& i B B ft 60—8
(1991.12. 12)

VLSI Circuit Synthesis Based on Algorithmic

Description with the Constraints of Time and Area

Xing-jian XU Mitsuru ISHIZUKA
Tokyo University

A high-level design synthesis of hardware based on algorithmic design
specification has become an important issue in recent years. We have not
found some efficient algorithms which are able to design a circuit which
satisfies the constraints of time and area simultaneously. This paper presents a
fast methodology which is able to allocate data-path under the constraints of
processing time and the area of VLSI circuit. The core of the methodology is
an efficient redesign starting from an initial configuration with the smallest

circuit area.

TIv TV X LRRICE D BFE — EIESE T TOVSLIERERET

= e BT W
REREE

ThT) X hGlaRc T B LAV o BIEEER O BBIARIE—2
DEELZEHFERIC2oTB Y £, 8T EBIIERN & TR0 HIHE
HEERICH 82T REZ S 2V OBEIC, BTV T) Xai
FRLBCTT, BT, 7T X AR ET C BER & RS
¥ T CVSLIEE#H R 2 ERIC oW TH LWEE 2R+ 2,

1. INTRODUCTION

The goal of the data path synthesis step in a
behavioral synthesis system is to produce a
register-transfer (RT) level hardware design from
an architectural description of a computer or to
produce an RT design which implements a given
behavioral specification in a high-level language
{1]-[5]. The main task in such a synthesis
system is the scheduling of operations to control
steps, and the allocation of hardware to
implement operations, storage and intercon-
nections. A tutorial by Machael C .McParlend
etc. [6] gives a good survey of such synthesis
systems.

Given a fixed amount of hardware
resources, the optimizations (or maximization)
of the processing speed can be performed using
the list scheduling techniques [7]. In the case of
given a fixed amount of control steps, the force-
directed scheduling is a very efficient approach to
optimize hardware resources [8]. S. Devadas
and A. R. Newton [9] present simulated-
annealing-based algorithms which provide
excellent solutions to the formulation of a two-
dimensional placement problem of micro-
instructions in space and time under a variety of
user-specifiable constraints on hardware resour-
ces and costs. ‘

In the.case of designing a VLSI circuit
which should satisfy the constraints of
processing time and circuit area, there are many
circuits which are different in structure at the
Register-Transfer (RT) level for the same
behavioral specification. Searching all the
possible data-path for the best one is not difficult
in theory. The problem, however, is that the
searching algorithm should have a reasonable
and acceptable processing speed to be executed,
since there are a huge amount of possible
candidate data-paths satisfying the same
behavioral specification in a VLSI circuit design.
The major purpose of this paper is to present a
general redesigning methodology, which is able
to automatically redesign the data-path of a circuit
based mostly on data-path allocation according to
the constraints of time and area. This
methodology can be integrated into specialized or
general-purpose high-level synthesis systems
and it is able to optimize the circuit area and
processing speed simultaneously under the
constraints of time and area. In chapter 2, some
of the basic concepts are introduced and chapter
3 describes the scheduling and the way to find all
the redesigning methods. In chapter 4, the
principle of our methodology is explained in

details. An example of Kalman filter is given in
chapter 5 and in the last chapter, a simple
conclusion is given.

2. BASIC CONCEPTS

Our algorithmic behavioral specification is
written in C. After the behavioral specification is
compiled, the internal data representations of data
flow graph and control flow graph are created.
Essentially, the internal data representations
consist of: (1) a control flow graph (O, P),
where the nodes O represent a set of operations
and the edges P represent the precedence
relation; and (2) a data flow graph (O UV, D),
where O and V are the sets of operations and
values respectively and the edges D represent
the data dependances [10]. In the initial data-
path design of our methodology, an initial data-
path which implements the behavior is designed
to obtain the most serialized initial circuit with as
few hardware resources as possible. A circuit is
called the most serialized circuit, if the
circuit has the lowest concurrence with the
smallest area of the circuit but the longest
processing time. Conversely, a circuit is called
the most parallel circuit, if the circuit has the
highest concurrence with the highest processing
speed but the largest area. The reasons we
generate the most serialized circuit as initial result
are: (1) since only the redesigning methods
which can speed up the circuit are interested in, it
makes the executoin of the algorithm more
efficient; (2) since the number of candidate
circuits increases, there are more chances to find
the best one. The methodology to be introduced
in this paper mainly consists of three sub-tasks:

« Initial data-path allocation. The most serialized
initial data-path is created by allocating as few
hardware resources as possible;

* Scheduling. All operations are assigned to
corresponding control steps. All the possible
redesigning methods are found according to the
relationship between operations; and then
evaluations of these methods are calculated;

+ Redesigning the initial data-path to obtain the
best result according to the constraints of time
and area.

