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Cube-Packing Problem
with Fixed Bin-Capacity(> 3) is NP-complete
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Abstract
s In technology mapping of Look Up Table (LUT) based FPGA, the problem of

mapping a two-level subcircuit into LUTs is formulated as the Cube-Packing problem. Without
taking account of the advantage of a signal to multiple gates, it is formulated as the Bin-Packing
problem. If the number of inputs of LUTs is limited to a practical value, the Bin-Packing problem
can be solved optimally very fast. In this paper, we consider the computational complexity of
the Cube-Packing in the case that the number of inputs of LUTs is fixed, and prove the problem
to be NP-complete.
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1 Introduction

According to the development of electronics in-
dustry, it has become more vital to reach the
market with new products in the shortest pos-
sible time. Products are repeatedly prototyped
and checked. Semi-custom approaches such
as standard cells and Mask Programmed Gate
Arrays (MPGAs) require extensive time and
high cost to manufacture. Field Programmable
Gate Arrays (FPGAs) have emerged as the ul-
timate solution to these problems, because they
provide instant manufacturing and very low-
cost prototyping.

An FPGA is composed of logic blocks and
routing resources. To implement a given circuit
on an FPGA chip, the circuit is divided into
subcircuits each of which is small enough to be
implemented to a logic block. Such a procedure
is called the technology mapping. Lookup Ta-
bles (LUTSs) are often used for logic blocks for
its advantage that a k-input LUT can imple-
ment any boolean function of k variables.

Minimizing the total number of LUTs used
for a circuit allows implementation of larger cir-
cuits since the number of LUTSs available in
an FPGA chip is fixed. One approach is de-
scribed as follows. Given a multistage logic cir-
cuit, traversing from primary inputs to primary
outputs, a two-level subcircuit which consists
of a gate and it’s fanin gates is extracted and
mapped into LUTs. [1][3][2][7]. The problem of
mapping a two-level circuit can be formulated
as the following Cube-Packing problem: Given
a set of variables, a set of cubes each of which
consists of a subset of variables and an inte-
ger called capacity, the set of cubes are divided
into as few groups as possible in each of which
the number of variables included does not ex-
ceed the capacity. Each variable corresponds
to the input signal in the circuit, each cube to
the gate, and the capacity to the number of
inputs to LUTs. By treating such a variable
included in multiple cubes in common as a dif-
ferent variable for each cube, the problem of
mapping two-level circuits can be formulated
as Bin-Packing problem: Given a set of boxes
each of which has specific size and capacity, the
set of boxes are divided into as few groups such

Figure 1: A two-level circuit and mapping into
LUTsof k=5

that the sum of size of boxed in each group is
not exceeding the capacity.

Bin Packing problem being NP-hard, it is
known that it can be solved in polynomial time
by exhaustive search when the capacity of bins
is fixed [4]. However, an exhaustive search is
too slow. First Fit Decreasing algorithm (FFD)
which is a well-known approximation algorithm
of the Bin-Packing problem is often used [3][7],
for it is very fast and provides a good solu-
tion. Moreover, the authors have found that
the FFD provides an optimal solution if the ca-
pacity is 6 or less, and furthermore, improved
to provide an optimal solution with capacity
up to 8, without increasing substantial compu-
tational complexity [8].

However, the Cube-Packing problem looks
to be far harder than the Bin-Packing prob-
lem. Actually, we can prove in this paper that
the decision version of Cube-Packing problem
is NP-complete even if the capacity is fixed to
3 or more, while the Bin-Packing problem with
fixed capacity is pseudo-polynomially solvable.

2 Problem Formulation

Let U be a set of elements, called the variables.
A cube on U is a subset of U. Let C be a given
set of cubes. The size of a subset v of C is
{u|vw e C,C € v}|. Given a positive integer
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k, a cube packing of C is a set I' of disjoint
subsets of C such that U,er v = C and the size
of any v € I is at most k. We can view vy € T
as specifying a set of cubes to be filled in a bin
of capacity k.

CUBE PACKING (CP)

Instance : A set U of variables, a set C of cubes,
capacity k, and a positive integer K.

Question : Is there any cube packing of C into

K or less bins where the capacity of each bin
isk?

CUBE PACKING WITH CAPACITY
k (kCP) is a subproblem of CP whose bin
capacity is fixed.

For the proof of NP-completeness of kCP, we
introduce two classes of problems.

Given a finite set X with |X| = kq where
k and q are positive integers, and a set M of
k-tuples of X, ezact cover of X is a subset A of
M such that every element of X is included in
exactly one member of A.

EXACT COVER BY k-SETS (XkC)
Instance : A finite set X with |X| = k¢ and a
set M of k-tuples of X.

Question : Does M contain an exact cover of
X7

XkC is a generalized version of the X3C.

