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Minimization of Delay Buffers in Pipelined Circuit Synthesis
Xing-jian XU Mitsuru ISHIZUKA

University of Tokyo

In the design of pipelined digital systems, delay buffers implemented by shift registers
are usually introduced into the systems to insure that all the inputs to a processing element
arrive at precisely the same time. Automatic techniques for finding the lengths of such buffers,
and their proper points of insértion in the system have been proposed. They are usually based
on graph-theoretic approach{2] or linear programm1hg[3] The fastest approach was developed

by Hu with the order of O(n**log(n)). In this paper, we introduce a heuristic approach based
on some priority functions indicates the charactoristics of the pipelined network to balance the
network with a computational complexity of Q(nZ) at'most.
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1. INTRODUCTION

In digital systems requiring high throughput rate, array processors and/or pipelined designs are often
used. The array processor has a simple structure than pipeline; however, it requires more devices to implement
and is limited to the case that input data is independent to each other. It is quite widely used in image
processing, pattern recognition[1] and so on. Comparing with the array processing, the pipeline has a complex
structure, but the advantages of requirement of fewer devices and ¢an be applied to dependent input data. The
pipeline is a quite useful technology in design automation of Digital Signal Processors (DSP). To insure that a
pipelined structure operates correctly, it is obviously necessary that each multi-input processor in the pipeline
receive all its input data at the same time. It is referred as data synchronization[2], or pipeline balancing[3]. A
usual method to balance a pipeline is inserting delay buffers, shift registers, onto the path with shorter delay.
However, the solution to balancing pipeline is not unique. Obviously, it would be beneficial to determine the
minimum number of total delay buffers necessary to balance the pipelined network to reduce the hardware cost.

_Fig. 1 An-example of balancing

Figure 1 illustrates an example of pipeline balancing. Fig. 1(a) shows an unbalanced pipelined network. Fig.
1(b) is a balanced pipeline network, while Fig. 1(c) is an optimal one. A straightforward method to minimize
the number of delay buffers was introduced by Gao[3] based on Integer Linear Programming with the
exponential computational complexity. Hu{2] proposed an approach to the same problem based on improved
Linear Programming basically with the polynomial order of 0(n4"‘log(n)). In this paper, we introduce our
approach based on some priority functions to balance the pipelined network. Our algorithm is able to find the
optimal solutions of all the pipelined network we used to test our algorithm at a high speed of O(n2) at most.
Unfortunately, we are not able to prove that our algorithm warrantees that the optimal results can be found for
all kinds of pipelined network. But we are sure that the algorithm can find the satisfied solutions at least.

In chapter 2, some definitions and concepts are introduced. Chapter 3 gives a detail explainations of our
algorithm, and some experiments are showed in chapter 4. A brief conclusion is given at chapter 5 as the end of
this paper.

2. DEFINiTIONS '

2.1 Constructing a SSFG for a plpelmed system

A pipelined network can be represented by a so-called Signal Flow Graph (SFG)[2]. The SFG expression
consists of processing nodes (processors) communicating edgcs (data linkages), and delays assngned to the
edges. Delays are associated with SFG edges in the way of that the delay assigned to an edge’ which is incident
our of node u, corresponding to processor py,, and into node v, corresponding to processor py, equals to the
processing time of processor py. In SFG, all primary input signals to the system originate at node o, and all
primary outputs from the system terminate at node ¢. Both these nodes are assumed to consume zero processing
time.
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Fig. 2 Rules to construct a SSFG

To realize the speedup of our algorithm, a Simplified Signal Flow Graph (SSFG) is employed to represent a
pipelined network, which can be delivered from a SFG based on the transformation rules illustrated in Fig. 2, so
that a SSFG consists of fork nodes or joint nodes. A fork is a node with one edge goes to it and two edges go
out of it. A joint is a node with two edges go to it and one edge goes out of it. A fork or joint stands for a
processor or a dummy processor with zero delay and an edge in a SSFG stands for a serial of processors and
communication linkages. A SSFG has two special nodes, one is origin node, start, and another is terminus
node, end.

