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Abstract This paper presents the circular lattice (CL) filter for adaptive multi-
channel signal processing using Givens rotation units.

Recently, it has been shown that a triangular systolic array by using the QR method
based on Givens rotations and the array based on the a priors errors by the modified
Gram-Schmidt method are in a sense equivalent. Using this equivalence in reverse
for the least squares CL algorithm, an adaptive filter based on the Givens rotation
is proposed. Most salient features of this filter are that though we treat vector

signals, there are no matrix vector operations and it is highly uniform and can be
implemented by CORDIC.



1 Introduction and Summary

In this paper we present the circular lattice
(CL) filter for adaptive multichannel signal
processing using Givens rotation units.

Recently, for the recursive least squares
(RLS) problem in adaptive signal processing,
a triangular systolic array has been proposed
by using the QR method based on Givens ro-
tations. It has been also shown that this array
and the array based on the a pripori errors by
the modified Gram-Schmidt (MGS) method
are in a sense equivalent [1]. Using this equiv-
alence in reverse for the faster lattice algo-
rithm, Ling [1] proposed the Givens rotation
based lattice algorithm.

In this paper we generalize the result in [1]
to the multichannel case where we use the cir-
cular lattice (CL) structure [2]. Most salient
features of the CL structure are that though
we treat vector signals, there are no matrix
vector operations and it is highly uniform con-
sisting of two kinds of computational units.

2 Systolic Array Based on QR Method

In this section we briefly review the triangu-
lar systolic array for RLS of approximating a
desired response y(n) by a linear combination
of input signals z;(n), za(n),- -, z4(n) based
on the Givens rotation method. Denote the
n X d weighted data matrix as

X(n)=A(n)[=(1) 2(2) --=(@)]"
AM2X(n—1) (1)

and the n x 1 weighted desired response vector
as

A2y(n —1)
............ 2)

where @(n) is given by

2(n) = (z1(n) @a(n)- - za(n))” ®3)

and A(n) is an n x n “forgetting” matrix of
the form

A(n) = diag (N5, -+, A%, 1) (4)

with 0 < A < 1. Suppose that at the (n—1)th
update we have the following QRD

R(n—1

where Q(n—1)is an (n—1)x{(n—1) orthogonal
matrix and R(n—1) is a dx d upper triangular
matrix. But from (1) and (5) it follows that

(2% ) xo
M2R(n —1) (6)

Qin—-1)X(n—-1)=

0
2’ (n)

To annihilate the last low in the right hand
side of (6), a series of the Givens transforma-
tions are used . Thus we have

A/2R(n 1) R
. _(R®)
am| 0 (") @

and the new Q(n) is
Q(n) = G(n) diag(Q(n —1), 1).  (8)

Now write
R(m) w(W) \ _ o0 X(n) w(n
( 0 v(n))_Q( (X (n) y(n)) (9)

where u(n) is d X 1 and v(n) is (n — d) x 1.
The original least squares problem is to find
the minimizer of || y(n) — X(n)e ||. From (9)
and the orthogonality of Q(n), the minimizer
¢(n) is given by R(n)e(n) = u(n) and the
residual vector €(n) is given by

€(n) = y(n) — X(n)e(n). (10)

The last element of the above vector is called
the a posteriori error and is given by

é(n) = y(n) — 2" (n)e(n) (11)

This can be computed efficiently by a triangu-
lar systolic array in Fig. 1 without computing
¢(n) explicitly. The components of d x d R(n)
are stored and updated in part A of this fig-
ure . Also, the components of d X 1 u(n) are
stored and updated in the column B in the
same fashion as the off-diagonal components
of R(n) with the input y(n) from the top of
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this column and the output v(n) from the bot-
tom of this column. This v(n) is in a sense a
geometric mean of the a posteriori error e(n)
and the a priori error e(n) defined by

e(n) = y(n) — 2" (n)e(n — 1). (12)

The operation of the boundary cell (angle
computer) denoted by a circle in Fig. 2 (a) is
as follows.

d = A2+ y, c=AV2d)d
S = y(n/dlv d dlv ’71%3 = 671'17{2' (13)

The operation of the internal cell (rotor) de-
noted by a square in Fig. 2 (b) is as follows.

Tout = CTin — s/\1/2r,
P = sz + AP r oy (14)

Based on the a priori error formulation of the
MGS method, Ling [1] has shown that the
above cell operations can be changed to be
square-root-free. The operation of the bound-
ary cell in Fig. 3 (a) is as follows.

A= AA+ 672, 5= 67, /A
§'=6-6"L /A, A — A (15)

n

The operation of the internal cell in Fig. 3 (b)
is as follows.

