%&rl:

it B B fb 60—15
(1991.12.12)

J7 oA rREAMEIC & B ERE R &EL

BRHER MKBN
[t

JHE T B X _EFH 1015

T =T NVERSY A TDOFPGAILH LIFICER) 2 £ BB IR Sl L B I oW TR 5,
RO RBEBRBFEEE, £5~ P ZRPNE LOBEE DORERTS (V55
NMEERBLEED) LI YEBEMBELLTB Y, H5— FOATBIEE LA
TAEMEMP Dol LL, T—TNVEBESY 4 TOFPGAR —FH (HEE4455) LTo
ANTHNE, FEORBEEEEHATELLD, 45— D77 v 4 v BROBMES
Einbd, TITE. 77 V4 YERMEFEER L, RvFv— 27 BB ~O®HE R
PO EDOFMEERT,

Multi-level Logic Minimization Based on
Minimal Support

Masahiro Fujita and Yusuke Matsunaga
FUJIITSU LABORATORIES LTD.

1015 Kamikodanaka, Nakahara_ku, Kawasaki 211, JAPAN

We present a method for multi-level logic minimization which is particularly suitable for the
minimization of look-up table type FPGAs. Almost all multi-level logic minimizers are designed to
minimize the complexity of each internal node and there is almost no consideration about reducing
numbers of fan-ins of each internal node. Since look-up tables of FPGA can realize any functions of
variables less than or equal to a predetermined number (usually 4 or 5), we should minimize the
number of fan-ins for each node instead of reducing the complexity of the node, i.e. reducing the
number of literals. We present a logic minimization method based on minimal support and show the
effectiveness of our method by applying it to benchmark circuits.

—115—

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are getting
more and more attention, because of their ease and
speed of use and their growing integration density.
However, the tools for FPGAs are not so well
developed compared with tools for popular gate arrays
and standard cells. For example, although there are
many logic synthesis tools for (mask programmable)
gate arrays and standard cells, there are only a limited
pumber for FPGAs (Francis et al 1990, Murgai et al
1990). Currently logic synthesis tools for FPGAs are
only limited to FPGA mapping, i.c. mapping
technology independent circuits to cells for FPGAs.
Moreover, they mainly use algebraic operations not
Boolean operations, although Boolean operations
have recently been successful in technology
independent circuit optimization for gate arrays and
standard cells. This is simply because FPGAs have
different architectures and needs tools whose cost
functions are very different, and the Boolean
optimization method developed so far cannot be
applied directly to these different cost functions.

There are two different architectures in FPGAs,
i.e. look-up table and multiplexer types. In this
paper, we present a Boolean minimization method for
look-up table type FPGAs. Look-up table type
FPGAs consist of function blocks which can realize
any logic functions with fixed numbers of fan-ins.
This contrasts with the cells of mask programmable
gate arrays and standard cells, because they can only
realize a limited number of different logic functions,
such as AND, AND-OR-INVERT, etc.. For the
minimization of mask programmable gate arrays and
standard cells, nambers of literals have been used for
the cost function of multi-level logic minimization.
For look-up table type FPGAs, we have to minimize
the numbers of nodes in a circuit after modifying each
node so that it has only a limited number of fan-ins.
This means we should modify circuit nodes to have
fewer fan-ins. The method presented here does this by
Boolean operations.

Our minimization algorithm works as follows.
First, we select candidate nodes which may be used
for fan-ins of the node currently being minimized.
Then we calculate the characteristic function for the
candidate nodes and the node being minimized. From
it we can compute sets of minimal supports for each
node being minimized (minimal number of fan-ins
which can realize the function of the node) based on
the Halatsis and Gaintans's method (1978) and its
extension (for the case of simultaneous minimization

of multiple nodes). From those sets we can get the
minimal supports and the corresponding irredundant
cover with those minimal supports. In this
algorithm, we can use don't care sets derived from
circuit structure by appropriately setting the
characteristic function.

