#* i B B (b 144
(1995. 3. 8)

GRMIN: —i%1{k U“- K.v5—REXD
gEH LT O T LIEDOWT
FTFA TN, HREY
SN TEAFEERTFEREFHRTFER
T 820 ARIFE T R EE 680-4

Ho%L: —HHLY —F.vJ —F &M (GRM) i, AND-EXOR W0 —20 7 7 ATHS. GRM T, L
75N EEEY F T AMANHIENT b Ly, GRM 2\ THRA S 2 MAHATT & 5. AR, E21yall
»FWPT D GRM FHNULT B a— AT Ay 7 FNT) XL %RT. THVT)AART SOHHEALHEAE b B
THY, ML VT T VEERS T, FEROME, 12 ALOMEICH LT, GRM Tid SOP(AND-OR FRELFIE)
ICHARIAEA S 2 TInZ LA Wshilho k.

HXF—7—F: HASHNAL, U—F.%7—@fX, AND-EXOR, BFEESHA

GRMIN: A Heuristic Simplification Algorithm for
Generalized Reed-Muller Expressions
Debatosh DEBNATH and Tsutomu SASAO
Department of Computer Science and Electronics

Kyushu Institute of Technology
680-4 Kawazu, lizuka 820, Japan

Abstract: Generalized Reed-Muller expressions (GRMs) is a class of AND-EXOR expressions. In a GRM,
each variable may appear both complemented and uncomplemented form. Networks realized using GRMs have
easily testable property. This paper presents a heuristic simplification algorithm for GRMs for multiple-output
functions. The algorithm uses seven rules. As the primary objective, it reduces the number of products, and as
the secondary objective, it reduces the number of literals. Experimental results show that, in most cases, GRMs
require fewer products than conventional sum-of-products expressions (SOPs). Our algorithm outperforms exist-

ing algorithms.

Key words: Logic minimization, Reed-Muller Expression, AND-EXOR, Easily testable networks.

1 Introduction
Logic networks are usually designed by using AND and OR
gates. However, networks utilizing exclusive-OR (EXOR)
gates have some advantages over the conventional AND-
OR networks. Firstly, such networks often require fewer
gates and interconnections than the ones designed using
AND and OR gates [14]. Examples of such networks in-
clude, arithmetic, telecommunication, and error correcting
circuits. Secondly, they can be made easily testable.
Various classes exist in AND-EXOR expressions (7, 13).
Among them, positive polarity Reed-Muller expressions
(PPRMs) are well known: a PPRM, an EXOR sum-of-
products with positive literals, uniquely represents an ar-
bitrary logic function. Networks based on PPRMs are
easily testable [10, 11}, but they often require more prod-
ucts than ones based on other expressions. Generalized
Reed-Muller expressions (GRMs) [4] are generalization of
PPRMs. They never require more products than PPRMs,
and often requirc many fewer products than PPRMs.
GRMs were studied many years ago [2], but no practical
applications have been reported. Recently, casily testable
realizations for GRMs have been developed [15]. Because
GRMs often require many fewer products than PPRMs
and have very good testability, the GRM based design
have practical importance. An exact minimization algo-
rithm for GRMs is available [16], but for the functions
with more than six variables it is very time and memory
consuming. For heuristic simplification of GRMs, only a
few algorithms [3] exist. In this paper, we present a heuris-
tic simplification algorithm of GRMs for multiple-output
function. The experimental results show the effectivencss
of our approach.

2 Definitions and Basic Properties
2.1 Positional Cube Notation

A positional cube [8] is convenient for the manipulation of
logic expressions by computers. In positional cube nota-
tion, an uncomplemented literal such as z; is represented
by 01, a complemented literal Z; is represented by 10, and
a don’t care (missing variable in a product) is represented
by 11. 00 represents no value of the variable, and any
cube containing a 00 for any variable position denotes a
null cube,

For m-output functions (fo, f1,..., fiu—1) (m > 1), an
m-bit tag field is catenated to the cube to denote the out-
put part. If the ith bit of the tag field of a cube is 1, the
t1th output is occupied by the cube. In this case, we think
the outputs as an m-valued variable, ‘

In the positional cube notation, each variable consti-
tute a part. Thus, in the representation of an n-variable
function there are n + 1 parts.

Definition 2.1 A list of cubes is called OR array if it
represents the OR of cubes, and called EXOR array if it
represents the EXOR of cubes.

Example 2.1 The three-variable function fy = zz9 V
Z1Z3 V T T3 ts represented by the OR array:

1 x x3 fo
01-01~11-=1
0l-11-10-1
10-11-10- 1.

