare simulation results with expected
results by expressing the expected ones using the same
data structure as the simulation results. Although we
can apply this strategy in CTSS, it is also difficult to
derive the Boolean expressions to represent the specifi-
cations in general. In this paper we propose an novel
technique using a finite automaton. This technique is
a generalization of the edge detection technique shown

above.
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Figure 6: Automata A, to represent a specification 7.

At first we represent expected behavior of a circuit
by a regular expression 7. We construct a deterministic
finite automaton A, which accepts the same set of se-
quences as 7. We design a sequential circuit M, which
inputs a sequence and outputs 1 if and only if A, accepts
the sequence. We simulate M, along with the circuit un-
der test. If the final output of the M, is 1 then we can
conclude the circuit satisfies the specification 7 regard-
less of the delay values. If the final output is a Boolean
expression containing delay variables, the expression in-
dicates the possible combination of actual delay values
for the circuit to behave correctly.

For example, if we want to verify that not more than
two 1-pulses are allowed on the output line z of the cir-

cuit C, the specification is writtten as
7 =0"4+0"1"0" 4+ 0"170"170".

From this regular expression we can construct a deter-
ministic automata A, as shown in Figure 6. By the state
assignment A = (1,0,0), B = (0,0,0),C =(1,0,1),D =
(0,0,1), E = (1,1,1), F = (0,1, 1), we get a sequential
machine M, expressed by the following equation, where
y1, ¥2 and y; are state variables and ok is the output of

M,

Y = TP +T-y s
Yo = Y2 ys+T T Ys,
Y5 = P tT7

ok = y.

By simulating M,, along with the circuit C, we can know

if C satisfies the specification 7.

4.2 Extraction of Algebraic Expressions

As a result of the matching in the previous subsection,
we get an Boolean expression indicating delay conditions

for correct behavior. We can know a set of combinations

of delay values imediately from this expression. How-
ever, it is much helpful if we can know the algebraic
relation between delay values. Suppose the following ex-
pression is obtained, where delay 4 and delayg are coded

by (ao, a1, as) and (bg, by, by), respectively.

ok = b02-a2+62-b1-al+b2-41-50-a0
+ b2-al-b0-a0+a2-b1-al
+ a2-b1-b0-a0+a2-al-b0- al.

It is hard to read by what condition the circuit behave
correctly. However if we extract the following algebraic
expression of delay, and delayp, we can understand the

meaning very well.
delayy < delayp.

Since target albegraic expressions include only addition
and comparison of the delay variables [3], extraction, of
the algebraic expressions is considered to be done effi-

ciently by the technique in [7].

5. Implementation of the CTSS
5.1 Compiler Driven Implementation of CTSS

In order to enhance the performance of simulators,
we usually adopt event driven simulation mechanism.
In CTSS, however, we considered it not neccesarily ad-
vantageous to be based on the event driven simulation
algorithm for the following reasons, and we decided to
implement the first version of the simulator based on the
compiler driven simulation algorithm.

1) Since an event on the input line of a delay gate g
at time t affects the ouput line of g at time ¢ 4-ming, t +
ming + 1,---,t + mazr,, we have to handle much more
events than in the usual logic simulation.

2) In order to accelerate symbolic operation in SBDD,
we keep recent results of symbolic operations in a hash
table [5], and we can execute the same symbolic opera-
tions as we executed recently by just looking up the ta-
ble. Since the cost of the table look-ups is much smaller
than that of the symbolic operations, we can not expect
the drastic reduction of computation time by omitting
the same operations according to the event driven sim-

ulation strategy.



In the compiler driven simulation, we have to pay at-
tention to the order of gate evaluation, because we may
have to evaluate a gate for many times until the circuit
becomes stable, which brings the considerable drawback
in computation time. We classify gates into the following
2 categories.

1) Delay gates whose minimum delay value is not 0.

2) Functional gates (whose dealy value is 0) and delay
gates whose minimum delay value is 0.

Since the output value of a gate in the category 1)
at time £ does not depend on the input value at time ¢,
we can evaluate the gate without waiting for evaluations
of the other gates, but we have to be careful for the
order of evaluations of gates in the category 2). In our
implementation, we evaluate all the gates in the category
1) first and then evaluate the gates in the category 2) in
the order of level number. We exclude the circuit which
contains loops consisting of gates in the category 2) in

the preprocessing stage.

5.2 Experimantal Results

We have implemented a simulator based on the tech-
niques stated so far. The simulator is written in C lan-
guage and runs on the Sun3/60 workstation.

We simulated an 8-bit ripple carry adder consisting of
48 gates, all of which has a bounded uncertain delay [1,4].
We gave an input stimulus of length 100 which contains
5 events at time 1, 5, 10, 20 and 35. It took about 28
seconds to execute simulation. Since the total number
of gate evaluation is 4800, the simulation speed is about
170 gate evaluation/sec. The number of events, which
we counted by the separate program, was 756, and sim-
ulation performance in this case is about 27 event/sec.
This may be much slower than usual min/max delay sim-
ulators, but it is considerd to be amazingly fast because
it simulated 4** cases within a minutes! The number of
the nodes required for simulation was 18180. Since we
have not done any attempts on the ordering of variables,
these figures (number of nodes and simulation speed) is

expected to be improved.
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