3. SCHEDULING

In essence, the scheduler decides whether
potentially parallel operations are scheduled in
the same control step thus requiring more
hardware, or if they are serialized, scheduling
them in different control steps, thus allowing
them to share the same hardware. The decisions

which schedule operations in the same control
step make the processing speed of the circuit
faster and the area of the circuit larger. Each
decision has an evaluation of the difference of the
number of control steps becomes faster divided
by the difference of area becomes larger. The
best combination of some of these decisions has
to be made to obtain the best data-path according
to the constraints of time and area. In this
section, an example in Fig. 1 is used to explain
our approach.

to controller

i=0;

do {

sum[i] = s{i]+b[i]+<c[i]+d[i]};

i+)

} while (i<10); 1

(a) behavioral specification (b) data-path
Fig. 1 Example

In the initial data-path, a memory is created
for all the array variables. An adder is allocated
to do the addition operations and a comparator is
allocated to do the comparison of i<10, and some
necessary registers are allocated to hold the
values which have a life time more than one
control step. To pass the values between the
adder, comparator, memory and registers, a
common bus and interconnections are also
allocated as the shown in Fig. 1(b). Based on
the data-path, an initial schedule table shown in
Fig. 2 is created by 'As Soon As Possible'
strategy.

In Fig. 2, there are three hatched rectangles
with rounded corners. As described before, the
initial data-path is designed to catch the smallest
area of the circuit. Therefore, there is no more
than one functional units for the operations with
the same type. Although the two ADD
operations in the hatched rectangle are data
independent, they can not be executed in parallel
since there is one ADDER only. It takes two
control steps to execute the two ADD operations.
Such operations is called resource dependent.
If another new ADDER is allocated, these two
ADD operations can be executed in parallel
within one control step. As the same as ADD
operations, the four MEMORY-READ
operations are also resource dependent because
they share a common data BUS to transfer data

with other functional units and registers. If this
memory is divided into two smaller memories
with their own data BUSes. So that memories
a[], b{] share a common data BUS and b{], d[}
share another BUS, then these four MEMORY-
READ operations can be executed within two
control steps instead of four. If let memories a[],
b{], ¢[] and d[] have their own data BUSes, it
will take only one control step to finish these
four MEMORY-READ operations. The ADD
operation of a[i}+bfi] has to wait for the results
of MEMORY-READ operations, i.e., afi], b{i],
until these two MEMORY-READ operations are
finished. These three operations are called data
dependent and these operations can not be
processed in parallel. The operation of
increasing variable i by 1 has to be executed at
least one control step after the operation of
memory writing of sum(i] because the i is used
as the address of MEMORY-WRITE. Such kind
of data dependent is named data reference
dependent. There still is a methodology to
save the control steps taken by the operations
which are data reference dependent. In Fig. 2,
the value of variable i is referenced at control
step 9 by MEMORY-WRITE operation as the
address of the memory. It seems that the
increment operation of variable i has to follow
the MEMORY-WRITE operation. However the
specification can be rewritten into:

i=0;
do {

i=0;

1i++;
_sun.l‘[i] = a[i] + b[i] + c[i] + d[i];
i=1i;

} while (ii<10);

Now, the variable of ii is not referenced and
the operation of increasing ii by one and
COMPARE operation can be executed in parallel
with the MEMORY-READ and ADD operations.
The variable ii is almost the same as variable {
but is increased several control steps in advance,
so that variable ii is called shadow variable of
i. In the circuit, there is a register i to save the
value of variable i, then the register # to save the
value of variable ii called shadow register of
register i. As a summary of scheduling, all the
operations can be divided into as:

resource independent
data indcpcndcm{
resource dependent
Operations:
data reference independent
data dependent
data reference dependent

Only the operations which are resource
dependent or data reference dependent can be
scheduled into the same control step, if some
new hardware resources are allocated. During
the scheduling, each time the operations of
resource dependent or data reference dependent
are found, the information of redesigning
methods can be obtained which will be used to
redesign the circuit to satisfy the constraints of
time and area in redesign procedure.