Note that almost all multi-level logic
minimizers developed so far (Brayton et al 1987,

" Bostick et al 1987, Sato etal 1990) are designed to

minimize the complexity of each internal node, i.e.
reducing numbers of literals, and there is almost no
consideration about reducing the numbers of fan-ins
of each internal node. On the other hand, the method
presented here minimizes the numbers of fan-ins and
generates irredundant covers using those minimal
supports. This gives us a possibility to apply the
method as an alternative or as an aid to other multi-
level logic minimizers even for popular gale arrays

- and standard cells.

This paper is organized as follows. First, we
present Halatsis and Gaitanis's method by which we
can compute minimal supports for positive
irredundant sum-of-products forms for a node. Then,
we apply it to node minimization for reducing
numbers of fan-ins. Experimental results are also
shown. We have implemented our algorithm and we
have applied it to the iook-up table type FPGA
synthesis of ISCAS sequential benchmark circuits.
Although our current implementation utilizes only
very limited don't care sets, the results are very
encouraging both in terms of quality and processing

speed.

2. FUNCTIONAL REDUCTION AND
MINIMAL SUPPORT

In this section, we show Halatsis and Gaintans's
algorithm (1978) to get the sets of minimal supports
of a given logic function. The correctness of the
algorithm can be found in (Halatsis and Gaintans
1978). Similar discussions can be found in (Brown
1978). The example shown here is cited from
(Halatsis and Gaintans 1978). We use "+" to represent
OR and ™" to represent logical AND (but often
omitted). Complement or negation of a formula is
expressed with " ' " | i.e. p' represents the
complement of p.

Suppose we are minimizing a node, u, and its
candidate supports arc a3,29, .., a; (candidates which
may be fan-ins of u). Halatsis and Gaintans's method
or the method presented in (Brown 1978) has two

—116—

parts: the first part computes the set of minimal
supports for u and the second part computes the
irredundant sum-of-products forms. The following
algorithm computes the set of minimal supports.

Algorithm 1: computing the set of
minimal supports

(1) Express the relationship between the node to be
minimized and its candidate supports as a
characteristic function, f(al,az,...,aru) =1.

(2) Compute the co-factors of f with respect to u and
u, ie. f, andf,,, and from them, compute the
ON-set, Rl, and OFF-set, RO, of u in sum-of-
products form as follows:

Ry = €)' = PPy +DPPy+...PPy

Ry = £(€, £, =993+ +qa,
where pp; andqq; are product terms. Note that
£, £+ corresponds to the don't care set.

(3) For each pair (pp;, qq j)’ compute a complement
frec alterm (sum-of-literals) 8 i

ssyj = L (literals that appear opposed in pp;
andqq;)
forl<i<mandl1<j<n.
(4) Define a Boolean function F,; by the product-of-

sums formula:
m n
Fu =11 I1 SSij
i=1j=1
(5) Multiply out, to form a sum-of-products formula
for F;, and delete absorbed terms. With each

term of the resulting formula, associate a set of
arguments having the same letters; the resulting
sets are the minimal supports for u among

al,aQ,...,ar

The second algorithm computes the positive
irredundant sum-of-products form for u using the
minimal supports which are obtained by the
Algorithm 1.

Algorithm 2: computing the positive
irredundant normal forms for u

(1) Same as (1) of Algorithm 1.
(2) Compute the cofactors of f with respect to u and
u', L.e. fu and fu” and from then, compute the

ON-set, Rl,and OFF-sct, RO, of u in sum-of-
products from as follows:
f, €, fy0' = PP1+DPPy+... PPy,
Ry = £, fy) =99, +9dp++qdy
where pp; and qg; are product terms.

Extract only uncomplemented literals for each
product term of Ry and call them Fy. Also

extract only complemented literals for each
product term of Ry and call them F,.

F| T py+Po+-..Ppys

Fo = qpgpt..+qy
where p; has only uncomplemented literals of
pp; and g; has only complemented literals of qq;.
(3) For each pair (pi, qj), compute a complement free
alterm (sum-of-literals} s; i
S = Z (literals that appear opposed in p; and qj)

forl<i<mandl1<j<n.
(4) For each p;; compuie Hpi zdeu as follows:

m
I{pl =TII Sl_] = [1+[2+...+[ki
=1
R, = 11
Hpi = gttt g
where z! are distinct literals corespondent to each
distinct tij term.

