® O B B b 14-1
(1995. 3. 8)

Bl) BégE{+x BDD /Xy r— ¥ FDIEH
L EmE B
BB R TR

SEE, “HREZ S 7 (BDD) 2 AAIWTE AR BETAFEZHVWTIINZ
TR > A RELREEZ B TV T XL BRREINDDOH
5, L L bh 2 bnRBEORELRE S LUI 77 7DT A4 XK
ESANBETHIRS S EHTELL LA MHEmMASH YD . BDD DJGHNE
=Y TWh, AFETIEI BDD 24K 3 5 APPLY 8#{EZ DL DIZEN D
(pruning) DIEEEE M AAA 7S APPRUNE #1EZ $RE T 5 . AR TIIRERN
% SHERA L T A2 M D 1 EER D APPRUNE ##EX BIICE > TEDT IV
TYXLEEZL, SLIZINEBEELLNNy =V EHW—RILY—F7
T —wBEBRDR/MUDEEE T T2,

BDD Package with Pruning and its Application
Hiroyuki OCHI

Dept. of Computer Engineering, Faculty of Information Sciences,
: Hiroshima %ity University ‘
151-5, Ozuka, Numata-Cho, Asa-Minami-Ku, Hiroshima, 731-31, JAPAN
ochi@ce.hiroshima-cu.ac.jp

Recently, various algorithms for solving combinatorial optimization problems
using BDD-based set manipulation technique are proposed. The ability of
such algorithms, however, are limited by the size of BDDs which grow larger
for the size of the problems. In this paper, an extension of APPLY op-
eration, named APPRUNE operation, is proposed, which performs APPLY
operation (BDD construction) and pruning simultaneously. An algorithm for
APPRUNE operation which performs pruning with respect to a threshold
function is considered as a prototype, and experimental results for solving
exact minimization problem for generalized Reed-Muller expression will be
shown.

1 Introduction

Recently, Binary Decision Diagrams
(BDDs) [1] have attracted much attention
because they makes us possible to manipu-
late Boolean functions efficiently in terms of
time and space. As our understandings of
BDDs has deepened, the range of applica-
tions has broadened. Besides Boolean func-
tions, we are often faced with manipulating
- sets of combinations in VLSI CAD problems.
By mapping a set of combinations into the
Boolean space, they can be represented as
a characteristic function using a BDD. This
method enables us to implicitly manipulate
a huge number of combinations, which have
never been practical before. BDD-based set,
representation is more efficient than conven-
tional methods. However, it can be ineffi-
cient at times because BDDs were originally
designed to represent Boolean functions.

Minato et al. proposcd a new type of BDD,
named O-suppressed BDD (ZBDD), which
has been adapted for set representation [2].
For example, Sasao et al. implemented their
exact minimization algorithm for exclusive-
or sum-of-products expression using a con-
ventional BDD package and a ZBDD pack-
age, and shown that ZBDD is more efficient
to represent sets of large number of combi-
nations of Boolean functions than conven-
tional BDD [3]. However, there are still many
search problems which can be solved much
better by using backtrack technique than by
manipulating ZBDDs (or BDDs). A major
reason is that ZBDDs grow too large because
they represent all the solutions, even when
we need only one of them. However, there
are yet many cases that intermediate ZBDDs
grow too large though the final ZBDD is very
small. Part of the reason seems that prun-
ing is not supported in ZBDD package. To
avoid generating unnccessary nodes, we have
to construct a ZBDD which represent the sct
defined by an evaluation function, which can
grow so large that the effect of pruning is
spoiled.