It has four parts. (End of Example)

Example 2.2 The ithree-variable three-output function
fo = 1133 ® x93, fi = Tazs, and fo = T T3 is Tepre-
sented by the EXOR array:
Tz w3y fofihs
01-11-10- 101
11 - 01 - 01 - 110.
(End of Ezample)

It has four parts.

From now on, unless otherwise specified, a list of cube
represents an EXOR array. Also, all the inputs are two-
valued.

Definition 2.2 The c-distance between two cubes is the
number of parts in which they differ.

Example 2.3 The c-distance between the first two cubes
in Example 2.1 is two, and the c-distance between the two
cubes in Example 2.2 is four. (End of Ezample)

2.2 Logical Expression

An alternate representation of a logic function is a logic ex-
pression. In this representation, position of 1’s in a part of
the positional cube notation of a cube are shown as the ex-
ponent of the corresponding variable. In Section 4.3, this
representation is used to show the simplification rules for
GRMs. From now, we will consider outputs as a multiple-
valued variable and represent it by z.

Example 2.4 The three-variable multiple-output func-
tion shown in Ezample 2.2 can be represented by
2 {11 f01 {0} (02} @ 2[00 Becquse it is an
EXOR array, the @ operator is used. (End of Examplc)

2.3 PPRM, FPRM and GRM

In this part, we will define three classes of AND-EXOR ex-
pressions. The following lemma is the basis of the EXOR-
based expansion: .

Lemma 2.1 An arbitrary logic function f(zy,x2,...,2,)
can be expanded as

f=%fodaifi, (2.1)
f=fo®afo (2.2)
f=hdf, (2.3)

where fO = f(09z2y~--y$n)v fl = f(1,1:2,.--,-74'n), and
fa=fo® fi.

(2.1), (2.2), and (2.3) arc called the Shannon ezpansion,
the positive Davio expansion, and the negative Davio ez-
pansion, respectively. If we use (2.2) recursively to a func-
tion f, then we have the following:

Lemma 2.2 An arbitrary n-variable function f(x,,zr,,
«..yZy) can be represented as
f=aw®az @ars @ - ®anzn
@G ajpziT O aT1r3 P D A nTp-1Tn
D a19..nT1 9Ty - - Ty, (2.4)
where a’s are either 0 or 1.

(2.4) is called a positive polarity Reed-Muller ezpres-
sion (PPRM). For a given function f, the coefficients
ag,a1,02,...,012..n, are uniquely determined. Thus, the
PPRM is a canonical representation. The number of prod-
ucts in (2.4) is at most 2", and all the literals are positive
(uncomplemented).

In (2.4), for cach variable z; (i = 1,2,...,n), if we use
either a positive literal (z;) throughout or a negative literal
(Z:) throughout, then we have a fized polarity Reed-Muller
expression (FPRM). For each variable r;, there are two
ways of choosing the polarities: positive (z;) or negative
(%:). Thus, 2" different set of polarities exist for an n-
variable function. For a given function and a given set of
polarities, a unique set of coefficients (ag,a1,...,a12...n)
exists. Thus, an FPRM is a canonical representation.

In (2.4), if we can freely choose the polarity for cach
literal, then we have a generalized Reed-Muller expression
(GRM). Unlike FPRMs, both z; and Z; can appear in
a GRM. Some authors use GRMs to represent another
class of expressions [6], thus the terminology is not unified.

There are n2°~ literals in (2.4), so 2"%" ' different st of
polarities exist for an n-vanable function. For a given sct
of polarities, a unique set of coefficients (ag, @1,...,@12...n)
exists. Thus, a GRM is a canonical representation for a
logic function.

A GRM for a multiple-output function is defined as
follows:

Definition 2.3 An array represents a multiple-output
GRM, if for each output, the corresponding cubes repre-
sent ¢ GRM.

Example 2.5 Consider an array representing a three-
variable two-oulput funclion:

1 T3 z3 fohu
10-10-10- 10
10-01-01- 01
01-01-11- 11.

Both fo = ZT2%3 @ 7122, and fi = Tjx2x3 O T2
are GRMs. Thus, the array represents a multiple-output
GRM. (End of Ezample)

2.4 PSDRM, KRO, PSDKRO and ESOP

Before studying the simplification method for GRMs, it is
convenient to define other classes of expressions.

Suppose that we are given a three-variable function
f(z1,22,23). When we expand f by using the positive
Davio expansion with respect to x,, we have

f = fo® z1fa.
Next, when we expand fp and f, in the similar way with
respect to z3, we have

fo = foo D z2fo2, f2 = fa0 D x2fo2.