@y¥zyt..tzy)

(5) Multiply out, to form a sum-of-products formula
for R, and delete absorbed terms. Each term of

the resulting formula corresponds to a positive
irredundant normal form for u. So, select one
from them which has the minimum number of

supports.

Note that the above algorithm computes the positive
irredundant normal forms for u with minimal
suppeorts, although it can be easily extended to handle
the (not necessarily positive) irredundant sum-of-
products forms.

Example

Now let us show an example of the Algorithm 2 (the
Algorithms 1 and 2 are very similar, so we here only
show an example of the Algorithm 2 which is more
complex). Supposc the following one-set, Ry, and

off-set, Ry, are computed in step (2) above.

—117-

)
o
(o]
(e
n
Q

“ o aa000O0
4200~ 0O0
—~ 020 =020
41401000
—~ 00 20—t —0O
OO 5200

(a) Truth table for one-bit full adder

a—“‘\ X
b—___/

D o] y
c—

a— \ %

]

[e =AY

UT@*L

(b) A direct gate-level implementation of (a)

Figure 1 One bit full adder

—118—

Ry = a'b'c'def+a'b'cde'f+abc'def
RO = a'bc'de'f+abed'e'f+abed'ef+ab'c'de'f

“tab'cd'ef+ab'cdef
Then we get F; and Fy as follows.
Fy =def+cdf+abe

Fp =acef+ade+adf+b'ce'f+bde+bdf
Therefore,

py =def, py =cdf, p3 = abe,

q =acef, qy =ade, q3 =a'df,

q =b’cef, q5 =b'de, gg =b'df

The resulting st (step (3)) are as follows:

syp =e+f, Sy =ctf, S31 =ate,
syp=d+e, 594 =4, 39 = ate,
s13 =4+, Sp3 =d+f, $33 =3,
S14 = etf, So4 =C+f, 34 = b+e,
515 = d+C, 825 = d, 535 = b+e,
516 = d+f, 826 =d+f, 836 =b

Carrying out step (4), and deleting repeated factors,
we obtain:

le = (e+f)(d+e)(d+f) = de+df+ef = Zy+Zy+2g,

Hp2 = (c+Dd(d+) = cd+df=z4+7,,

Hp3 = (at+e)a(b+e)b=ab = zs,

R, =(z 12023 X2 +2))2

= 22Z5+Z 1 Z4ZS+Z3Z4ZS

So the positive irredundant sum-of-products forms for
u are:

N; = df+ab (from 292s),

N, = de+cd+ab (from Z1Z4Z5),

N3 = ef+cd+ab (from z3z425),

From the above, we can say the minimal support for
uisa, b, d, and f which correspond to N -

Note that we simultaneously generate irredundant
cover for each minimal support as shown above. So,
we can use the numbers of product terms which are
required for each minimal support as part of the cost
function. Also note that although the above
algorithm is for single node minimization, we can
use it 10 minimize multiple nodes at the same time
in the following way. First sets of minimal supports
for cach node to bc minimized are computed
separately by the above algorithm. Then those scts
are gathered and form a minimum covering table.
Solving that table corresponds to the simultaneous
minimization of multiple nodes.

Also, since we formulate the problem by first

expressing it as a characteristic function, we can
easily incorporate don't cares (satisfiability don't cares
and observability don't cares).

Another Example

Now we show another example which includes the
generation of characteristic function from circuit
descriptions. The example is a one-bit full adder. The
truth table for the adder is shown in Figure 1 (a),
where a and b are inputs, ¢ is the carry input, o is
overflow output (carry output), and s is the
summation. Also, in this truth table, the logic
function for another output d, which is the exclusive-
or of the two inputs a and b is also shown. A direct
implementation of the truth table is shown in Figure
1 (b). Here we compute the minimal support set for
the output s, assuming that all other variables
(including intermediate variables) shown in Figure 1
(b) are candidates for support.
In Boolean equations, the relations shown in

Figure 1 (b) are expressed as:

0 = X+y+z,

X = ab,

y=b,

z=ac,

s = a'b'c'+a’bc'+ab'c+abe,

d=ab'+ad
These equations can be merged into one equation as
the characteristic function, f(a,b,c.d,x,y,2,5,0):

f(a,b,c.d,x,y,2,5,0) =

(o=x+y+zXx=ab Xy=bc)(z=ac)s=a’b'c'+a’bc'+ab’
c'+abc)(d=ab'+a’b)
Expanding the right hand side of the above formula,
we can get the characteristic function in sum-of-
products form, and we can get the set of minimal
supports.