T =T4+3ZTpu, T—T (16)

The relations between the quantities in both
realizations are VA = d, VAT = r, Vé7;, =
Yins VTin = Tin, T= ¢, §' = Yout, 6 = 7in-

3 The Circular Lattice Algorithm

Now we consider the problem of estimating
y(n) by a linear combination of 2(n), =(n —
1),--+, ®(n — p). This problem arises in, for
example, broad band beamforming. For this
multichannel FIR filtering problem the least
squares circular lattice (LSCL) algorithm has
been derived by using a geometric method [2].
Here we review the result and derive its new
form using the a priori errors.

First we define the ket vector by

|z)n = [2(1) 2(2)...2(N)])T ()
for scalar time series {z(¢)} of length N and
the bra vector by (z|y = |2)%. We also define
the inner product beween |z)y and |w)y in
this space by

N :
(zlw)y = X 2()A (i) (18)

=1
where A is the forgetting factor and 0 < X < 1.
Now we have d channel time series data
{2(1) (2)...2(N)}. Writing the ith element
of @(t) as z;(t), we define the following chan-
nel data vector for i ='1,...,d by

I:C;)N = [:l),'(l) :C;(Q) cee :L‘;(N)]T. (19)
To these vectors, an operator s~! is defined as
follows :

Il

’8_11‘1>N [0 l‘d(l) :Z:d(2) cee a:d(N - 1)]T
]S_I.T,'>N = ,J,','_l >N (Z =2,..., d)
Let Yj ;v be the subspace spanned by the vec-
tors |z;)n, ..., |zk)n (J < k) and P; n be the
orthogonal projection operator on Y,y de-
fined by
Piry = YN (Yl Vi) v (Vialw
where |Yii)n = [|zj)n ... |ze)n]. Also let
e, s b, )~ be the projection error vec-
tors of |z;)y and |2i_m)n on Yi_mi_1n and
Y mi1,in, respectively. That is,
IE{n,z)N = IJiJ:m,i—l,Nlmi>N
(20)
Isfn,z)N = PiJlm+1,i,N|-Ti—m>N
where PL = I — P. The last components of
(20) satisfy the recursions

57fn+1,i(N) = E{n,i(N) - k{n+1,i(N)5fn,i—1(N)
(21)
efn+l,z'(N) = El;n,i—l(N) - kfn+1,i(N)Efn,i(N)

where we define
arfn,i(N) = (€{n,i|€{n,i>N’

alr)n,i—l(N) = (5I:n,i—1[5':n,i-1>Nv
Bni(N) = (ehiletiin, (22)
1 _ Bmi(N)

km-H,i(N) - CYI,’,.,,'_l(N) 9
b _ :Bm,i(N)

km+1,i(N) = Offn,i(N)

and we also note



emo(N) = e o(N = 1).

The tlme-updated recursions for

77”(N) ab,; 1(N) and Bni(N) can be ob-
tained from the general formula [2]. We define
the quantity called “likelihood variable” by

(WI 1—m,i— 1|7r)N' (23)

For m = 0, Y;;_1 v is empty, so that R AN =
I, and cos?0;;_1(N) = 1. Then the time-
updated recursions are given by

a{n,i(N) = )‘a{n,i(N -1)

+(e{n,,.(N))%ec20,._m,i_1(N)

€05%0;_mi_1(N) =

I(N) - Xo{ma l(N_ 1)

+(6m,‘»_1(N))2seczl9,'_my,'_1(N) (24)
Bmi(N) = ABmi(N — 1)
+el, i(N)eb, i 1 (V)sec?0;mi 1 (N).
The order-updated recursion for

c08%0;_p,;_1(N) is obtained from (37) and
(44) as

(30529,'..7,,_1,,'_1(]\7) = 00320,'_7,&7{_1(1\7)

~ (i1 (V) a1 (V). (25)

Next we present the parameter estimation
algorithm of the joint process circular lattice

We denote the least squares estimator of
y(N) based on Yj_mqn and its estimation er-
ror by z,(N) and v, (), respectively, where
0<m< (p+1)d—1. That s,

V)N = Pizmanly)n (26)
The last component of (26) satisfies
Un(N) = Vnoa(N) - 6m(N)5$n,d(N)
(27)
An(N)
g o(N)’
The time-updated recursion for A,,(N) is

given similarly by

Am(N) = )‘Am(N - 1)

(5?:;,dIVM—1>N —
(Efn,d|517’n,d)N

6m(N) =

+Vm—-1(N)Ein,d(N)Sec2gd—m+1,d(N)'