One feature of such SSFG is that the number of fork is equal:to the number of joint. If there are n fork in a
SSFG, the number of edges go out of fork and go to joint-will be n+1, as one fork breaks one edge into two. In
order to joint these n+1 edges into one, n joint is needed, since a joint merges two edges into one. This result
will be used in the rest of this paper.

A sub-SSFG is a sub-graph of SSFG, and has an origin node o, a terminus node t,.and two different paths. It
can be defined as {o, t, Lp, Rp}, o and t are distinct. Lp is the left path and Rp is the right path respectively, both
of them start at 0 and end at r. The SSFG of examplel is illustrated in Fig. 3: ‘ , '

Figure 3 is a SSFG of a simple pipelined network. It has an node set of {el, €2, €3, e4, ¢5) and a node set of
{(n1, n2, n3, n4}. The delays of edges are indicated by {d1, d2, d3, d4, dSV}. There are three sub-SSFG in Fig. 3:

a. {nl, n3, ele3, e2);
b. {n2,n4, ¢4, e3e5};
c. {n1, n4, eled, e2e5); ‘
In order to balance this network, the following three equations have to be satisfied:

for sub-SSFG a: dl+d3=d2 , , : ) .
for sub-SSFG b: d4 = d3+d5 ( B @

for sub-SSFG c: dl+d4 = d2+dS v . @A)
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Fig. 3 The primitive set of SSFGs Fig.4 depth from left to right Fig.5 Ratio of sharing delay buffers




Equation (3) can easily be delivered by adding equation (2) to equation (1); that is the rank of the sub-SSFGs is
two instead of three. A set of sub-SSFG is called primitive set of sub-SSEGs if the number of sub-SSFGs is the
rank of the pipelined network and of each sub-SSFGs in the set is independent to each other.

For a SSFG with 2n nodes of n forks and n joints (the number of fork equals to the number of joint), the rank
of the primitive set of sub-SSFGs is n, which equals to the number of forks or joints. It tells-us a fact that the
primitive set sub-SSFGs can be found between their origin nodes, forks, and their terminus nodes, joints near to
their forks.

The problem of balancing the pipelined network is to make two paths of all the sub-SSFGs in the primitive
set of sub-SSFG have the same delay by inserting some shift registers onto the path with shorter delay. The
purpose of minimizing delay buffer is not only balancing the pipelined network, but also find an approach which
uses the minimum number of shift registers.

3. SOLVING THE MINIMIZATION PROBLEM

The discussion 'in the rest of this paper is based on a SSFG with 2n nodes and an origin node noted by start
and a terminus node indicated by end, respectively, without notification.

3.1 Level number nodes

A level number is assigned to-a node according to the topological position in vertical direction. It is quite
useful to speed up the algorithm of finding the primitive set of sub-SSFGs mtroduced in next section. A level
number of a node can be calculated by:

for origin node of SSFG: level(start) = 1;

for the nodes exceptorigin:  level(node) = max(lcvel(parents of node)) + 1;

The procedure of setting node level starts from setting start to one, and continues setting the child nodes of
set nodes until all nodes are set. The computational complexity is O(2n).

3.2 Finding the primitive set of sub-SSFGs ' »

The left path can be found by visiting right child nodes from the left child node of a fork, which is the origin
fork of the sub-SSFG until a joint node is found. If a right path from the origin to that joint does niot exist, then
the left path continues visiting SSFG from the child of that joint until another joint is found. This procedure is
repeated until two paths are found, a left path and a right path, which start from the origin fork node and end at a
joint. As the example of fork node n1 in Fig. 3, in order to find the left path, n2 is visited as it is the left child of
origin node nl, then n3 is visited since it is a right child of n3. Because n4 is a joint, ele3is supposed to be a
left path and n3 is a terminus node of the sub-SSFG. Then, all the joint nodes between level(n1) and level(n3)
are searched for finding a right path from nl to n3. If there is no such path, thé left path tries to find a next joint
from current joint.and then checks if these is a right path. As edge €2 is a path from nl to n3, then a sub-SSFG
of {n1, n3, ele3, €2} is found.