3. MINIMAL SUPPORT PROCEDURE

The algorithms presented in the previous section are
combined into one procedure as the minimal support
procedure shown in Figure 2. We first calculate the
set of supports which consists of minimum numbers
of candidates variables (line 5 ~ line 17 in Figure 2),
and then among supports in the set, we compute the
positive irredundant normal forms (line 18 ~ line 33
in Figure 2).

‘We can make scveral remarks about the minimal

—119—

1: minimal_ support ()
2: {
3 sort nodes in Boolean network according to their level from outputs
4 foreach node u in Boolean network {
5: R® = ON-set of u
6 Rl = OFF-set of u
7 Ml = ¢
8 foreach cube p € RO {
9: foreach cube q € r1 {
10: c = make_a_new_row (p,q)
11: /* e1 =1 (if pi Nqi == ¢) */
12: /* e1 = 0 (otherwise) */
13: ‘ M1 =ML U {(c}
14: }
15: }
16: calculate cost for each column of M1
17: J1 = minucov(M1l)
18: (RR®, RR!) = eliminate literals included in J1 from R® and RY
19: Z = 4 /* pool of variable zi */
20: M2 = ¢ /* matrix represented by {zi} */
21: foreach cube p € RRO {
22: foreach cube @ € RRl {
23: x = variable such that p € xAND g C x'
24: y = variable such that p C y' BND q C ¥
n m
He = 2xi + 2}{3'
25: 1=1 3=1
26: }
IR'|

g = [lux
27: k=1
28: Z =12 U (terms in H represented sum~-of-products }
29: substitute terms of H by {zi}
30: M2 = M2 U {a cube representing H by {zi} }
31: }
32: J2 = minucov{M2)
33: new expression of u = J2 represented by original variables
34: }

35: }/*end*/

Figure 2. The minimal support procedure

—120—

support procedure.

¢ We use the minimum unate cover procedure (that
is, only uncomplemented variables appear) to
multiply out a product-of-sums formula into a
sum-of-products formula with no duplication.

» The minimum unate cover procedure (minucov in
line 17 and 32 of Figure 2) is the same as in
(Rudel 1989). We implemented both exact and
heuristic procedures in (Rudel 1989). Mostly we
use the heuristic procedure because of CPU time
(the heuristic procedure gives very good results).

. When execcuting the minimum unate cover
procedure, we can attach a cost to cach column.
The minimum unate cover procedure reduces the
total cost. If we attach the same cost to all
columns, we are reducing the number of
supports. On the other hand, one may want to
climinate nodes which have not yet been used as
much as possible. In the case, we attach large
costs to nodes which have not yet been used and
attach small costs to nodes which have already
been used. Using this cost function, we can
avoid using nodes which have not yet been used.

. Although the procedure shown in Figure 2
minimizes each node one by one, we can modify
it to minimize multiple nodes at the same time
by changing the handling of M 1 in Figure 2 as
follows. M1 is made for all nodes to be
minimized at the same time. The minucov
procedure is applied to that M 1.

4. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have implemented the method presented above. It
is a preliminary implementation, and we use only
limited satisfiability don't care sets just like MIS2.1
filters (Saldanha et al 1989). Only one node is
minimized at one time (no implementation of
concurrent minimization of multiple nodes, although
it is not difficult). We did experiments using ISCAS
sequential benchmark circuits, which are rather large
circuits as logic synthesis benchmark circuits. The
results are shown in Table 1. Table 1 shows the
numbers of cells (nodes) after mapped to five-input
look-up table type FPGAs. We used MIS's
technology mapper for look-up table type FPGAs,
i.e. the following commands.

x1_split -n 5
xl partition -n 5
x1l cover

We call these as "xl_map". The second column in
Table 1 shows the results when only "xI_map" is
applied to the benchmark data.