Furthermore, when we usc similar expansions with respect
to x3, we have

foo = fooo ® 3 foo2, Jfoz = fozo ® T3 fo22,

J20 = fa00 ® T3 f202, Sfa2 = fa20 ® 23 f202.
The cxpansion tree in Fig. 2.1 illustrates this process. A
path from the root node to a terminal node represents a
product of an expression, where a label of an cdge shows
the literal for the corresponding variable. For example,
the path from the root node to fggo represents the product
1-1-1- fooo = fooo, the path to fgo2 represents 1-1-23 foo2 =

Figure 2.1: Representation of a logic function using posi-
tive Davio expansions.

Figure 2.2: Representation of a logic function using pscudo
Reed-Muller expansions.

Z3 fooz, and the path to fagy represents xjx2z3f222. Thus,
the tree in Fig. 2.1 shows the PPRM:
[= fooo @ 23 fo02 D 2 fooo ® T203 forz B &1 f200
@ x173f202 D w122 faz0 D T17223 far2-
Each node has a label pD, which shows the positive Davio
expansion. In Fig. 2.1, only the positive Davio expansions
are used. However, if we use either the positive or the
negative Davio expansion for each variable, then we have
a more general tree. Such a tree represents an FPRM. If we
use either the positive or the negative Davio expansion for
each node, then we have a more general tree. Such a tree
represents a pseudo Reed-Muller expression (PSDRM). For
example, in Fig. 2.2, f, fo, fo2, and fa1 use the positive
Davio expausions, while fg, foq, and fa2 usec the negative
Davio expansions. Nodes with label nD denotes the nega-
tive Davio expansion. Note that the tree in Fig. 2.2 shows
the PSDRM:
f=11-1-foor @1-1-Z3fo02 D1 221" fo2o
@1 -zox3fore @111 fio @i 1-Z3fa12
D132+ 1 faz1 @ 717223 fo2.
There are 7 nodes in the tree, and cach node represents
either the positive Davio (pD) or the negative Davio (nD)
expansion. From the definitions, clearly FPRMs are the
special class of PSDRMs.

In Fig. 2.1, if we use cither the Shannon, the positive
Davio, or the negative Davio expansion for cach variable,
then we have another class of trees. Such a tree represents
a Kronecker expression (KRO).

In Fig. 2.1, if we use either the Shannon, the positive
Davio, or the negative Davio expansion for cach node, then
we have yet another class of trees. Such a tree represents a
pseudo Kronecker expression (PSDKRO). By definitions,
clearly FPRMs form a special class of KROs, and KROs
form a special class of PSDKROs.

Arbitrary product terms combined by EXORs is called
an Ezclusive-or Sum-of-Products Ezpression (ESOP). The
ESOP is the most general AND-EXOR expression. Arbi-
trary product terms combined by ORs is called a Sum-of-
Products Ezpression (SOP).

Example 2.6

1. 1 ®xo D122 1s a PPRM (all literals are uncomple-
mented).

2. 1 ® Ty ® 2139 is an FPRM, but not a PPRM (z,
have complemented literals).

3. o ® x1%9 is ¢ PSDRM, but not an FPRM (zy have
both complemented and uncomplemented literals).

4. T1DTy DI Ep is a GRM, but not a PSDRM (it cannot
be generated by an expansion tree for a PSDRM).

2.5 Properties of GRMs

In this part, we consider some properties of GRMs, which
are useful for the simplification of expressions.

Lemma 2.3 PSDRMs form special class of GRMs.

From the above arguments, we have the following rela-
tions, which are also shown in Fig. 2.3.

Theorem 2.1 Suppose that PPRM, FPRM, PSDRM,
KRO, PSDKRO, GRM and ESOP denole the corre-
sponding set of expressions. Then, the following relations
hold:
PPRM C FPRM C PSDRM C GRM C ESOP,
FPRM C KRO C PSDKRO C ESOP,

PSDRM C PSDKRO.

Definition 2.4 The variable set of a product p is de-
noted by V(p) = {z; | i or Z; appears inp}. The variable
set of a cube is the variable set of the product represented
by the input parts of the cube.

Example 2.7 V(z1%Z2%34) = {x1,%2,24}. The variable
sets of the first and second cubes in Ezample 2.2 are
{z1,23}, and {z2,23}, respectively. (End of Ezample)

Lemma 2.4 An AND-EXOR expression (for single-
output function) is a GRM, if no two products have the
same set of variables.

(Proof) It is obvious from the definition of GRMs (Scc-
tion 2.3). (Q.E.D.)

£SOP
GRM

F PSDKRO — -

- —-KRO ——

Figure 2.3: Relations among various classes of AND-
EXOR expressions.

Literal part

VM

{contro! input)

Check part

Figure 3.1: An easily testable realization for a GRM.