Finding a right path is straightforward. The procedure scarches the nodes between level(origin) and
level(joint), which can be visited from origin, for finding if there is a right path from origin to the joint. Asa
summary of this section, the algorithm of find the primitive set of sub-SSFGs can be written as:

Algorithm1, finding the primitive set of sub-SSFGs

for (_zilbl forks )

{
find a left path from current fork to a joint;
while ( a right path from current fork to current joint is not found )
find a left path from current fork (o next joint;

}

If the maximum length of left and right is m, the computational complexity of algorithm1 will be O(n*m)
since finding a right path is at O(m). In the worst case of that the lengths of left and right paths is almost n, the

order of algorithm1 becomes O(nz).



The primitive set of three sub-SSFGs in Fig. 3 can be found by algorithm1 as follows:
a. {nl1,n3,ele3, e2});
b. {n2, n4, e4, e3e5};

3.3 Depth of edges

After the primitive set of sub-SSFGs is found, balancing pipelined network can be started and it becomes the
problem of making two paths of all sub-SSFG have the same delay by mserung delay buffers onto the path with
shorter delay.

Figure 4 is obtained by assigning delays to each edges The primitive set of two sub-SSFGs are, s1:{nl, n3,
ele3, €2} and s2: {n2, n4, e4, e3e5}. Two dashed lines indicate the paths with shorter delays of the primitive set
of two sub-SSFGs, and two numbers of 1 and 5 in cycles are the number of delay buffers which have to be
inserted onto the paths to make the balances to two sub-SSFGs. In sub-SSFG of sl, it is clear that one delay
buffer has to be inserted onto edge €2 since there is only choice to insert the delay buffer. But in sub-SSFG s2,
five delay buffers can insert onto edge e3, or edge e5. If a delay buffers are inserted onto edge €3, the two paths
of sub-SSFG sl will be unbalanced. As the result of it, another five dé]ay buffers have to be inserted onto edge
€2 to balance sl again. Totally, it costs eleven delay buffers to balance the whole pipelined network while the
optimal approach costs only six delay buffers, if five delay buffers are inserted onto edge eS5.

We employ so-called depths for all the nodes to solve this problem, which are shown following edge
numbers in brackets in Fig. 4. For example, the depth of edge €3 is two, it means if one delay buffer is inserted
onto edge e3, it will cost two delay buffers totally as usual. Although there are two places to insert five delay
buffers to balance sub-SSFG s2, the delay buffers have to be inserted onto e5 instead of edge e3 since €5 has a
smaller depth than edge e5. ‘Figure 4 shows the depth from left to right, which is useful to insert delay buffers
onto the shorter path on the right side. The calculation of the depth from left to right is explained as follows:

a. The depth of each edge on the most right side equals to one; o : ‘

Such-edges can be found by visiting SSFG from origin node based on the following two rules:

rulel: visit the right child node if current node is a fork; ' '

rule2: visit child node if current node is a joint.

b. For all the sub-SSFG, the depths of all the edges on the left path equal to:

1 + min( the depths of all the edges on the right path );

Step b has the order of O(n*m), m is the length of sub-SSFG, since it is applled to all the sub SSFGs, and for
a sub-SSFG, the order of calculaung the mlmmum deplh is m; In the worst case, the order is O(n2) when the
length of sub-SSFG is n. '

Of course another depth from right to left is also needed in the case of inserting delay"buffers onto the left
path of sub-SSFG. It can be calculated in the same way as the one from left to right.