stepl

step2

step3

stepll

Fig. 2 Schedule table of the example

For the example of Fig. 1 and 2, there are
following choices of allocating some new
hardware resources to speed up the circuit:

mj: divide the memory into two smaller memo-
ries with two separated common BUSes;

my: divide two memories into four smaller
memories with their own data BUSes;

ma3: allocate a new ADDER;

my: allocate a shadow register i for i;

mj: allocate another shadow registers iii for ii;

These choices are called redesigning
methods in this paper. If there is no limits on
the total amount of the circuit area, the
combination of these five redesigning methods
will be selected to redesign the circuit to obtain
the highest processing speed with the highest
processing concurrence. In the case of no
enough space to add all the necessary hardware
resources, there is a problem of making the best
combination of these redesigning methods

according to the constraints of time and area,
which will be introduced in details in chapter 4.

4. REDESIGN

4.1 Time-Area Plane

A Time-Area plane is used in our
discussion, which is a two dimensional plane
with two axes, i.e. a time axis in horizontal
direction and an area axis in vertical direction as
shown in Fig. 3.

Area
y P2(t-d¢,a+d p)

a+da

2 tda
a P1(t,a)

d¢

" ot
t-dt t Time

Fig. 3 Time-Area plane

Every circuit has its processing time and
area size. It can be represented by a coordinate
on Area-Time plane that is a point (f,a). Here, ¢
stands for the processing time while a stands for
the area size of the circuit chip. Only the points
in the first quadrant have physical meanings
because the processing time and area of a circuit
would not be negative values. As an example,
consider the circuit P1 in Fig. 3. If we want to
make the processing speed of P] faster, some
extra components would be added to make some
operations of circuit P] be processed in parallel
with other operations. Figure 3 illustrates a
situation where a redesigning method m
reconstructes a circuit from P1 to P to make the
processing time shorter, d¢ say, and the area of
circuit P1 becomes larger, da say, because extra
components are added to circuit P1. The most
characteristical parameter is so called Time-
Area ratio of (di/da), which represents the
tendency of line P1P2, since the angle between
line P1P2 and the Time axis can be calculated by
Cotangent -1 (d¢/dp). The physical meaning of
Time-Area ratio indicates that how much time the
circuit can become faster if the area becomes one
unit larger. In general, the higher Time-Area
ratio is, the better the redesigning method is.

The following one mapping function and
two evaluation functions are used to describe the
redesigning methods:

a. redesigning mapping function
R(method,circuit);

b. time evaluation function T(method);

c. area evaluation function A(method).

Function R(method,circuit) converts a
circuit indicated by circuit by a redesigning
method indicated by method to create a new
circuit which is returned as a result of the
function R. Function T(method) is a time
difference becoming faster by redesigning the
circuit using method indicated by mefhod.
Function A(method) is the same as
T(method), but returns a difference in area. In
Fig. 3, these three functions can be written as:
P2 =R(m,P1); dt=T(m); da=A(m);
Since the data-path is going to be redesigned
after the scheduling, the total amount of the
control steps took by the data-path to do a
complete process can be calculated. If an
operation takes Nop control steps to be executed,
and this operation is in a loop block with the loop
number Nlp’ then totally, it takes Nop*NIP
control steps to execute this operation. If this
operation can be processed in parallel with other
operations instead of serially by a redesigning
method m, then the data-path can become
Nop*Nlp faster. Thatis,

T(m) =Nop*Nip;

The area function A(m) can be calculated by
the area of the new hardware resources to be
added and the interconnections to be modified.
4.2 Candidate Circuit Region
To consider the distribution of all circuits

satisfying the same behavioral specification, we
suppose that:

a. Pg is the most serialized circuit;

b. The number of all the redesigning methods
from Py is n consisting of my, ma, ...mg ;

C. mj, my, ... My is sorted in a order form the
largest Time- Area ratio to the smallest one.

d. These n redesigning methods are independent
to each others.

Two redesigning methods are called
independent if

T(mi+mg) =T(my) + T(m2)
A(mi+mg) =A(my) + A(m2y)

)]
@

are satisfied.