Example 2.8 Let [= x4 & 179203 & T1I2%3. Then
V(zzazg) = {21, 22,23}, and V(212233) = {21, 22,23},
Thus, f is not a GRM because two products have the same
set of variables. (End of Example}

In a GRM for multiple-output function, more than one
cube may have the same set of variables.

Lemma 2.5 An array represents a mulliple-output GRM,
if for any output, no two cubes have the same set of vari-
ables.

(Proof) Let for a output, two cubes have the same sct
of variables, then the corresponding function represents
a non-GRM (Lemma 2.4). Thus, according to the Defi-
nition 2.3, the array is not a GRM. Hence, we have the
lemma. (Q.E.D.)

Corollary 2.1 In an array for a multiple-output function,
if cubes having the same set of variables have non-disjoint
oultpul parts, then the array docs not represent a GRM.

Example 2.9 Consider the array in Ezample 2.5. The
first and second cubes have the same set of variables, but
their oulput parts are disjoint. Thus, the array represents
a multiple-output GRM. (End of Example)

3 Easily Testable Realizations for
GRMs

We can design easily testable networks by employing
EXOR gates‘!ij'. Reddy showed that if a network is re-
alized using PPRMs, and only a single stuck-at fault is
present, at most (n+4) fault detecting tests are sufficient,
where n is the number of input variables Igl 0]. The method
require a small number of test sets. But the nctworks
based on PPRMs require excessive amount of hardware.

Recently, an easily testable realizations for GRMs have
been developed [15]. The number of products for GRMs
is, on the average, less than a half of that for PPRMs [16].
Thus, the network require less hardware. The method uses
four extra gates and detects multiple stuck-at faults.

Let we consider the GRM: f = &1 Ty @ 223 D2 Tg2, D
T9T3%4. The testable network of this GRM is shown in

Fig. 3.1, where the litcral part has a control input c. Dur-
ing the normal operation, the control input is set to one,
and the literal part produces the positive (x;) and the neg-
ative (Z;) literals. During the test mode, the control input
is set to zero, and the network realizes a PPRM. Thus, we
can test the network in a similar way to [10}.

4 Simplification Algorithm
4.1 Outline of the Algorithm

The GRM simplification algorithm in this paper have the
following features:

. As an input, it accepts a GRM.

. It simplifies multiple-output functions.

. It uses seven rules iteratively to reduce the number of
products. :

. It modifies the cubes repeatedly by replacing a pair
of cubes with another one, while keeping the array to
represent a GRM.

5. It never increases the number of products.

o’ [FS N N

4.2 Initial Solution

Because PPRMs, FPRMs and PSDRMs are special class
of GRMs, any of them can be used as an initial solution for
the GRM. We use a PSDRM as an initial solution, because
minimal PSDRMs are easy to derive and usually require
fewer products than PPRMs and FPRMs. We used the
algorithm in [13] to obtain PSDRMs.

4.3 Simplification Rules

For simplification of ESOD’s, 10 rules are used in
EXMIN?2 [14]. However for simplification of GRMs ouly
seven rules are used.

Definition 4.1 N and U denote the intersection and
union operation between two sets, respectively. Also ‘—’
(overline) denoie the complement of a set. If A and B are
sets, A® B = (AN B)U(ANB). The symbol @ is also
used to denote the EXOR of two logic functions. A set is
null (@) if it contains no element.

Let A,B,C,D C P, where P = {0,1}. Then, the sim-
plification rules for GRMs are as follows:

1. X-MERGE
XA @ XB = xAeD
2. RESHAPE
XAYB g XCYP = XA),—(nnT)‘) @ X(Avaryp
if(AnC=4¢,B D> D)

3. DUAL-COMPLEMENT
XAYB g XCYP = x(AnC)y B g XCy(BnD)
if(AcC, B> D)
4. X-EXPAND-1
XA)’B o .X'C},D = .X-A),(BUD) o) 'X—(AUC)).’D
= ‘X'(AUC))IB @ ‘YC)!(BUD)
if (ANC=¢, BND =¢)
5. X-EXPAND-2
XAYB g XCYDP o X(AUCHY B g ‘X'CY(D”B)
if (ANC =¢, B> D)

6. X-REDUCE-1 _
XAYB g XCyYD = X(An‘(?)yu @ XCy(PnB)
if(4D>C,BCD)

7. X-REDUCE-2 _
XAYyB g XCyD = X(AnE)YB @ XCynnD)
if(A>C,B>D)

The representation, analysis, and proof of these rules
for multiple-valued input function can be found in [14].

4.4 Examples of Simplification
Example 4.1 Let an initial GRM be T @ x1x2 @ Ta. Its

positional cubes are:
1 x2 fo

10-11-1
01-01-1
11-10 - 1.

X-MERGE is inapplicable to this array. Applying X-
EXPAND-2 to the first two cubes, we have the following

array: ry x fo
11-11-1
01-10-1
1-10- 1.