For an undirected graph G, we denote the set
of vertices in G as V(G) and the set of edges
as E(G). A set of edges including as their end-
points at most k vertices is called a k-cluster.

k VERTEX EDGE PARTITION (kEP)
Instance : An undirected graph G and a posi-
tive integer K.

Question : Is there any partition of E(G) into
disjoint K or less k-clusters?

An edge-induced subgraph of G on E' C
E(G) is denoted by G[E']. An edge set E' is
said to be connected, if G[E’] is connected.

3 Results

This section presents our results on the NP-
completeness of kCP. We start with XkC
which is a generalized version of X3C. X3C
is known to be NP-complete [5] and therefore

we have

Fact 1 XkC for k > 3 is NP-complete.
We reduce XkC to kEP.

Lemma 1 kEP for k > 3 is NP-complete.

Proof. It is easy to see that kEP € NP.
We reduce XkC to kEP. Let Ixc = (X, M)
be an instance of XkC where |X| = kq and
M| = p. Let X = {x1,z,...,21,} and
M = {My,M,,...,M,}. We define u(z) =
{M|M € M,z € M}. We denote M; € u(z)
by p(z,£) if |{M; | M; € p(z),j <i}| = £ and
denote z; € M by x(M,£) if [{z;|z; € M,j <
i}| = £. If |u(z)] < 1 for some & € X, Ixc has
no exact cover and we immediately generate
some instance with no partition of F(G) into
K or less k-clusters. So, we assume |u(z)| > 1
for all z € X in the following, and then p > q.

We construct a graph G and set the number
K such that Ix¢ has an exact cover if and only
if G has a partition into K or less k-clusters.
For each element z € X, let

Vi(z) = {vi(e, 1) [1<i< ()]},

Ei(2) = {{vi(=, 1), v1(,6 + 1)} 1<i < ()| -1}

be a set of vertices and a set of edges. For each
k-tuple M € M, let

Va(M) = {ua(M, i) | 1<i <k}

Ex(M) = '
{{v2(M, ), v2(M, (i mod k) + 1)} | 1<i <k}

be a set of vertices and a set of edges. For each

pair of an element z € X and a k-tuple M €
M, let 7 and j be integers such that p(z,:) =
M and x(M,j) =z, and

Va(e, M) = {vs(z, M,£) |1 <£<k~3},

Eg(x,M) = {{Ul(x,i),v3($7M, 1)}}
U {{vg(x,M,E),v3(z, M7Z+1)} l 1S(Sk—4}
u {{v3(w?M7k_3)’U2(M1j)}}

be a set of vertices and a set of edges. In

the case that k& = 3, V3(z, M) is empty and

E3(z, M) has only one edge {vi(z,1), va( M, 7)}.
We define the graph G by

V(e = U keu (J vemu

zeX MeM MeMzeM

Va(e, M),



M1 M2 M3 M4

Figure 2: The graph G constructed where
k=3, X = {21,22,23,%4,%5,T6}, M =
{{1?1,51:2,(33},{-’171,.'1347.’1?6}7{131,3}'5,176},{174,.’175,136}}

E@G) = |J Ei(z)u | E:(a)U
z€eX Mem

U

MeMazeM

Figure 2 shows an example of the graph con-
structed. Table 1 shows the numbers of edges

in various edge sets. Note that Y |u(z)| = kp.
zeX
We set the number K = (k+ 1)p — q. Now, we

edge set # edges
Ey(z) ()| -1
Ex(M) k
E3(.’L’, M) k—2
Ueex E1(2) kp—kq
Untem E2(M) kp
Unmermaem Es(z, M) (k—2)kp
E(G) k*p — kq

Table 1: The number of edges

get an instance of kEP, Igp = (G, K). It is
easy to see that this transformation is possible
in polynomial time.

We claim that Igp has a partition of E(G)
into K or less k-clusters if and only if Ixc has
an exact cover. Suppose that A C M is an
exact cover for Ixc. For each z € X, let M be
a k-tuple in AN u(z) and let ¢ and j be integers
such that u(z,i) = M and x(M,j) = z. We
define a set of edges E'(z,¢) for each 1 </ <

Es(z,M).

lu(z)| by

E3(:E, p,(a:,f)) U {{vl(xaf)7vl(z7‘e+1)}}
if 1 <8<,

E3(z,u(w,ﬂ)) U {{’Uz(M,j),’Uz(M, (.7 mod k)+1)}}
if £ =1,

E3(z, p(x, £)) U {{vl(ml_l)?vl(mv[)}}
ifi<i<|p(z)]

Figure 3 shows an example of E'(z,{)s for
z € X where the third k-tuple of z (i =
3) is in A. Note that U E=0)

ze X, 1 (z)|

Ex, 1)

x=yx (M,})

Fx,2) PF(x,3)

E'(x,4)

Figure 3: E'(z,f)s for z € X

E(G)\ |J E»(M). Notice also that each edge
MgA

set E'(z,£) has k—1 edges and k vertices and

Ey(M) for M ¢ A has k edges and k vertices.