In this paper, “APPRUNE” (APply +
PRUNE) operation is proposed. APPRUNE

operation is an extension of APPLY opera-

{ysyz, e} {Y3Y1 Vet {ys, val

Y3 Ys Y3
0 I o 1 1

2
0y1

Yi

Figure 1: 0-supressed BDD

tion; it checks evaluation function to reduce
both the number of recursive calls and the
number of generated nodes. To show the
prototype of the APPRUNE operation, in this
paper, a threshold function is taken as an ex-
ample of the evaluation function for pruning.
To evaluate the developed ZBDD package
with APPRUNE operation with respect to a
threshold function, an exact minimization al-
gorithm for generalized Reed-Muller expres-
sion [4] is efficiently implemented on a con-
ventional ZBDD package, and then modificd
to utilize APPRUNE opceration. From exper-
imental results, it scems that APPRUNE op-
eration reduces both time and space.

2 Preliminary

2.1 O0-suppressed BDD

A O-suppressed BDD (ZBDD) [2] is a di-
rected acyclic graph with (at most) two sink
nodes labeled by ‘0’ and ‘1’. Non-terminal
nodes are labeled by a variable (or symbol),
say yi, and has exactly two outgoing edges,
say ‘0’-edge and ‘I’-cdge, labeled by ‘0’ and
‘1’, respectively. A variable appear only once
in every path in the graph, and variables ap-

_._2_

pear according to a total order for a whole
graph. There is no pair of isomorphic nodcs.
There is no nodc whose ‘1’-edge is directed to
‘0’ sink node. An example of ZBDD is shown
in Fig. 1.

Every path from a non-terminal node to
the ‘1’ terminal node corresponds to a com-
bination of variables; a variable is contained
in the combination iff a ‘1’-edge of a node la-
beled by the variable is contained in the path.
A non-terminal node represents a set of com-
binations corresponding to all the paths from
the node to the ‘1’ sink node. A ‘0’ sink node
represents an empty set ¢, and ‘1’ sink node
itself represents a set {¢}, where € is a combi-
nation of no variable. In the following, a node

which represents a set P is also denoted by
P.

2.2 Conventional APPLY oper-
ation

Let us denote the variable labeled to a node
P by P.var, and denote by P.succO and
P.succl the successors of ‘0’- and ‘1’-edge,
respectively, of the node P. To implement
a ZBDD (or BDD) package, at least every
node require memory space to hold informa-
tions .var, .succ0, and .succl.

Let us consider an intersection operation
Intsec() as an example of APPLY opcration
of a ZBDD package. To guarantee that there
is no pair of isomorphic nodes, a hash table
named unig-table is introduced. The hash
keys for the unig-table are .var .succO and
.succl of a node. (The other hash table,
named computed-table, is discussed later.)

Given sets, say P and @, represented by a
ZBDD, Intsec(P,Q) returns a ZBDD which
represents the set P N Q. Intsec() is per-
formed by the following recursive algorithm:

Intsec(P,@) {

if (P==¢) return ¢;

if (Q==¢) return ¢;

if (P==Q) return P;

if (P.var> Q.var) return Intscc(P.succ0,Q);
if (P.var< Q.var) return Intsec(P,Q.succ0);
RO=Intsec(P.succ0,Q).succ0);

Ri=Intsec(P.succl,Q).succl);

if (Rl==¢) return RO;
R= scarch a node with (/’.var,R0,R1)
in unig-table;
if (R exist) return R;
R= generate a node with (P.var,R0,R1);
append R to the unig-table;
return R;

3 APPRUNE operation

3.1 Basi’c idea of APPRUNE op-
eration

To solve exhaustive search problem efficiently
using ZBDD package, it seems eflective to ex-
tend APPLY opcration to perform pruning.
Let us call such opcration “APPRUNE” (AP-
ply + PRUNE).

To implement pruning, an evaluation func-
tion should be given. In addition, the eval-
uation function itself should not be time-
consuming. To implement pruning in AP-
PLY operation, evaluation function should
be computed easily [rom local information
around a node which is under test for prun-
ing.

As an example of an evaluation [unction
for pruning, let us consider a threshold func-
tion TH(y; w,7) (y € {0,1}") defined as fol-
lows:

TH(yo, ..