Applying X-MERGE to the last two cubes, we have
‘ z1_ 2 fo
11-11-1
10-10- 1.
Thus, we have a GRM with two products: 1 @ ZT;Zs.
(End of Example)
Example 4.2 Consider the following array:

. ® foh

10 -11- 01
01-10- 01
11 - 10 — 10.

X-MERGE is inapplicable to this array, but RESHAPE is
applicable to the first two cubes, and we have the following

array: zy x3 foh
10-01- 01
11-10- 01
11 - 10 — 10.

Merging the last two cubes, we have a GRM with two cubes:

Ty fofi
10-01- 01

11-10- 11. (End of Ezample)

4.5 Properties of Simplification Rules

To simplify GRMs we use seven rules. Among them, X-
MERGE is the only rule that reduces the number of cubes.
When X-MERGE is inapplicable, other rules are used to
modify the shape of the cubes so that X-MERGE become
applicable. For a pair of cubes, the rules are applicable

only when the c-distance between them is one or two. Note
that we keep the array to represent a GRM always.

Lemma 4.1 In an array for GRM, if the output part of
two cubes differ, then RESHAPE is inapplicable.

(Proof) Let the original cubes be pX4Y? and pXCY?,
where p is a product common to the two cubes. Note

that input variable is two-valued, and output variable is
multiple-valued. The rule RESHAPE is:
XAYB g XCyD = xAy(BND) @ X(AuOyp
if(ANC=¢,B> D).
When the output parts are disjoint: Let Y be the input
variable and X be the output variable. B > D is the
condition for RESHAPE, so B = {0,1}, and D = {0}, or
1}. Therefore, the new input parts are ¥{1} and Y{0},
his represents new cubes have the same set of variables.
The new output parts are X4 and X4V, But AnN(AU
C? # ¢, i.e., outputs of the new cubes are non-disjoint.
Thus, by Corollary 2.1, the cubes no longer represent a
GRM. :
When input parts are disjoint: Let X be the input variable
and Y be the output variable. By the condition for RE-
SHAPE, the given input parts are X {0} and X (1), i.c., the
cubes have the same set of variables. Also, the condition
B D D implies that outputs are non-disjoint. Thus, from
Corollary 2.1, we have the lemma. {Q.E.D.)

Lemma 4.2 For a pair of cubes in an array for GRM, if
two input parts differ, then X-EXPAND-1 is inapplicable.

(Proof) Let pXAY? and pX Y be the original cubes,
where p is a product common to the both cubes. Note
that both X and Y are input variables, and they are two-
valued. From Section 4.3, the condition for X-EXPAND-1
is ANC = ¢ and BN D = ¢, i.e., input parts are disjoint.
This implies that both cubes have the same set of variables.
Also, the outputs are the same in both cubes. Thus, from
Corollary 2.1, we have the lemma. (Q.E.D.)

Lemma 4.3 For a pair of cubes in an array for GRM, if
they are disjoint in an input part, and differs in the output
part, then X-EXPAND-2 is inapplicable.

(Proof) Let the original cubes be pX4Y# and pXCYP,
where p is a product common to the both cubes, X be a
two-valued input variable, and Y be the multiple-valued
variable representing the output part. From Section 4.3,
the condition for X-EXPAND-2 (ANC = ¢, B D D) im-
plies that they are non-disjoint in the output parts. Thus,
by Corollary 2.1, we have the lemma. Q.E.D.)

Lemma 4.4 In an array for GRM, if a pair of cubes differ
in two input parts, then X-REDUCE-1 s inapplicable.

{Proof) Let pX4Y'? and pXCYP be the original cubes,
where p is a'product common to the both cubes. Note
that both X and Y are two-valued input variables. From
Section 4.3, X-REDUCE-1 is:
XAYB g XCyD = x(AnD)y B ® XCy(PnB)
if(ADC,Bc D).

By the condition A 5 C, we have 4 = {0,1}, and C = {0},
or {1}. So, a new input part of the two cubes are X {1}
and X (0}, Similarly, other input part of the two cubes are
Y19} and Y1}, These imply that new cubes have the same
set of variables. Also, both cubes have the same output
part. Thus, from Corollary 2.1, the array is a non-GRM.
Hence, the lemma, (Q.E.D.)

Rules 2-7 of Section 4.3 may produce cubes with new
variable set and modified output parts. Thercfore, before
applying these rules, we check if the resultant array rep-
resents a GRM or not. If it is non-GRM, we discard the
operation to keep the array to represent a GRM.