3.4 Ratio of sharing delay buffers with neighbor sub-SSFG C :

Figure 5 shows another case of Fig. 4 by changing the delays of some cdges Two delay buffers have to be
inserted onto the left path of sub-SSFG s1, while five delay buffers have to be inserted onto the right path of
sub-SSFG s2. Edge e3 is shared by both sub-SSFGs. Although the depth of €3 is two and depth of e5 is one, it
is easy to understand that the best way is to insert some delay buffers onto €3, so that these delay buffers can be
shared by both sub-SSFGs to save delay buffers. The optimal answer is inserting two delay buffers onto edge €3
to balance sub-SSFG s1, and then inserting three delay buffers onto edge €5 to balance sub-SSFG s2. The total
number delay buffers needed to balance the pipelined network is five. If five delay buffers are inserted onto
edge €3 to balance sub-SSFG first, the left path of sub-SSFG sl will be changed from a shorter path to a longer
path. Another three delay buffers have to be inserted onto edge €2 and totally, it costs eight delay buffers to
balance the network.

Sharing delay buffers in these two sub-SSFGs looks the same, but they cause different results. For this
purpose, a so-called sharing ratio of sharing delay buffers with neighbor is introduced in this paper It is
calculated by the expression of:

sharing ratio = inserted buffers of all neighbor sub-SSFGs of shorter path / inserted buffers of own sub-
SSFG.



The sharing ratio of sub-SSFG sl is 5/2 = 2.5 and the one of 52 is: 2/5 = 0.4. - To deal with sharing delay
buffers between two neighboring sub-SSEGs, the sub-SSFG with a smaller sharing ratio- has a higher priority to
be balanced. Like calculation of depth, the computational complexity of calculation of sharing ratio is log(n*m),
where m is the length of sub-SSFG.

3.5 Algorithm

Before the algorithm of minimizing the number of delay buffers is introduced, we would like to explain the
physical meanings of depth, sharing ratio and choice by example2 shown in Fig. 6.
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Fig. 6 Examplel .
Table 1 The primitive set of six sub-SSFGs and their evaluations

sub foriginjend left del right dela share choice
SSFGjnode |node] path clay path . Y] ratio

sl |ni n4 eled 20.] e2e5 14 11.667 | infinit

s2 |n2 | n6 e3 © 21 ] e4e7e8 18 §233}| 1
s3 In3 | n8| eSe7e9 21| e6e10 28 | 157 | 3

s4 | n5 |nl0} e8el2 19 |e9el3eld 17 | 7.5 2
s5 | n7 |nlljel0ei3el5 17 ell . 25 10.75 2
$6 t n9 nl2| eldel6 7 el5el7 3 } 2 Vlinfinit

_ There is. another priority function of sub-SSFG, which is called choice of sub-SSFG in this paper. The
shorter path of sub-SSFG sl has two edges of €2 and e5. The depth of edge 2 is one, it means that inserting
delay buffers to balance s1 does not effects the delay of neighbor sub-SSFG. Sp the choice of sub-SSFG sl is
infinite. The shorter path of sub-SSFG s2 has three edges e4,e7 and e8. It means that the delay buffers can be
inserted onto three paths to balance sub-SSFG s2. But edge s4 is shared by sub-SSFGs s2 and s1, and edge e4 is
on the longer path of s1; thus, inserting delay buffers onto edge e4 causes the delay of sub-SSFG s1 longer and
it costs more delay buffers to balance s1. Like e4, edge €8 is also not good to insert delay. Edge €7 is shared by
sub-SSFGs s2 and s3, and it is on the shorter paths of both sub-SSFGs. Itis desirable that nserting delay buffers
does not make the delay of neighbor sub-SSFG longer.



