& & B ® {t 52-3
(1990. 5. 22)

RAFUZE RO SEERIEMBIEIC DOV T
WHEE AR AESET
BLERERT A THRERIR

B4 ZHFEBORBERIC20RES 7 72 AW SRABBORGELL /07 A% BEL, vF=
— A L A% TR o TE 2y 25WES T 7 R MORBRABRERFE LI, L hKE ZEK
YRy PREHATCEZ 0, MOLERNBHELFELHBL LY RE2AKLHELTE 5, X7
T, 25 RKBEABONRY L HENETERT L2010, BHEEOBIERT S FY M7 DORRY
R RBFELREREL, EROFMHRRELBRS, TOFBFEKTIE, EEONIHI OFREBERIZE
L2V EVSIFRGFEAVTVAY, CZTCRETIFETH, £~ L RHFBEEEEET 2B
05— OENOREBBHSELLEZVE W) EETHFRABTERT LI 10T 5, ik, HED
BWEPOELDZFY M 72 —HETHILICHNL., HRL L THEFEEFHEC). KB
BHTEDE)b, o, EBRRD S, BELORES ZTLEEELA 2SRV LT o1

~

Multi-level logic minimization for large circuits
Masahiro Fujita, Yusuke Matsunaga, and Taecko Kakuda
Artificial Intelligence Labs. FUJITSU LABORATORIES LTD.
1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

We have developed multi-level logic minimization programs based on the transduction
method with Binary Decision Diagram and also developed a Boolean resubstitution
algorithm with permissible functions. In this paper, we present a method which enable
us to minimize larger circuits. We calculate permissible functions for each gate on the
condition that only the output of that gate does not change, which is a more strict con-
dition than that of the original permissible functions which guarantees that the primary
output logics do not change. The sizes of permissible functions are smaller, which
means we can handle larger circuits, although some don’t cares are ignored. We
present some experimental results. |

1. Introduction

In logic synthesis, multi-level logic minimization is very important to get high quality synthesized circuits
in terms of area and testability, and several methods have been proposed and developed [2,3,4,5,6,7]. In
all of them, the key point of multi-level minimization is the use of don’t care sets. MIS [2] uses
satisfiability don’t cares (filtered for speed-up [3]), and BOLD uses full don’t cares by checking the logi-
cal equivalence between the original circuit and the modified circuit. Another method to utilize don’t
cares effectively is to use permissible functions used in the transduction method [S].

We have developed a multi-level logic minimization program based on the transduction method [6] with
Binary Decision Diagram [8] and also developed a Boolean resubstitution algorithm with permissible
functions [7]. Permissible functions are defined on each gate and express don’t care sets which do not
change the primary output logics. These programs show equal or superior performance compared with
other multi-level logic minimization programs, such as MIS and BOLD, especially for large circuits.

In this paper, we present a method which enables us to minimize larger circuits. It is a kind of ‘filtering
methods which are also used in MIS [3]. We calculate permissible functions for each gate on the condi-
tion that only the output of that gate does not change. It is a more strict condition than that of the original
permissible fﬁnctions which guarantees that the logics of the primary outputs do not change, and so the
sizes of permissible functions become smaller (when expressed in BDDs), which means we can handle
larger circuits. Since some don’t cares are ignored in this method, minimization results may be worse.
However, the don’t care sets obtained by this method still gives equal or larger don’t care sets than MIS’s
filtering [3]. Also, as seen from the experimental results presented in the later section, the results are not
so bad compared with other minimization methods.

In section 2, we briefly review permissible functions expressed in BDDs and the Boolean substitution
algorithm with it. In section 3, we present the new method with some exterimental results, and section 4
is a concluding remark.

2. Boolean resubstitution with permissible functions and BDD

2.1 Permissible Functions

The key concept of permissible functions is that each node in a circuit is an incompletely-specified func-
tion of the primary inputs due to the don’t care sets obtained from network topologies, and permissible
functions represent possible implenientations at such nodes [5]. Permissible functions are sets of logic
functions that do not change any output logic, and they are defined as follows. Assume Vi is an inter-
mediate node in a network. The logic function of any output variable in the network may not change even
when the logic function Fi of node Vi is replaced with another logic function PF. Then the logic function
PF is called a permissible function of node Vi.