Example 4.3 Consider an array for « GRM:
Tz xy fofife
10~10-11~- 110
10-01-01- 110
01-11-10- 011

By applying RESHAPE to the first two cubes, we have

T xy x3 fofifa
10-10-10- 110
10~-11-01- 110
01 -~ 11 -10—- O11.

The last two cubes of this array have identical variable
sets, i.e., {x1, 23}, and the outputs are non-disjoint. Thus,
the array no longer represents o GRM, and we discard
this operation to keep the array to represent a GRM.

(End of Ezample)

Lemma 4.5 In an array for GRM, if a rule does not
change the variable set of a cube, and produces the out-
puts which is a subset of the original outputs, then the
cube can be modified without checking the whole array.

(Proof) The given array represents a GRM. So, for any
output, no two cubes in the array have the same set of
variables (Lemma 2.5). By the hypothesis of the lemma,
variable set of the cube remains same, and no new output
is produced. This implies that the array still satisfy the
condition of Lemma 2.5, and is a GRM. Thus, we can
modify the cube without checking the whole array. Hence,
we have the lemma. (Q.E.D.)

Example 4.4 Consider an array of k (k > 3) cubes for a
GRM. Let three of the cubes in the array are:

T x w3 fofife

01-10-01- 101

01 -10-11- 001

10 -01 - 11 - 110.
By applying DUAL-COMPLEMENT to the first two cubes,
we have Ty x2 w3 fofiks

01-10-10- 101

01 -10-11- 100

10 - 01 - 11 — 110.
In the first cube, variable set remains the same and outputs
are the subset of the original outputs (equal here). Thus,
we can modify the first cube without checking the whole
array. Note that the polarity of the literal x5 have been
changed.
In the second cube, variable set remains same but the out-
puls are not a subset of the original outputs. So, we have to
check if the resultant array represents a GRM or not. The
second and third cube have the same set of variables and
the outputs are non-disjoint. Thus, the array no longer
represent a GRM, and we have to discard this operation to
keep the array represent a GRM. (End of Ezample)

Lemma 4.6 In an array for GRM, if a pair of cubes differ
in two input parts, and DUAL-COMPLEMENT is applicd,
then the cubes can be modified without checking other cubes
in the array.

(Proof) Let pXAY® and pXCYP be the original cubes,
where p is a product common to the both cubes. Note

that both X and Y are two-valued input variables. From
Section 4.3, the rule DUAL-COMPLEMENT is:
XAYB g XCYP = X @AY B g xCy(BND)
if(AcC,B>D).

By the condition A C C, we have C = {0,1}, and
A = {0}, or {1}. So, the first cube must be X0y B,
or X{1}YB_ After DUAL-COMPLEMENT, the first cube
becomes X {(11Y8, or X19J¥ B, respectively. This implics
that the variable set of the cube remains same. Also,
the outputs of the cube remain unchanged. Thus, from
Lemma 4.5, the cube can be modified without checking
the whole array. Similarly, we can show that the same is
true for the other cube. Thus, we have the lemma.(Q.E.D.)

4.6 Algorithm
For many functions, the order of the simplification rules
influence the final solution. By conducting experiments on
the benchmark functions, we found the following heuristic
algorithm is effective.

Algorithm 4.1 (GRMIN: Simplification of GRMs)

1. Obtain a PSDRM from the given SOP.

2. Rearrange the cubes so that the number of 1’s in the
positional cube notation are in ascending order.

3. For each pair of cubes, check if X-MERGE is applica-
ble. If so, X-MERGE them. Continue this step until
reduction of the number of cubes are possible.

4. For each pair of cubes, check if RESHAPE, DUAL-
COMPLEMENT, X-REDUCE-1, or X-REDUCE-2
is applicable. If so, apply that.

5. For each pair of cubes, check if X-MERGE is appli-
cable. If so, merge them. Continue this step until
reduction of the number of cubes are possible.

6. If the number of cubes is reduced in step 5, then go to
step 4.

7. For cach pair of cubes, check if X-EXPAND-1, X-
EXPAND-2, RESHAPE, or DUAL-COMPLEMENT
is applicable. If so, apply that.

8. For each pair of cubes, check if X-MERGE is appli-
cable. If so, merge them. Continue this step while
reduction of the number of cubes are possible.

9. If the number of cubes is reduced in step 8, then go to
step 7.

10. If the number of cubes is reduced between step 4-9,
then go to step 4.
For cach pair of cubes, check if X-REDUCE-1, X-
REDUCE-2, RESHAPE, or DUAL-COMPLEMENT
is applicable. If so, apply that. Continue this step while
reduction of the number of connections is possible.
12. Check that the simplified cubes represent a GRM, and
verify that it is functionally equivalent to the given

SOP.