S Yn—15Woy ...y Wy, T) =

{ 1 il (Z}:ol(w,-y;)) <7

0 otherwisc

In the following, let us assume that ev-
cry weight (w;) is non-negative constant, and
the given threshold value (7) is positive.
T H(y;w,) is computed by the following re-
cursive algorithm:

TH(y07 cesy Ynts T) {
if (n==0) return 1;
if(yn—l==0)
return TH(yo, ... s Yno2. 7);
lf (T S wn—l)
return 0;
else

return TH(yo, ..y Ynoas T = Wno1);

Given a set P represented by a ZBDD, and
let T be a set {y|TH(y; w,7) =1}. AZBDD
which represents a set PN T is constructed
by PruneTH(P, 7), where PruncTii() is imple-
mented as [ollows:

Pruneru(P, 7) {
if (P==¢) rcturn ¢;
if (P==¢) return ¢;
RO=PruneTH(P.succ0,7);
if (T < wpyar) return RO;
R1=PruneTt(P.succl,7 — Wpyar);
if (Rl==¢) return RO;
R= search a node with (P.var,R0,R1)
in unig-table;
if (R exist).return R; ‘
-R= generate a node with (P.var,R0,R1);
append R to the unig-table;
relurn R;

If we introduce an extra space, say .val,
for every node to save the maximum value
of the weighted sums for all combinations in
the corresponding set, and assume that .val
of every existing node have been defined, the
above algorithm is improved as follows:

Prunetn(P, r) {
if (P==¢) return ¢;
if (P==¢) relurn ¢;
if (P.val< 7) return P
RO=PruneTH(P.succ0,7);
if (T < wpar) return RO;
R1=PruneTn(P.succl,r — wpyqr);
if (Rl==¢) return RO;
R= search a node with (P.var,R0,R1)

in unig-table;

if (R exist) relurn R;
R= generate a node with (P.var,R0,R1);
append R to the unig-table;
R.val=max(R0.val,Rl.val+wp .,);
return R;

As an example of binary APPRUNE oper-
ation of ZBDD, let us consider an Intsec()
operation with pruning with respect to the
threshold function. IntsecTi() is imple-
mented as follows, where IntsecTH(P,Q, 7)

returns a ZBDD that represents a set I N
QNT,and T = {y|TH(y; w,7) = 1}:

IntsecTit(P, Q, 1) {
if (P==9¢) relurn ¢;
 if (Q==¢) rcturn ¢;
if (P==Q) return PruneTH(P, 7);
if (P.var> Q.var) ;
return IntsecTH(P.succ0,Q), 7);
if (P.var< Q.var)
relurn IntsecTH(P,Q.succ0,7);
RO=IntsecTH(P.succ0,Q).succ0,7);
if (1 € Wpyer) return RO;
Rl=IntsecTH(P.succl,@.succl,7 — wp yor);
if (Rl==4¢) return RO;
R= search a node with (P.var,R0,1%1)
in unig-table;
if (R exist) return R;
R= generate a node with (P.var, R0,R1);
append R to the unig-table;
R.val=max(R0.val, Rl.val4+1p yar);
relurn R; :

3.2 Computed-table for AP-
PRUNE operation

In order to avoid ever making multiple recur-
sive calls of APPLY operation on the same
pair of arguments, a hash based cache, called
computed-table, is introduced to the conven-
tional BDD and ZBDD packages. The hash
keys for the computed-table is a binary oper-
ator and two arguments. Every slot of the ta-
ble should hold, together with the computed
result, an operator, and two arguments in or-
der to check miss hit because of hash conflic-
tion.

Computed-table is also important for
APPRUNE operation. Let us consider
IntsecTH() again. Every slot of the table
should hold a threshold value in addition to
an operator, two arguments, and the com-
puted result. A naive choice of the hash
keys are an operator, a threshold value and
two arguments, however, this considerably
decreases the hit probability.