Permissible functions are defined for each node. Usually, there is more than one permissible function for
a node. Therefore, the don’t care mark (*) is used to represent a set of permissible functions as a single

~ 2~

vector at that node. Figure 1 shows an example of permissible functions. In this figure, v1 and v2 are
input nodes, v4 is an output node, and v3 is intermediate node. The Fi vector in the truth table represents
a logic function of each node vi. G4 .is an OR gate. Since the first and second values of F4 are Os, the
first and second values of F3 must remain to be 0s. The third and fourth values of F4 are 1s and the third
and fourth values of F1 are 1s. Thus, the third and fourth values of F3 may be either O or 1, and the logic
function of F4 does not change even when logic function F3 is replaced with PF3. Then PF3 is the set of
permissible functions of v3. Though the logic functions and permissible functions in this figure are
represented in terms of truth tables, in our implementation these are represented in BDD.

Permissible functions can be calculated by traversing networks from outputs to inputs. The details can be
found in [5,6].

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDD or sometimes called Ordered BDD) were proposed by Bryant [8]. A
BDD is a kind of decision graph for representing Boolean functions with restrictions on the ordering of
variables in the graph. Boolean functions are represented by directed, acyclic graphs with a vertex set con-
taining two types of vertices. A non-terminal vertex has as attributes an input variable index and two chil-
dren. A terminal vertex has as attributes a constant value 0 or 1 (to express permissible functions, we
added one more constant **’ to express don’t care value). Ordered means that if xi<xj then all nodes with
xi precede all nodes with xj. A path from the root to the terminal vertex with value 0 (or 1) gives a condi-
tion when Boolean function f=0 (or f=1).

Figure 2 shows an example of BDD representation of a Boolean function F=v1&v2 + v3. In this figure, a
rectangle indicates a terminal node with logical values, and a circle indicates a non-terminal node contain-
ing the variable index with the two children indicated by branches labeled O and 1. The variable ordering
of this graph is v1 > v2 > v3.

A graph can be shared with many logic functions and permissible functions, and the negative edge can be
used to indicate an inverted logic [11]. This improvement enables the graph to be copied only by operat-
ing the pointer. The effective use of graph sharing and negative edges reduces CPU-time and memories
[7]. Figure 3 shows an example of shared BDD with negative edges.

2.3 Boolean resubstitution with permissible functions

We have implemented Boolean resubstitution based on the Bold algorithm [4] with permissible functions
[7]. Boolean resubstitution generalizes the Reduction, Expand and Irredundant operations [10] of two-
level logic minimizer to a multi-level context. This process removes the redundancies from the network,
as well as modifies the network configuration. Thus, the possibilities of further optimization are increased.

Figure 4 shows the general flow of our Boolean resubstitution. Even though we are manipulating Boolean
networks, each cover comprises connections of AND gates and one OR gate. We use the following

~3~

conditions to execute operations shown in Figure 4:

(1) Pruning condition: The connection whose set of permissible functions consists of 1 and don’t care
only or 0 and don’t care only can.be set to constant 1 or 0. Then this connection may be removed from
the network.

(2) Connectable condition: A connection can be added to a gate as a new fan-in when the new logic func-
tion of that gate’s output is included in its permissible functions. '

The Boolean resubstitution procedure shown in Figure 4 was implemented by the above operations using
BDDs [7]. In this paper, this implementation is used to evaluate the two methods which we propose in
this paper to increase the power of our minimization method.

3. Minimization by subsets of permissible functions

This section present a minimization method using a subset of permissible functions. The original permis-
sible functions (we- call it PF here) are defined on each node of Boolean networks so that it is the set of
logic functions which do not change the primary output logics, even if the logic of that node is replaced
by a logic function within the permissible functions. The subset of permissible functions we use here (we
call it SPF) is the set of logic functions which do not change the logic of that node. This is a more strict
condition, and so gives smaller don’t care sets, which means it can be expressed in smaller BDDs. Let us
explain by Figure 5.)

Here we assume initial circuits for multi-level minimization are obtained by the weak-division algorithm
[12],-and so each internal node is expressed as sum-of-product of fan-ins of that node. Let us concenirate
on the minimization of a node Vi, an internal node of the circuit. PFs guarantee that logic of primary
outputs do not change, while SPF for node Vi guarantees that the logic of the node Vi does not change.
This means SPF has no don’t cares relating to the sub-circuit which is transitive fan-outs of the node Vi
(the area which is lined horizontally in Figure 5. This is sometimes called as observability don’t cares),
but SPF still considers the don’t cares relating to the sub-circuit which is transitive fan-ins of the node Vi
(the area which is lined vertically in Figure 5. This is sometimes called as satisfiability don’t cares). PF
considers don’t cares relating to both areas. Hence, SPF is smaller than PF, which means the size of
BDD for SPF is smaller than the size of BDD for PF..