1

In steps 3, 5 and 8, morc than one merging passes are
often require. In our implementation, we used additional
fields for each cube. Using these ficlds, we can avoid many
redundant computations. One of these fields store when
the cube was modified. For example, during the first merg-
ing pass in step 5 of Algorithm 4.1, it checks two cubes if
at least one of them are modified in step 4. As stated in

Table 5.1: Comparison with Cannes [3].

Data | In | Out | Cannes | GRMIN | Improvement
5xpl 71 10 60 42 30%
conl 7 2 12 9 25%
misexl | 8 7 20 13 35% .
rd53 5 3 20 20 0%
rd73 7 3 63 63 0%
5202 10 4 52 35 33%
squard | 5 8 22 19 14%
sym9 9 1] 131 127 3%
Xord 5 1 5 5 0%

Table 5.2: Number of products to realize arithmetic func-
tions.

. | PSD| PSD O
Data | PPRM | FPRM |KRO "2 o | GRM | ESOP |SOP

adrd 34 34 34| 34 34 34 31} 75
log8 253 193] 171 163| 128 117 96| 123
mlp4 97 97| 97| 90| 81 T2 61| 121
nrm4 216 185 157] 150(105} 120 69| 120
rdin8 56 56| 56| 46| 41 35 31} 7

rot8 225 118] 83| 81| 44 59 351 57
sqr8 168 168| 168| 164} 146| 136 112§ 178
sym9 210 173] 173| 127 90| 127 511 84
wgt8 107 107 107| 107| 107} 107 581 255

Section 4.5, before applying a rule, the algorithm checks
the whole array if it represents a GRM. Another field is
used to make this checking easier by storing variable set
information.

5 Experimental Results

We coded the GRMIN in C. As an initial solution, it
accepts a GRM. GRMIN simplifies multiple-output func-
tions. Table 5.1 compares the number of products gener-
ated by GRMIN with that of the another heuristic pro-
gram Cannes [3]. It shows that GRMIN outperforms
Cannes. The improvement is up to 35%.

Table 5.2 compares the number of products required
to realize arithmetic functions by various AND-EXOR
expressions. In this experiment, the PPRMs, FPRMs,
KROs, PSDRMs, and PSDKROs were minimized by a pro-
gram in [13]. ESOPs were simplified by EXMIN2 [14]. Ta-
ble 5.3 compares the number of products to realize other
benchmark functions. Table 5.2 and 5.3 show that, in
many cases, GRMs require fewer products than SOPs.

Table 5.4 compares the number of products to realize
randomly generated functions. For each value of n, an n-
variable pseudo-random function with 2”1 minterms was
generated and minimized. Here l f| denotes the number of
true minterms of the function. In this experiment, SOPs
were simplified by MINI II [13], and other data were ob-
tained by the same programs as mentioned above. This
table shows, in most cases, GRMs require fewer products
than SOPs.

6 Conclusion and Comments

In this paper, we presented GRMIN, a heuristic simplifica-
tion algorithm for GRMs. Experimental results show that,
in most cases, GRMs require fewer products than SODs.
Al.;o, we showed that GRMIN outperforms existing algo-
rithms.

Table 5.3: Number of products to realize other benchmark
functions.

Data In | Out | FPRM | PSDRM | GRM | ESOP | SOP
5xpl 71 10 61 55 42 32 63
addm4 9 8 160 145 106 91| 189
alul 12 8 31 31 16 16 19
amd 14| 24 156 81 72 58 66
brl 12 8 70 47 31 19 19
clip 9 5 206 160 | 125 67| 117
conl 7 2 17 12 9 9 9
dc2 8 7 57 50 42 32 39
life 9 1 100 75 53 49 84
log8mod | 8 5 53 49 36 30 38
luc 81 27 57 49 34 28 26
ml 6| 12 19 19 16 16 19
m2 8] 16 53 51 44 39 47
m3 8| 16 75 66 57 51 62
mé 8| 16 132 116 { 102 84| 101
max1024 { 10 6 721 552 380 165 | 262
max128 71 24 109 102 96 63 78
max46 9 1 206 99 54 41 46
max512 9 6 341 245 175 841 133
misexl 8 7 20 19 13 12 12
misex3 14 14 3536 1186 798 553 | 696
mlp6 12| 12| 2047 1826 | 1314 862 | 1870
newbyte 5 8 8 8 8 8 8
newcplal | 9| 16 T 47 35 33 38
newtag 9 1 6 [5 5 8
newxcpla| 9| 23 64 50 35 30 41
rd53 5 3 20 20 20 14 31
rd73 7 3 63 63 63 351 127
risc 8§ 31 37 36 27 26 27
5202 10 4 100 62 35 29 58
sqn 7 3 66 58 40 29 38
sqr6 6| 12 45 44 35 34 47
squard 5 8 23 23 19 19 25
sym10 10 1 266 216 157 821 210
sym6 6 1 36 27 14 13 15
t3 12 8 51 34 26 24 33
tial 14 8 3683 1732 | 1033 487 | 587
xord 5 1 5 5 5 5 16

Table 5.4: Number of products to realize randomly gener-
ated functions.