A good approach is to choose only an op-
crator and two arguments as the hash keys;
Computed-table is utilized as follows:

4

if (operator and arguments hit) {
if (table[h].7 < 7) ignore the table;
if (\able[h].7==T) relurn table[h].R;
if (table[R].7 > 7)
return PruneTH(table[h].R,7);
}

where table[h].7 and table[t].R are the
threshold value and the computed result,
respectively, rcad from the slot of the
computed-table, and 7 is the threshold value
of the current operation. '

4 Application

As an application of developed 0-suppressed
BDD package with APPRUNE operation, an
exact minimization algorithm for generalized
Reed-Muller expressions (GRM) is imple-
mented. A novel algorithm for exact GRM
minimization have been proposed and eval-
uated using conventional BDD package by
Sasao and Debnath [4]. In this section, a
modified algorithm which is suitable for im-
plementation using ZBDD package is pre-
sented.

4.1 ESOP minimization

Let us introduce ternary representation of a
product term, such as 000, 010, and 020 for
ToT1T2, ToTiZy, and ToF,, respectively. A
minterm corresponds to a ternary represen-
tation without ‘2’ in any digit.

Arbitrary product terms combined by
exclusive-ors is called an exclusive-or sum-of-
products expression (ESOP). Let us denote
an n-variable ESOP using ternary represen-
tation of product terms as follows:

¥ (wp) (yp € {0,1}) (1)

pe{0,1,2}n

The problem of finding a minimum ESOP
for a given single-output Boolean function
corresponds to finding a minimum cost so-
lution of the Helliwell Fquation H(y) = 1.
I(y) for an n-variable Boolean function f(z)
is defined as follows:

H(yo‘..o, ey ?/2.“2) =

A (1 @ f(a)® Ey,,) . (2)
ag{0,1}" pEP
where P, C {0, 1,2}" is the sct of all product
terms that cover a minterm a. For every so-
lution (a set of valucs of ys) of the Helliwell
equation, expression 1 gives the correspond-
ing ESOP for f(x). Fig. 2 shows H(y) for
n =3

Using a transformation ¥; A ¥, = ¥ A
(1 & ¥ @ i) repeatedly to the right side of
equation 2, we have:

H(!/o...o, ceey ?/2...2) =

A (leEf(b)@ Eyp), (3)

be{0,2}" PEQs
def

where f(z; = 2) = f(z; = 0)® f(z; = 1),
and Q, C {0,1,2}™ is the sct of all product
terms that cover exactly one of minterm(s)
covered by a product term b. Fig. 3 shows
H(y) forn = 3.

4.2 GRM minimization

Let V(p) be the set of variables appear in a
product term p. An ESOP is a generalized
Reed-Muller expression (GRM) ifl there is no
pair, say (p,q), of product terms in ESOP
such that V(p) = V(q). An ESOP denoted
by expression 1 is a GRM iff G(y) = 1, where

G(;’/o...m s ?/2...2) =

A 2

be{o.2}” p S.t. V(p)=V(b)

yp| <1 (4)

From the equation II(y) A G(y) = 1 and
equations 3 and 4, an algorithm for generat-
ing GRM for a given Boolean function f is
derived.

4.3 Efficient implementation
of GRM minimization

For efficient implementation using BDDs or
ZBDDs, ordering of variables of the dia-
gram and ordering of evaluation of expres-
sions should be carefully chosen.

