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Abstract: This paper presents a design method for AND-OR-EXOR three-level networks, where a single two-
input EXOR gate is used. The network realizes an Exclusive-OR of two sum-of-products expressions (EX-SOP).
The problem is to minimize the total number of product terms. Algorithms for minimization of EX-SOPs with
up to five variables are shown. A heuristic algorithm is also presented to simplify EX-SOPs with six or more
variables. Up to five variables, all the representative functions of NP-equivalence classes were minimized. For
five-variable functions, the upper bound on the number of products in minimum EX-SOPs is found to be 9. For
n-variable (n > 6) functions, minimum EX-SOPs require at most 9-2"~% products. This upper bound is smaller

than 2"~!, the upper bound for the conventional sum-of-products expressions.
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1 Introduction

Logic networks are usually designed by using AND
and OR gates. However, it has been observed that the
addition of exclusive-OR (EXOR) gates in the design
often produce better networks [8].
the average, five-variable functions require 7.46 prod-
ucts in minimum SOPs (sum-of-products expressions),
while 6.16 products in minimum ESOPs (exclusive-or
sum-of-products expressions) [9]. On the other hand,
to realize an arbitrary function of six variables, min-
imum SOPs require at most 32 products, while mini-
mum ESOPs require at most 15 products [5]. These
reveal the advantages of designing logic networks using
EXOR gates. In these designs, EXOR gates with un-
limited fun-in are used. However, in most technologies,
EXOR gates with many inputs are expensive.

In this paper, we present a design method for AND-
OR-EXOR three-level networks. The network real-
izes an exclusive-OR of two sum-of-products expressions
(EX-SOP). Here, only a single two-input EXOR gate is
used. Such a network is shown in Fig. 1.1. An EX-SOP
of a function f can be written as FF = G & H, where
G and H are SOPs. Our objective is to minimize total
number of products in G and H.

For example, on

2 Definitions and Basic Properties
Definition 2.1 7(EX-SOP : F) denotes the number
of products in F, an EX-SOP for f. 7(EX-SOP : f)
denotes the total number of products in minimum EX-
SOP for f. T(SOP : f) denotes the number of products
in minimum SOP for f.

The following theorem is the basis of the minimiza-
tion of EX-SOPs. We assume that the two SOPs of the
EX-SOP do not share products between them.

Theorem 2.1 Let f be an n-variable function. Let G,
be the set of all the n-variable functions. Then,

7(EX-SOP: f)
= min{+(SOP: g) + 7(SOP: f@y)}' (2.1)

(Proof) Suppose that the minimum EX-SOP for f is
represented as f = g® h. From this, we have h = f @ g.
Since all possible functions g are considered in (2.1), we
have the theorem. (Q.E.D.)

Theorem 2.1 shows that for n-variable functions, we
have to check 22" different g’s and take one with the
minimum number of product terms. But this search
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Figure 1.1: AND-OR-EXOR three-level network.

space is very large, even for n = 5. The following lemma
shows that we can drastically reduce this search space.

Lemma 2.1 In Theorem 2.1, suppose we need to find
an EX-SOP with fewer than p products. If we consider
g’s so that T(SOP : g) are in increasing order, then we
have only to consider those g’s, such that

T(SOP:g) < [p/2-1],
where [k] denotes the least integer greater than or equal
to k.

(Proof) Suppose we already considered all the g’s such
that 7(SOP : g) < [p/2 — 1]. Now it is sufficient to
prove that a further increase in 7(SOP : g) by con-
sidering other g’s cannot produce an EX-SOP F with
T(EX-SOP : F) < p. We prove this by contradiction.

We already considered ¢’s such that 7(SOP : g) =
0,1,...,[p/2 — 1]. To obtain 7(EX-SOP : F) < p, we
increase 7(SOP : g) by 1,i.e., 7(SOP : g) is now [p/2].
We have 7(EX-SOP : F) = 7(SOP : g) + 7(SOP :
f @ g). Therefore, 7(SOP : f & g) < [p/2], im-
plies 7(SOP : f @& g) = [p/2 - 1],...,1, or 0. But
if such an EX-SOP exits, that must be found when we
considered 7(SOP : g) = 0,1,...,[p/2 — 1]. Thus,
7(EX-SOP : F) is not less than p. Similarly, we can
show that a further increase in 7(SOP : g) by consid-
ering other ¢’s cannot produce an EX-SOP with fewer

(Q.ED.)

products. Hence, we have the lemma.

Example 2.1 In Theorem 2.1, to find an EX-SOP
with fewer than 8 products, we have only to consider
those g’s such that 7(SOP : g) < 3. Similarly to
find an EX-SOP with fewer than 9 products, we have
only to consider those g’s such that 7(SOP : g) < 4.

(End of Example)

The Shannon decomposition is stated in the following
lemma.

Lemma 2.2 An n-variable function f(z1,22,...,%n)
can be decomposed into two sub-functions by using the
Shannon decomposition, f = Z1fo V 1 f1, where fo =

fler=o and fi = fley=1.

Lemma 2.3 If f and g are disjoint (i.e., f-g = 0), then
F(h11®h12)Vg(ha1®haa) = (fh11Vgha1)B(fh12Vghas).

(Proof) f(h11 @ h12) V g(ha1 @ ha2)
' = f(h11 ® h12) @ g(ha1 © ha2)
= (fh11 ® gha1) ® (Fh12 ® ghaa)

= (fhu1 V gha1) @ (fh12 V gh22). (Q.E.D.)

Lemma 2.4 [1] Let 7(EX-SOP : n) denote the mazi-
mum number of products required to realize an arbitrary
n-variable function by a minimum EX-SOP. Then

7(EX-SOP :n) < 27(EX-SOP:n —1).