The third column shows the results when

(1) "xl_map" is applied,

(2) the minimal support procedure presented in the
previous section is applied,

(3) "xl_map" is applied again.

From the table, we can see an average 7%
reduction of the numbers of cells from the synthesis
results by the MIS commands (1), (2) and (3) above.
For some circuits, we can get more than 10%
reduction, which indicates that the minimal support
procedure works very effectively even on the circuits
generated by popular FPGA synthesis tools.

We are now implementing the procedures for the
concurrent minimization of multiple nodes and to
utilize more don't care sets.

5. CONCLUSIONS

We have presented a method for multi-level logic
minimization which is particularly suitable for the
minimization of look-up table type FPGAs. Our
method guarantees that we can get the minimal
support when minimizing a node. We have also
presented a preliminary implementation and its
synthesis results of ISCAS sequential benchmark
circuits, and have shown the effectiveness of our
method.

REFERENCES

Bostick, D., Hachtel, G.D., Jacoby, R.M., Lightner,
M.R., Moceyunas, P., Morrison, C.R. and
Ravenscrofit, D., "The boulder optimal logic
design system," Proc. ICCAD ‘87, November
1987.

Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli,
AL. and Wang, AR, "MIS: A Multiple-Level
Logic Optimization,” [EEE Trans. CAD,
pp-1062-1081, Nov. 1987.

Brown, F.M., "Boolean Reasoning,”
Academic Publishers, 1990.

Francis, R.J., Rose, J. and Chung, K., "Chorle:A
Technology Mapping Program for Lookup Table-

Kluwer

—121—

Based Field Programmable Gate Arrays,"”
IEEE/ACM 27th Design Automation
Conference, June 1990.

Fujita, M., Matsunaga, K. and Kakuda, T., "On
Variable Ordering of Binary Decision Diagrams
for the Application of Multi-Level Logic
Synthesis," Proc. 2nd EDAC, Feb. 1990.

Halatsis, C. and Gaitanis, N., "Irredundant Normal
Forms and Minimal Dependence Sets of a
Boolean Function,” IEEE Trans. Computer, C-
27(11):1064-1068, November 1978.

Murgai, R., Nishizaki, Y., Shenoy, N., Brayton,
R.X. and Sangiovanni-Vincentelli, A.L., "Logic
Synthesis for Programmable Gate Arrays,"

Saldanha, A., Wang, A.R., Brayton, R.K. and
Sangiovanni-Vincentelli, A.L., "Multi-Level
Logic Simplification using Don't Cares and
Filters," Proc. 25th DAC, June 1989.

Rudell, R.L., "Logic Synthesis for VLSI Design,"
Technical Report UCB/ERL M89/49, Electronics
Research Laboratory, College of Engineering,
University of California, Berkeley, 1989.

Sato, H., Yasue, Y., Matsunaga, Y. and Fujita, M.,
"Boolean resubstitution with permissible
functions and Binary Decision Diagrams,” Proc.
27th ACMIIEEE Design Automation
Conference, June 1990.

IEEEIACM 27th Design Automation
Conference, June 1990.
Circuit x]_map minsup+xl_map{ CPU time for minsup {sec)
s1196 169 166 21.50
$1238 182 175 38.42
s1423 140 137 10.52
s1488 220 212 55.08
$1494 226 212 63.00
s510 90 87 8.37
$526 68 58 2.53
$526n 68 57 247
s641 73 71 2.15
5713 74 71 2.15
$820 126 112 9.47
5832 126 113 6.78
$838 95 95 4.40
s953 156 154 12.40
$5378 491 464 132.88
$9234 637 561 167.90
Total 2941 2745 -
Ratio 1.00 0.93 -

Tablel. Minimization results of ISCAS89 benchmark circuits (Machine: Sparc2)

—122—