Thus,

I = {E(z,¢)|z € X,1<0<|u(z)|}
U {Ey(M)| M ¢ A}

is a partition of E(Q) into k-clusters. The num-
ber of clusters in II is

I} =Y =) + (p—q) = (k+1)p—¢.

c€X

Thus, G has a partition into K k-clusters.
Conversely, suppose that II is a partition of
E(G) into k-clusters and |II| < K. Since the
length of each cycle in G is k or more, every k-
cluster has at most k edges. Since every cycle
with length k consists of edges in Ey(M) for




some M € M, a k-cluster 7 has k edges if
and only if 7 = Ey(M) for some M € M. A
k-cluster m has k—1 edges if and only if 7 #
Ey(M) for any M € M and 7 is connected.

Let M’ be the set of M € M such that
Ey(M) € II, and M’ = M\M'. Let X’ be
a set of z € X such that p(z) C M/, and
X" = X\X'. In the following, we show that
the number of k-tuples in M’ denoted by n; is
p—g and the number of elements in X’ denoted
by ny is 0. First, we show the upper bound of
ny. Since u(z) Z M'ifz € M € M,

UM=xX
MeM

and the number of elements included in some
M € M’ satisfies

U mM

< k|M| = k(p—n,).

MeM'
Since
ng = IX’I
x| - [
- -] U w]
MeM

2 kq—k(p“”l):
we have n

n Sp—q+f. (1)

Next, we show the lower bound of ny. Let
I = {r |7 €11, |x| =4},

O = {r|7 e, |x| <1},
for 1<i<k. For each z € X', let
£ = FEi(z)U U E3(z, M),
Mepa)
' = {r|7m € My, 7N E # 0},
&' ={eleemné,rell'}.

Note that € has (k-1)|u(z)|—1 edges. Since any
k-cluster in II;; must be connected, and since
Ey(M) for every M € p(z) is a k-cluster in
II, for any k-cluster = € II', 7 C £. Then, the

lel | _
k—1]
|u(z)|-1. Thus, £ has at most (k—1)(|u(z)[-1)
edges. Since edges in £ can not be in any k-
cluster in IIj, each edge in E\E' is in some k-
cluster in Il<; 5. The number of such edges is
[E1=1€'] = (k=1)|u(z)|-1 - (k—1)(|u(2)|-1) >
k—2. Totally, the number of edges included in
some k-cluster in II<j 5 is at least Z (k-2) =

zeX'
(k—2)ny. Thus, [I<j o] > no. We have

k
> i
=1
kg + (k—1)[yq | + (k—2)|T<pg|
kny + (k"]-)(lngk—ll —ng) + (k—2)ng
kny + (k—1)(|II| — ny — ng) + (k—2)ny.

number of k-clusters in IT’ is at most

|E(G)]

A A

Since |II| < K = (k+ 1)p — q and |E(G)| =
k*p — kq,
n 2 p—q+ng. (2)
Finally, from inequalities (1),(2), and ny > 0,
k > 3, we have

ny =p-q, ny =0.

Thus, [M’| = ¢q and every z € X = X' is in-
cluded in some M € M. So, M is an exact
cover of Ixc. O

Since the degree of each vertex of the graph
G we constructed in the proof of Lemma 1 is
at most 3, we have the following corollary.

Corollary 1.1 kEP for k > 3 is NP-complete
even if G has no vertez with degree exceeding
3.

Now we arrive at our original problem, cube
packing with fixed bin capacity.

Theorem 2 kCP for k > 3 is NP-complete.

Proof. kCP can be restricted to kEP by
allowing only instances with cubes of two vari-
ables and regarding the variables as vertices
and the cubes as edges. m]

The proof of Theorem 2 will not change if
instances with only cubes of two variables are



allowed. Applying Corollary 1.1, we can allow
only instances such that each variable occurs in
at most three cubes. This leads the following
corollary.

Corollary 2.2 kCP for k > 3 is NP-complete
even if each cube consists of two variables and
each variable occurs in at most three cubes.

4 Conclusion

We proved that the Cube-Packing problem is
NP-complete even if the capacity & of bins
is fixed for k > 3. Furthermore, the Cube-
Packing with fixed bin capacity remains NP-
complete even if each cube consists of two vari-
ables and each variable occurs in at most three
cubes. It is easy to see that the problem is poly-
nomially solvable, if the capacity is 3 and each
variable occurs in at most two cubes. However,
the case that &£ > 4 is an open problem.
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