It seems good to chose a variable ordering
which satisfies the following property:

.5

H(y)

H(y)

> > > > > > >

16 £(0,0,0) @ Yooo D Yooz ® Yoz20 D Yo2z D Y200 B Y202 B Y220 B Y2
1 £(0,0,1) @ yoo1 D Yooz D Yo21 D Yozz P Y201 D Y202 P Y2 B Yoo
1® £(0,1,0) ® yo1o D Yo12 D Yo2o0 B Yozz B Y210 S Y212 P Y220 P Yoz
18 f(0,1,1) ® yo11 D Yo12 D Yo21 D Yoz D Ya11 ® Y212 D Yoz B Yaze
1@ f(1,0,0) D Y100 @ Y102 D Y120 D Y122 D Y200 D Y202 D Y220 b Y22
18 f(1,0,1) @ Y101 D Y102 @ Y121 D Y122 D Y201 © Y202 D Yon B Yo
1@ f(1,1,0) ® y110 D Y112 D Y120 D Y122 D Y210 D Y212 B Y220 D Yoo
1@ f(1,1,1) @ y111 D Y112 D Y121 D Y122 D Y21 D Y22 D Yoo B v

Figure 2: Helliwell Equation for n = 3

1@ £(0,0,0) © yooo & Yooz D Yozo D Yoz2 D Y200 D Y202 B Y220 B Yo
1@ £(0,0,2) @ yooo @ Yoo1 D Yoz0 D Yo21 D Y200 D Y201 D Y220 D You
1 & £(0,2,0) D yooo D Yooz D Yoro D Yo12 D Y200 B Y202 F Y210 P Y12
1® £(0,2,2) & yooo D yoor @ Yoo B Yo11 D Y200 B Y201 B Y210 D ¥anr

1@ f(2,0,2) @ yooo P Yoor D Yoo D Yoz21 B Y100 B Yior D Y120 D 1im
1® £(2,2,0) @ yooo D Yooz D Yo10 D Yor12 B Y100 D V102 D Y110 B Y112

> > > > > > >

1 f

(0
(0
1 @ f(2,0,0) D yooo D Yooz D Yo20 D Yozz D Y100 D Y102 D Y120 D Y122
(
(
(2

1 2,2) ® yooo B Yoo1 D Yo10 D Yo11 D Y100 D Y101 D Y110 D Y1

Figure 3: Alternative form of Helliwell Equation for n = 3

e ys are sorted by the number of vari-
ables appear in the corresponding prod-
uct term.

o y, and y, are placed as near as possible,
ifV(p) = V(g).

A variable ordering for n = 3 which satisfies
the above property is yopo > Yoor > Yoo >
Yoi1 > Yoo > Y11 > Yiio > Yinn > Yooz
Yo12 > Yio2 > Yuz > Yoo > Yo2r > Yizo
Yi21 > Y200 > Y201 > Y210 > Y1 > Yoz
Y122 > Y202 > Y212 > Y220 > Y221 > Y222-

A novel ordering of evaluation have been
proposed in [4]. Fig. 4 shows the algorithm
for n = 3 based on the ordering of evaluation.

V VYV

5 Experiments

Let us assume that therc is a preprocessor
that computes a near-minimal GRM for a
given Boolean function. Let the number of

product terms of the GRM derived from the
preprocessor be to. The task of exact mini-
mization program can be limited to finding a
GRM whose number of product terms is less
than .

Two versions of programs are implemented
and compared:

(a) Without APPRUNE operation

A ZBDD which represents a set T =
{yITH(y;1,1y) = 1} is explicitly gener-
ated, then a ZBDD which represents a
set ¢4 5 = ¢a.2 N T is generated, then
&%...5 is used instead of ¢;..5 in the suc-
ceeding steps of the algorithm shown in
the previous section.

(b) Using APPRUNE operation
The algorithm shown in the pre-
vious section is implemented, using
IntsecTH(P, Q,to) for every PN Q ap-
pear in the algorithm.

— 6 —

. Construct a ZBDD for

ba22 = (1@ £(2,2,2) @ Yooo P Yoor B Yor0 B Yo11 @ Y100 B ¥101 D Y110 © Y111)
AAtMostOne(yooo, Yoo, Yo10, Yo11: Y100, Y101 Y110; Y111)s

where AtMostOne(yo, ..., yk_q) = 1 iff (5l y) < 1.