The above discussion can be understood in a different way by considering how to calculate permissible
functions. We can get permissible functions for the fan-ins of a node Vi from the permissible functions
for the output of Vi and the logic functions for the fan-ins of Vi [S]. This means that permissible func-
tions can be calculated by traversing a circuit from outputs to inputs. This is the way to calculate PFs.
However, when calculating SPFs for a node Vi, we start from Vi, not the primary outputs, and assume
the SPF for the output of Vi is the logic function of Vi, which means there is not don’t care values in
SPF for the output of Vi. This is the contrast to the fact that PF for the output of Vi may have many
don’t care values. We calculate SPFs for the transitive fan-ins of Vi in the same way as PFs. So, SPFs

is generally smaller than PFs in the sense that there are fewer don’t care values.

Of course, since SPF is smaller than PF, minimization results by SPFs may be worse than that by PFs.
But sizes of BDDs which are used to represent permissible functions determines the speed of minimiza-
tion and how large circuits can be minimized. So, by using SPFs, we can expect not only faster execu-
tion times but also can minimize larger circuits than those by PFs, although the minimization results may
be worse.

We did some experiments using MCNC benchmark circuits. The results are shown in Table 1 and Table
2. ’unable’ in the tables means the required memory space exceeds 30M Bytes, which means BDDs are
too large. Table 1 shows the results of multi-level examples and Table 2 shows the results of two-level
examples. The initial circuits for the two-level examples are generated by the weak-division algorithm
[12], except alu4. alu4 is synthesized by the combination of weak-division and Boolean resubstitution in
order to speed up synthesis time, i.e., we first weakly divides alu4 only when the saved literals exceed 10,
then apply the Boolean resubstitution procedure, then weakly divides it only when the saved literals
exceed 5, then then apply the Boolean resubstitution procedure, then weakly divides it with no restriction,
and finally apply the Boolean resubstitution procedure one more time. This is because the results after
simply applying the weak-division algorithm has many redundancy, so it takes much time to minimize
(although it is possible). So we should execute the Boolean resubstitution procedure during the weak-
division process.

In both tables, we use the variable orderings obtained from the heuristics in {1]. As for Table 1, larger
ISACAS benchmark circuits than c432 (and also the circuit rot) could not be minimized by PF nor SPF,
i.e., they need variable ordering optimization presented in the next section. We can see from Table 1 that
we get 40 - 65% CPU time reductions, although saved literals are increased by 10 - 50 %. However, the
reduction ratios of CPU time is larger than the reduction ratios of saved literals.

As for the results of two-level examples, the reduction ratios of CPU time are not necessarily larger than
the reduction ratios of saved literals. However, if an initial circuit has much redundancy, e.g., alu4,
minimization by SPF can eliminate large amount of redundancy. This shows that minimization using SPF
followed by minimization using PF is a very good strategy, if initial circuits have much redundancy.

4, Conclusion
In this paper a new method for minimizing large circuits is presented. The experimental results show the
method enables us to minimize larger circuits with comparable quality than other methods.

BDD (we use as the internal representation of permissible functions) heavily depends on variable order-
ings, and the sizes of BDDs determine the performancé of the minimization programs. Although we have
already developed an effective variable ordering algorithm [1], we believe there is not a little space to
improve it, which will be one of the future works.

References .

[1] M. Fujita, H. Fujisawa, and N. Kawato, ““Evaluations and Improvements of a Boolean Comparison
Method Based on Binary Decision Diagrams’’, IEEE International Conference on Computer Aided
"Design ’88, Santa Clara, November, 1988.

[2] K.A. Bartlett, R.K. Brayton, G.D. Hachtel, R.M. Jacoby, C.R. Morrison R. Rudell, ALSanglovanm
Vincentelli and A. Wang, ‘“Multi-Level Logic Minimization Using Implicit Don’t Cares’’, IEEE Trans.
Computer-Aided Design, Vol. CAD-7, No. 6, pp.723-740 June 1988.

[3]1 A. Saldanha, A.R. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Multi-Level Logic
Simplification using Don’t Cares and Filters’’, Proc. 25th DAC, June 1989.

[4] D. Bostick, G.D. Hachtel, RM. Jacoby, M.R. Lightner, P. Moceyunas, C.R. Morrison, and D.
Ravenscrofit, ‘“The boulder optimal logic design system’’, Proc. ICCAD '87, November 1987.