, ro] PSD] PSD : SOP
[l PPRM | FPRM [KRO | P01 P20 | GRM | ESOP | SOI

8 6 5 4 4 4 4 3 4
16 16 10 8 7 6 5 I3 6
32 36 17 171 13}) 12 10 101 13
64 64 54] 48] 30| 26 21 19 24

128 122 101] 100} 56| 50 36 36| 46
256 236 2261 212} 1127 99 70 64| 86
10} 512 528 4591 4391 235] 206| 149 142| 167
1111024 1021 956 | 925| 458| 391| 282 274| 331

W00 ~IO 3

12120481 1996§ 1925]1899| 909| 775 563| 539 611
1314006| 4136) 3923]|3865|1813| 1563 1126| 1045|1157
1418192] 8210} 7924]7826|3617|3107| 2258| 2150|2234

Although GRMIN produce good solutions, we belicve
that significant improvement could be possible for many
functions by adding product increasing rules {1]. The

product increasing rule SPLIT (XF = X< @ X4) intro-
duced in [14] is inapplicable to a GRM.

For several functions we failed to reduce the number of
products from the initial solutions. In these cases, cither
the initial PSDRMs are already minimum GRMs, or the
given cubes has awkward shapes that our program could
not reduce.

Acknowledgement

This work was supported in part by a Grant in Aid for the
Scientific Rescarch of the Ministry of Education, Science
and Culture of Japan.

References
[1] D. Brand, and T. Sasao, “Minimization of AND-EXOR
expressions using rewrite rules,” JEEE Trans. Comput.,
vol. 42, No. 5, pp. 568-576, May 1993.
[2] M. Cohn, “Inconsistent canonical forms of switching func-

tions,” IRE Trans., EC-11, pp. 284-285, Apr. 1962.

L. Csanky, M. A. Perkowski, and I. Schifer, “Canonical

restricted mixed-polarity exclusive-OR sums of products

and the efficient algorithm for their minimisation,” IEE

Proceedings- E, vol. 140, No. 1, pp. 69-77, Jan. 1993.

[4] M. Davio, J-P Deschamps, and A. Thayse, Discrete
and Switching Functions, McGraw-Hill International, New
York, 1978.

[5] H. Fujiwara, Logic Testing and Design for Testability, The
MIT Press, Cambridge, 1985.

[6] D. Green, Modern Logic Design, Addison-Wesley Publish-
ing Company, Wokingham, England, 1986.

{7] D. Green, “Familics of Reed-Muller canonical forms,” In-
ternational J. of Electronics, vol. 70-2, pp. 259-280, 1991.

{8] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A

heuristic approach for logic minimization,” IBM J. Res. &

Develop. pp. 443-458, Sept. 1974.

A. Mukhopadhyay, and G. Schinitz, “Minimization of Ex-

cLtsive OR and LoGICcAL EQUIVALENCE switching cir-

cuits,” IEEE Trans. Comput., vol. C-19, pp. 132-140,

Feb. 1970.

{10} S. M. Reddy, “Easily testable rcalizations for logic
functions,” IEEE Trans. Comput., vol. C-21, No. 11,
pp. 1183-1188, Nov. 1972,

[11} K. K. Saluja, and S. M. Reddy, “Fault detecting test scts
for Reed-Muller canonic networks,” IEEE Trans. Compul.,
vol. C-24, No. 1, pp. 995-998, Oct. 1975.

[12} T. Sasao, and P. Besslich, “On the complexity of MOD-
2 sum PLA’s,” IEEFE Trans. Comput., vol. 39, No. 2,
pp- 262-266, Feb. 1990.

[13] T. Sasao, “AND-EXOR expressions and their optimiza-
tion,” in (Sasao e.d.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993,

[14] T. Sasao, “EXMIN2: A simplification algorithm for
exclusive-OR sum-of-products expressions for multiple-
valued input two-valued output functions,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 12, No. 5, pp. 621-632, May 1993.

[15] T. Sasao, “Easily testable realizations for generalized
Reed-Muller expressions,” Proc. IEEE The Third Asian
Test Symposiumn, pp. 157-162, Nov. 1994.

{16] T. Sasao, and D. Debnath, “An exact minimization al-
gorithm for gencralized Reed-Muller expressions,” Proc.
IEEE Asia-Pacific Conference on Circuits € Systems,
pp. 460-465, Dec. 1994,

I3

[9