There is one edge onto which the delay buffers can be inserted. If there is an edge with a depth of one, set
the choice of sub-SSFG to infinite; otherwise, set the choice to the number of edges on shorter path, which are
on the shorter path of neighbor sub-SSFG. Table 1 shows all the sub-SSFGs and their evaluations.
Balancing the pipelined network of exmaplel can be divided into the following four steps:
stepl: Because s5 has a sharing ratio of 0.75, which is less than one, it is impossible to share all of its buffers
with neighboring sub-SSFGs. Accordingly, s5 has to be balanced before its neighbors. Insert two :
buffers onto edge e13, and four buffers onto edge edge el5, since two and four buffers are needed to
balance s4 and s6. Sub-SSFGs s4 and s6 are balanced, but sub-SSFG s5 is still unbalanced, it will be
alanced at later step. ‘ : '

step2:  Insert three buffers onto edge €7, since s2 has only one choice of edge e7;

step3: Remained sub-SSFGs are s1 and s3. $3 is balanced before s1 as s3 has fewer choices than s1. After s3
is balanced by inserting 4 buffers onto edge €5, 2 buffers are inserted onto edge e2 to balance s1.

step4:  The result after stepl to step3 is illustrated in Fig. 6(b). Only sub-SSFG s5 is unbalanced. To balance
s5, two buffers can be inserted onto edges €10, €13, and e15. Because €13 has a right depth of three
and e13 and e15 have the same right depth of two, two buffers are inserted onto e13. As sub-SSFG s4
is unbalanced, another two buffers is inserted onto edge €12 to balance sub-SSFG again. The final
minimized result is shown in” Fig. 6(c).

As a summary of this section, the algorithm of minimizing the number of delay buffers can be written as
follows: ) :
stepl: Balance all the sub-SSFGs with the sharing ratio smallcr than one in the sequence from small sharing

- ratio to large one;
step2: Balance all the sub-SSFGs in the scquence from small choice to large one. Among the sub- SSFGS,
with the same choice, the sub-SSFG with a smaller sharing ratio has a higher priority to be balanced.
step3:  After stepl and step2, only the sub-SSFGs with a sharirig ratio smaller than one and the one with a zero
" choice are remained. Such sub-SSFGs are balanced according to the depths of its edges. The edge with
a smaller depth has a higher priority. :

4, EXPERIMENTS

Figure 8 shows an example introduced.in [3]. In finding sub-SSFG sl, the left path can be found easily,
which is el and the sub-SSFG sl is supposed to be (nl, n6, €1, 7). As we introduced in section 3.2, finding a
right path has a order of O(m), m is the length of sub-SSFG. In this example, every node is searched for the
right path between n1 and n6. It takes O(n) to find the right path of e2e3e6e8. The optimal solution is shown in
Fig. 8(b) which is the same as the one in [2].

So far, all the examples inuoducéd in previous sections are plane graphs. Figure 9 illustrates a non-plane
graph. Our approach is able to find the optimal solution even in the case of the non-plane graph, which is
illustrated in Fig. 8(b). After sorting the primitive set of sub-SSFGs according the their choices and sharing
ratios, sl is balanced first by inserting five buffers onto edge €2; and then, s3 is balanced first by inserting seven
buffers onto edge e7 and two onto e5.

Comparing with a plane graph, finding the primitive set of SSFGs and sharing buffers with nenghbors are
more complex. Because of this, the algorithm has an order of O(n?). The algorithm, which can only be applied
to plane graphs, has the order of O(n*log(n)). ‘
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5. CONCLUSION

We have considered the balancing of pipelined digital systems. With the aid of priority functions of sharing
ratio, choice and depth, a plpelmed network can be balanced at the order of O(nz) As we mentioned in chapter
1, we are not able to prove that our algorithm warrantees that the optimal results can be found for all kmds of
pxpelmed network However at least our algomhm has found the optimal solutions for all the examples used to
test our approach We are sure that the automatic design of pipelined digital systems will become a more and
more important technology in DSP design automation. As our future research, we are mterested in pipelined
digital design automation mcludlng evaluations of pipelined dxgxlal systems, which wnll be used to determme ifa
pnpelmed system is selected to a bchavxoral specification. We are also interested in the deSIgn automauon of
pxpehned dxgnal systéms under Lhe constraxms of processing speed and/or chnp area.
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