[5]' S. Muroga, Y. Kambayashi, H.C. Lai and J.N. Culliney, ‘‘The Transduction Method - Design of
Logic Networks based on Permissible Functions’’, IEEE Trans. Comput., Vol.C-38, No.10, pp.1404-
1424, October 1989,

[6] Y. Matsunaga and M. Fujita, ‘‘Multi-level Logic Optimization Using Binary Decision Diagrams’’,
IEEE International Conference on Computer Aided Design’89, Santa Clara, November 1989.

[7]1 H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita, ‘‘Boolean resubstitution with permissible functions
and Binary Decision Diagrams™, To appear in 27th ACM/IEEE Design Automation Conference, June
1990.

[8] R.E. Bryant, ‘‘Graph-based algorithms for boolean function mampulauon” IEEE Trans. Computer,
C-35(8):667-691, August 1986.

[9] F. Beglez and H. Fujiwara, ‘‘A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target
Translator in Fortran’’, Special session on ATPG and fault simulatioh, IEEE International Symposium
on Circuit and Systems '85, June 1985. ; '

[10] RXK. Brayton, G.D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,'‘Logic Minimization
Algorithms for VLSI Synthesis’’, Kluwer Academic Publishers, 1984.

[11] Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima, ‘‘Shared Binary Decision Diagram with Attri-
buted 'Edges for Efficient Boolean Function Manipulation’’, To appear in 27th ACM/IEEE. Design
Automation Conference, June 1990.

[12] R.K.Brayton, R.Rudell, ASanglovanm-Vmcentelh and A.RR.Wang, “MIS: Multi-level interactive
logic Optimization system’’, IEEE Trans. Computer-Aided Design, Vol. CAD-6, No. 6, pp.1062-1081,
November 1987.

PF3 =[00**]

Fl|F2 |F3|F4 PF3 is a set of

permissible functions

—_ -0

Figure 2. OBDD Representation of F=v1&v2 + v3

Figure 1. An example of permissible functions

F1 = a&~b+~a&b F2 = a&b+~a&~b

(a) BDD (b) Shared BDD (c) Shared BDD with negative edges

Figure 3. Shared BDD with negative edges

Boolean_resubstitution()
/* CV1 and CV2: convers in the Boolean network */
"G : AND-gate in a cover CV2 */
A
- for each conver CV1 {
for each cover CV2 {

try to connect CV1 to G; /* Reduction */
try to remove other fan-ins from G; /* Expand */
}
try to remove gates in CV2; /* Irredundant */

}
}

Figure 4. Boolean resubstitution procedure

~7~

I

V’

>~

Transitive fan-outs »
B
P— Outputs
~ . .
Target node: Vi .
X pa—
Transitive fan-ins

Figure 5. Don't cares drived from circuit topology

Circuits Boolean resubstitution Saved literal CPU time
' by PF/SPF reduction reduction
PF SPF (D)-E@NI)-2) (5)(3)
Name | (1)Literals | (2)Literals | (3)CPU time | (4)Literals | (5)CPU time
apex6 832 754 446.6 791 194.7 0.53 0.44
apex7 352 279 291 8.7 0.71 0.35
rot 1443 unable unable - - -
c432 272 194 204 432 0.87 0.61
Machine: SUN4/260
CPU time: seconds .
Variable orderings are generated by the algorithm in [1}, no additional optimization
Table 1. Results of Boolean resubstitution by PF/SPF for MCNC multi-level benchmark circuits
Circuits Boolean resubstitution Saved literal CPU time
by PF/SPF reduction reduction
PF SPF ((D-@)M)-(2)) (5)(3)
Name (1)Literals | (2)Literals | (3)CPU time | (4)Literals (5)CPU time
-5xpl 152 103 32 122 3.0 0.61 093
9sym - 234 223 20.8 231 7.1 0.36 0.34
alu4 2058 131 697.6 145 405.7 0.99 0.58
duke2 384 362 56.6 365 47.6 0.86 0.84
misex3 1288 679 - 1498.1 892 745.6 0.65 0.50
misez3c 522 443 117.1 492 76.8 0.38 0.66
rd84 256 147 114 190 8.4 0.61 0.74
seq 1754 1107 1846.0 1491 1179.2 0.41 0.64

Machine: SUN4/260
CPU time: seconds
Variable orderings are generated by the algorithm in [1], no additional optimization

Table 2. Results ‘of Boolean resubstitution by PF/SPF for MCNC fwo-level benchmark circuits