P m1 py

» Time

Fig. 4 Candidate circuit region

The situation without agsumption d will be
discussed in section 4.4. There are n different
circuits redesigned from Pg by one r-method of
m], m2, ... mp as illustrated in Fig.4, ie.
R(m 1, PO)' R(m21 PO) 3 esr R(mﬂ, PO)-
Since m] has the largest T-A Ratio, line
PoR(m1, Pg) is down-left among these n
circuits. That is, the circuit R(m1, Pg) has the
best evaluation of time and area. Let P1 =
R(m1, Pg), then there are n-1 methods of m2,
m3, ... mp left to redesign the circuit from Pj.
Since method m? has the largest T(m)/A(m)
among m2,m3, ... mp, the method m2 is used to
redesign circuit Pj to P2 namely P2 = R(m?2,
P1). If continuing the redesign in the same way,
that is, redesigning the circuit from P by n
steps, the r-method with the largest T(m)/A(m)
is used at each step to redesign the circuit. Asa
result, a sequence of n circuits of Py, P2, ... Py
can be created and it corresponds to the down-
left boundary Cj of candidate circuit region
shownin Fig. 5. If we redesign the circuit from
circuit PQ in the same way but the r-method with
the smallest T(m)/A(m) is selected at each step,
we can find up-right boundary C2. From Fig.4
and above discussion, it is clear that all the
circuits redesigned from circuit PQ resides in the
hatched region bounded by boundaries C1 and
Cp in Fig.4. If there are n redesign methods, the
number of all possible circuits including Pg and
ones redesigned from circuit PQ by all the
combinations of m1, m?2, ... mp, is 2. Instead
of these 20 circuits, only the n+1 circuits on
down-left boundary Cj are searched for the best
result. Consequently, the computational
complexity is improved from O(2M) to O(n).

Figure 5 illustrates the candidate circuit
region and the boundaries of the example
introduced in chapter 3:

1800 PS
1600
1400
1200

1000

Pl m1 PO

800

40 60 80 100 120
Fig. 5 Example of a candidate circuit region

4.3 Constraints and Result

Beside behavioral specification, a constraint
specification is also needed as an input of the
system in the form of: 1) Time < Cime; 2) Area
< Car@a; and 3) TAbalance = Cpzlance (0<
Cbalance < 1). Here, Ctime, Carea and
Cbalance are three constants. The balance
between time and area is a trade-off problem.
These two sides could not be achieved together.
Equ. 3) indicates which of these two sides
should be considered first and how much the
balance is between time and area.

Area

a TAbalance = 0

TAbalance ~ 1

© {Ctines Carea)

Time

Fig. 6 The constraints and result

The principle of system depending on
TAbalance is illustrated clearly in Fig. 6. On the
Time-Area plane, curve a-b-c-d described as
down-left boundary in chapter 3 stands for the
circuits which satisfy a behavioral specification,
while the hatched region stands for the circuits
which satisfy the time and area constraints. The
curve b-c which is the intersection of curve a-b-
c-d and the hatched region, satisfies both the
behavioral specification and time and area
constraints. The point Po(Ctime, Carea)
indicates the given time and area constraints and
is called constraints point. Straight line L
goes through the constraints point Pc(Ctime,

(1-TAbalance)*Cgrea
TAba]anCC*Cﬁme
indicates a balance relationship between time and
area. It is called balance line and can be

represented by,

Carea) with a tendency of

_ (1-TAbalance)*Cyrey . 1-TAbalance
Y = "TAbalance*Cgme - TAbalance

*Carea + Carea 3)

The intersection point R of the balance line and
the curve b-c becomes a result of the design and
is output to the designer.

4.4 ResultRegion Without Assumptions

The assumption ¢ guarantees that a circuit
redesigned by i redesigning methods from circuit
Py is determined only by i redesigning methods
but the sequence of the redesigning methods. It
can be proved easily by the calculations of the

. coordinate of the circuit redesigned by a

combination of i redesigning methods from P (
1<i<n)as,
i i
Time = Time of Pg - T(ka)=Time of Py - ET(mk); [©)]
k=1 k=1

i i

Area=AreacfPg-A(2 mg)=AraofPp- Y Almg); ()
k=1 k=1

i
> mg is any combinations of i
k=1
redesigning methods from mj, my, ... mp and
1<i<n. From eqs. (4) and (5), it is clear that
i i
Y A(my) are values and
k=1
independent on the sequence of these 1
redesigning methods. Whatever the sequences
of these i1 redesigning methods are, the
coordinates of the resultant circuits are the same
point on the Time-Area plane which indicates the

Here,

1
Y T(myg) and
k=1

same circuit.
C-step T 112 1 | k
Operation LRl 525 5% I 5 5 . "'
Operation m: Mz ik Mn