Finally, we present the a priori error form
of the above LSCL algorithm. First, we define
the a priori forward and backward prediction
errors by

f
f €m,i(N)
€m,i N) =
() (V)
_1(N)

e (N) = Eniz1(N) 28

=) Ymi(N) (28)

where we define
’me,'(N) = cosza,'_m,,-_l(N). (29)
Substituting (28) into (21) we have

f 7m,i(N) f
€m+1,i N) = ———— €m.i N

wl) = )

— k1 i(N)ehi21 (V) (30)
(N)

el L i(N) = ——%""( N

+1,z( ) 7m+1,i+1(N) mz 1( )

_k'fn+1,z'(N)em,i(N))'
Also, using (24) in (22) we have

kg1 i(N) = (ABmi(N — 1)

Fmi(N)ed s (N)eb, (V) /oy s(N)

b Ymi( N )eh i (V)
= kpy (N = 1) + Wx

( mz I(N) + km+1 ‘l(N - l)e;fn,z(N))
and

Ym,i(N)eh i1 (V)
alr)n,i—l(N)

mi-1(N))
In turn, substituting these into (30) gives
e£1+l,i(N) = &mi(N)(em d (V)

k;'fn-{-l,i(N) = k;fn+1,i(N - 1) +

X(e{n,i(N) + }?fm+1,i(N —1e

m+1z(N ) ml I(N))
e[:n+l,i(N) = Cm,z(N)(em,i—l(N)
—kb (N — 1)el, ;(N))
where
YN mi(N) (e (V)P
S Yma1,i(V) (1 b io1(N) )



(V)N

Cm,k(N) _ ’Ym,i(N) (1

B Yma1,i+1 (V) a{n,i(N)

But from (25) and the defintions (28) and
{29) it is easy to see that &, x(N) = 1. Also,
from (23) it follows that

Ymat,i41(N) = <7T|Pi£m,z']7f>N

(Ymi(N)el, ;(N))?

=7m,i(N)_ (llf (N)

(31)

so that (,;(/V) = 1. Summarizing the above
results, we have the following algorithm.

Table 1 A Priori Error Form of The LSCL
Algorithm

i) Initial conditions (N = 0)
For all i =1,...,d and m, set

a{n,i(O) = o}, ;(0) = small positive value
kpi(0) = k,;(0)=0
ii) Main CL part
Dofori=1,...,d
eg,'i(N) = eg,i(N) =z;(N)
Yi(N) =1

Doform=0,...,pd+1i—1
a) order update (m — m + 1)

ehi(N) = el (V)
_k;fn+1,i(N - l)e[;n,i—l(N)
e?n-}—l,i(N) = 81&,{—1(1\7)
—kfnﬂ,i(N - l)e{n,i(N)
’Ym+1,z‘+1(N) = 'Ym,z‘+1(N)
_(7m,i+l(N)e‘lr)n,i(N))2
a[:n,i(N)

b) time update (N — 1 — N)

al, (N)

= /\afm,i(N -+ (e{n,i(N))27m,i(N)

o/;wv(N) = Aafn,i(N 1)+ (efn,i(N)f’)’m,z'H(N)

)

kfi(N) = kL (N —1)

Ymi(N)ebia(N) 4
agn,z’—l(N) °m+1,i(N)

k1 i(N = 1)

7m,i(N)€£a,i(N)
“—m)_efnu,i(N )

+

Fps1,i(N)

+

where

Ano(N) = ol (N = 1), b o(N) =

b a(N = 1), Ym1(N) = Yma+1(N — 1)
iii) Joint process part

c) initial condition (N = 0)
Set for all m as

6,(0)=0
d) initial condition (m = 0)
v1(N) =y(N)

Doform=0topd+d—1
e) order update (m — 1 — m)

In(N) = Um_1(N) = 6(N = 1)ep, o(N)
f) time update (N —1 — N)

Ym,a+1(N)eb (V)

(V) = (N = 1) + 12245 o

XU (N)

Comparing the above algorithm and (31)
with (15) and (16) we see that both have the
same structure. Since (15) and (16) are equiv-
alent to (13) and (14), the above algorithm
can be also implemented by a network of the
angle computer and the rotor using CORDIC.
Fig. 4 (a) shows the whole block diagram of
our adaptive CL filter. Fig. 4 (b) shows the
detailed structure of each building block.
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231’ 1983. Fig. 1 The block diagram of the triangular
Zin systolic array where y = X, (d=3).
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Fig. 4 (a) The block diagram of the CL filter where the detail of each unit is
shown in Fig. 4 (b) (d =3, p = 2).
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Fig. 4(b) The block diagram of each unit where a circle
denotes the angle computer and a square
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