. Construct ZBDDs for

$220 = (1D f(2,2,0) D Yooo D Yooz D Yo10 D Yo12 D Y100 D Y102 ® Y110 D Yi12)
AAtMostOne(yooz, Yor2, Y102, Y112) A 222,

$202 = (1 D £(2,0,2) D Yooo P Yoor D Yozo & Yo21 @ Y100 ® Y101 © Y120 ¥121)
AAtMostOne(yozo, Yo21, 120, Y121) A $222, and

do2z = (1 D £(0,2,2) & Yooo D Yoor D Yoro D Yo11 Y200 & Y201 S Y210 @ yan1)
AAtMostOne(y200, Y201, Y2105 Y211) A Pa22-

. Construct ZBDDs for

B200 = (18 £(2,0,0) D Yooo D Yooz D Yo20 D Yo22 B Y100 B Y102 B Y120 B 1122)
AAtMostOne(yozz, Yi22) A Paz0 A P202:

bo20 = (1 ® £(0,2,0) D Yooo D Yooz D Yoro B Yor12 D Y200 B Y202 D Y210 D Y212)
AAtMostOne(y202, ¥212) A d220 A doza, and

dooz = (1 B (0,0,2) & yooo © Yoor P Yoo D Yoz1 B Y200 P y201 © Yaz0 B y221)
/\AtI\IIOStOHC(yzzo, yggl) A ¢202 AN ¢02‘2-

. Construct a ZBDD for

dooo = (1 @ f(0,0,0) & yooo E Yooz P Yo20 P Yoz2 D Y200 B Y202 D Y220 P y222)

Ad200 A Pozo A Pooz-

5. Find a minimum cost solution satisfying ¢ee0 = 1, and output the corresponding GRM.

Figure 4: GRM minimization algorithm for n = 3

From the results of preliminary experi-
ments, (1) even program (a) scems outper-
forms existing ones, and (2) program (b)
seems even better than program (a). The de-
tailed experimental results will be available
at the oral presentation.

6 Conclusion

In this paper, APPRUNE (APply + PRUNE)
operation for O-suppressed BDD (ZBDD)
package was proposed to reduce time and
space to solve exact optimization problems.

7

To show the prototype of thc APPRUNE op-
cration, a threshold [unction was taken as an
example of the evaluation function for prun-
ing, and an exact minimization algorithm for
generalized Reed-Muller expression (GRM)
is implemented using ZBDD package with
and without APPRUNE opecration.

From experimental results, (1) the devel-
oped program for GRM minimization scems
outperforms existing ones even if APPRUNE
operation is not introduced, and (2) time and
space scem to be reduced even more by using

APPRUNE operation.

Future work includes devecloping AP-

PRUNE operations with respect to various
kind of evaluation functions which are usc-
ful for various problems.

Acknowledgment

The author would like to thank Prof. T.
Sasao and Mr. D. Debnath of Kyushu Insti-
tute of Technology for their valuable discus-
sions.

References

1]

2

—

(3l

(4]

R. E. Bryant : “Graph-based algo-
rithms for Boolean function manipu-
lation”, IEEE Trans. on Computers,
vol. C-35, no. 8, pp. 677-691, Aug. 1986.

S. Minato : “Zero-suppressed BDDs
for set manipulation in combinatorial
problems”, Proc. 30th ACM/IEEE De-
sign Automation Conference (DAC’93),
pp. 272-277, June 1993.

T. Sasao and M. Matsuura : “A method
to derive exact minimum AND-EXOR
expressions using Binary Decision Di-
agrams”, Technical Report of IEICE,
VLD93-58, Oct. 1993, (in Japanese).

T. Sasao and D. Debnath : “An exact
minimization algorithm for generalized
Reed-Muller cxpressions”, Proc. IEEE
Aaia-Pacific Conference on Circuits and
Systems (APCCAS’94), pp. 460-465,
Dec. 1994,