Operatien|
1

-
Ity
oad

(a) Independet operations

t te

bperationjes.

operation

(b) Dependet operations
Fig. 7 Physical interpretation of schedule table

The assumption of redesigning methods
independent to each other can be represented in
physical interpretation by Fig. 7(a). In schedule
table, any two places where redesigning methods
are found are not overlapped at all. Thus, when
a redesigning method is used to reconstruct the
circuit, it would not affect the calculations of the
functions of time and area of any redesigning
methods else because these' operations are
executed at different control steps. Figure 7(b)
shows the situation that two redesign methods
are dependent to each other, that is, they are
overlapped in schedule table. These two cases
can be described, for example, on Time-Area
plane in Fig. 8.

There are a circuit Py(t,a), two redesigning
methods, mj and mg, and here

T(mp)=t;; A(mp)=ay;

Tmg)=1t3; A(m2)=a.

Circuit Py, and P are reconstructed from circuit
P, by redesigning methods mj; and my. The
coordinates on Time-Area plane of Py and P are,

Pp: (+-T(my), a+A(my)) = (t-t1, a+ay);

Pe: (+T(myp), a+A(mp)) = (t-tz, a+az);

If these two redesigning methods are
independent, the circuit redesigned by my from
Py is:

(t-t1-T(mg), a+aj+A(myz)) = (t-t)-tg, a+aj+ay);
and the circuit redesigned by mj from P is:
(t-t2-T(my), a+az+A(my)) = (t-t-t1, a+ap+aj).

They have the same coordinate values so
that they are the same point on Time-Area plane,

which indicates the same circuit.
Area

A

Pa(t,a)

B Time

Fig. 8 Dependant operations on Time-Area plane

In the case of two redesigning methods are
dependent to each other, the result will still be Pb
or Pc, since the operations in control stepl and
step2 can not be processed in parallel within only
one control step, if only mj or my is used to
redesign the circuit. But if mj and m3 are used
together to redesign the circuit, two control
steps, where redesigning methods mj and m» are
overlapped, will become one control step. Let te

be the control steps becomming faster by merge
these two control steps into one control step.
Then we have T(mi+m3) =t + 13 + t, instead
of T(m1+m3) = T(my) + T(m2) =t; + t3. The
redesigned circuit moves from Pg4 to P'q by an
extra displacement te in time axis only.

As a result of overlapped redesigning
methods, some circuits are out of the candidate
circuit region illustrated in Fig. 5. To guarantee
that curve C1 is the down-left boundary, some
refinements should be made as follows:

1. During the redesigning methods are
found, for example in the case like Fig. 7(b) in
schedule table, a combined redesigning
method is found which consists of several
primitive redesigning methods;

2. After all primitive redesigning methods
are found, sort tall the methods including
combined and primitive redesigning methods
according to the time-area ratio from large to
small;

3. Each time a combined method is selected
fo redesign the circuit, remove all the primitive
redesigning methods which is involved in that
combined method.

4.5 Redesign Algorithm

We are not able to determine result R of our
design in Fig. 6 at the beginning of design, since
we do not know curve a-b-c-d until the design is
finished. But we know the straight line L by
equ. (3) and the curve a-b-c-d can be created
from initial circuit Py by redesigned initial circuit
Pg step by step. In this section, we present the
convergency of our redesigning methodology,
that is, the problem of whether the algorithm can
be finished.

In Fig. 6, while we keep redesigning the
circuit, the current circuit will move from Py to
point R and then pass by point R. The distance
from the current circuit to straight line can be
calculated since we know the equation of straight
L in the form of equ. (3) and the coordinate of
current circuit, the processing time and area of
the circuit. During the process of redesigning,
this distance varies from large value to a
minimum one and then starts to become larger.
The circuit with a minimum distance to straight
line L means that the circuit is nearest to the goal
of the design and it is what we want. Then the
redesign algorithm can be written as follows:

Redesign Algorithm
stepl: current circuit = initial circuit Pg;

current distance = the distance from current circuit
to straight line L;
next circuit = R(method1, current circuit);
next distance = the distance from next circuit to
line L;
if method) is a combined redesigning method,
remove all primitive redesigning methods of
methody;
i=2;
step2: while (next distance < current distance) do step3;
step3: current circuit = next circuit;
current distance = next distance;
next circuit = R(methodj , current circuit);
if method; is a combined redesigning method,
remove all primitive redesigning methods of it;
next distance = the distance from next circuit to
line L;
i=i+1;
step4: output the currant circuit as result;
stepS: end.

5. EXAMPLE

<l Daia Bus -

* ™ ‘:w@n
Fi4vim .

(a) Initial data-path of kalman filter

Area Time | T/A(100%)
PO} 6700 1666
mi 140 120 85.7
m2 460 300 65.2
m3 140 32 22.8

(b) Evaluations of redesigning methods
Fig. 9 Kalman filter

The behavioral specification written in C of
Kalman filter is illustrated as following, which is

written in PASCAL in [1],
Kalman()
{
1<3>; Jj<3>; vi<lS>; tempi<15>;

Anew[255]<15>; k[255]<15>; g[127]<15>;
x{15]<15>; y[12]<15>; v[3]<15>;

j=15;
do
x[j]1=0;
i=i-L
}while (j>=4);
i=15;
do {
i=15
tempi = 0;
do {
tempi = tempi + Anew[¥@;1*x[j];
if(j<=12)
tempi = tempi + k[i@jl*y[jl;
i=i-L
} while (j>=4);
x[i] = x{i} + 255*tempi;
i=i-1;
} while (i>=4);
i=7;
do {
vi=10;
j=15;
do {

vi = vi + gli@j*x[i};
j=j-L
} while (j>=4);
v[i] = vi*y[i];
i=i-1;
} while (i>3);

In this example, there are three redesigning
methods:)

= ml: allocate a shadow register for counter j;
« m2: divide memory into.two memories;
« m3: allocate a shadow register for counter i.

The initial data-path and the evaluations of
these three redesigning methods are shown in
Fig. 9. Figure 10 illustrates the most parallel
circuit.

6. CONCLUDING REMARKS

We have presented our efficient
methodology of a data-path synthesis based on
algorithmic description under the constraints of
processing time and area of the circuit. It allows
simultaneous data-path allocation while trading
off hardware resources against execution time
according to the user-specified constraints and
the balance between time and area. As this

design system is still in developing, hopefully,
some new features will be added to our program
to create a more intelligent and powerful VLSI
circuit design system.

*:zm
&4
t 4
==
[ta Caceroller
< Dam Bus > £ Dats Bus >
| S— %

Fig. 10 The most parallel circuit of Kalman filter
REFERENCE

[1]1 D. E. Thomas, E. D. Langnese, R. A. Wal-
ker, J. Al Nestor, J. V. Rajan and R. L.
Blackburn: Algorithmic and Register-Transter
Level Synthesis: The System Architect's
V&éorkbench, Kluwer Academic Publishers,
1988.

{2] A. C. Parker, M. Mlinar and J. Pizarro:
HAMA: A program for data-path synthesis.
23th ACM/IEEE Design Automation Conference.
June 1986, pp. 482-485.

[3] P. Marwedel,: A new synthesis algorithm
for the MIMOLA software system. 23th
ACM/IEEE Design Automation Conference.
June 1986, pp. 482-485.

[4] T. J. Kowalski et al.: The VLSI design
automation assistant: From algorithms to silicon,
IEEE Design & Test, Aug 1986, pp. 33-43

[51 H. Trickey: Flamel: A High-Level
Hardware Compiler, IEEE Transactions on

Computer Aided Design, vol. CAD-6, no. 2,
March, 1987, pp. 259-269

[6] M. C. McParlend, A. C. Parker, R.
Camposano: Toturial on High-level Synthesis,
25th ACM/IEEE Design Automation Conference.
1988, pp330-337.

[7] B. M. Pangrle and D. D. Gajski: Slicer: A
state sybthesizer for intelligent silicon
compilation, in Proc. IEEE Int. Conf. Computer
Design, Oct. 1987.

[8] Pierre G. Paulin, John P. Knight: Force-
Directed Scheduling for the Behavioral Synthesis
of ASIC's, IEEE Tans. Computer-Aided Design,
vol. 8, No. 6, June 1989, pp. 661-679

[9] S. Devadas, A. R. Newton: Algorithms for
Hardware Allocation in Data-Path Synthesis,
IEEE Tans. Computer-Aided Design, vol. 8,
No. 7, July 1989, pp. 768-781

[10] R. Camposano, R. A. Bergamaschi:
Aynthesis using path-based scheduling:
Algorithms and exercises, 27th ACM/IEEE
Design Automation Conference. 1990, pp 450-
455