(Proof) An arbitrary n-variable function can be ex-
panded as f = Zfy V zfi, where fo = fl.—0 and
fi = flz=1. Representing fo and f; by EX-SOPs, we
have an expression F for f.
Fy = 2(Hoo ® Hp1) V «(Hyo & H11). (2.2)

In (2.2) H;j’s are SOPs. Since fy and f; are functions
of n — 1 variables, the total number of products in F} is
at most 27(EX-SOP :n — 1).
By applying Lemma 2.3 to (2.2), we have an EX-SOP
F of f:

F = (i’Hoo \% .’DH]()) (8] (E’Hol v ZH]I). ) (23)
Note that the total number of products in (2.2)
and (2.3) are the same. Thus, f can be represented by
an EX-SOP with at most 27(EX-SOP : n — 1) prod-
ucts. Hence, we have the lemma. (Q.E.D.)

3 Minimization of EX-SOPs
with up to Five Variables

In this section, we present algorithms to minimize
EX-SOPs with up to five variables. Here, we assume
that two SOPs of the EX-SOP do not share products
between them. The following is a straightforward algo-
rithm to minimize EX-SOPs with n (n < 5) variables.

Algorithm 3.1 (EX-SOP minimization: Straightfor-
ward)

1. Let f be the function to be represented as an EX-
SOP, and G, be the set of all the n-variable func-
tions. G, is sorted in ascending order of T(SOP :
g), where g € G,.

2. best shows the minimum number of products in
EX-SOPs ever found. sol shows a pair of n-
variable functions.
best — 7(SOP: f); sol — (£,0)

3. For each g € G, (sequentially from the beginning of
Gn) such that T(SOP : g) < [best/2 - 1],

temp — T(SOP:g)+7(SOP: fadg) (3.1)
If (temp < best) then :
best « temp (3.2)

sol— (g, fDg)
endif

4. Return best and sol.

For up to four-variable functions, Algorithm 3.1 pro-
duces solutions very quickly. However, for five-variable
functions, it is rather time consuming. In implement-
ing Algorithm 3.1 for five-variable functions, we use the
following techniques.

3.1 Strategy for Five-Variable EX-SOP
Minimization

The most time consuming part of Algorithm 3.1
is (3.1). In this algorithm, G, is sorted in ascending or-
der of 7(SOP : g) (g € Gn), and we are considering Gn

sequentially from the beginning. Thus, we can obtain
7(SOP : g) without much effort. Therefore, the most
time consuming part of the algorithm is the computa-
tion of 7(SOP : f @ g). To compute 7(SOP : f & g),
we use a cost table instead of doing logic minimiza-
tion. The total number of five-variable functions is
232 ~ 4.3 x 10°. So, it is impractical to store all the
values of 7(SOP : f®g). Instead, we use the cost table
of the NP-representative functions. Fig. 3.1 shows the
cost table for the NP-representative functions.

The numbers of products in SOPs are invariant under
the permutation and/or negation of the input variables.
In other words, if f~g, then 7(SOP: f) = 7(SOP : g),
where '~ denotes the NP-equivalence relation [6, 4]. The
number of NP-equivalence classes of five-variable func-
tions is 1,228,158. We have the cost table of 7(SOP : f)
for all the NP-representative functions f with five vari-
ables (Fig. 3.1). However, to get the representative
function from a given function is rather time consum-
ing. To speed up the computation, we use u(f), the
modified coordinate representation of f, which will be
defined later in this section. p(f) is quickly calculated
from f, and have the following property.

Property 3.1 Let f and g be functions. If =g, then
w(f) = u(g)-

Among the five-variable functions, there exist func-
tions f and g such that fg and u(f) = plg)-
Thus, for some f, u(f) corresponds to more than
one NP-equivalence class. All the 1,228,158 NP-
equivalence classes of five-variable functions have only
149,466 distinct modified coordinate representations.
Although p(f) cannot: uniquely identify the NP-
equivalence classes, we can use it to estimate the
value of 7(SOP : f). We use the modified cost ta-

= M};’:i‘;}(y){T(SOP:g)} and pyp, =

P(}?jif(_g){‘r(SOP:g)}. Usually, the differences be-
tween pioy, and p,, are small, and in many cases we
can show that (temp > best) in (3.2) in Algorithm 3.1.
If there is any possibility that (temp < best), then we

ble storing piow

use more time consuming routine to obtain the value of
7(SOP: f & g).

Fig. 3.2 shows the modified cost table for the NP-
representative functions. In this table, the left part
stores the distinct values of u(f), and the right parts
store the upper and lower bounds on 7(SOP : f). We
can quickly compute the value of pu(f) for a given f.
Because the left part (x(f)) is the array of 32 integers,
we use hash technique to look-up modified cost table.

Definition 3.1 [2] The coordinate representation of f,
COR(f) of a five-variable function consists of 32 inte-
gers:

COR(f) = (co; €1,C2,C3,Ca,C5; C12,C13,---5Ca55 €123,

C124, - -+ 5C345; C12345 C1235, C12455 C1345, C2345; 612345))
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Figure 3.1: Cost table for the NP-
representative functions.

and is calculated as follows:

C = 2n-t — Iflv
Ci = 271 - If@lgl, (1 € L)a
cij = gn-1 _ If Dzx; P 1:j|, (l,] € L),
Cijk = 2"—1 - |f SR f @z.l ®xk|v (lvjvk € L)v
Cijkl = on-1 _ If Dr;Dzx; DD I[I, (i,j, k,1l e L),
cloaas = 2" 1~ |f D2 Dy D23 D14 D 5],

where |f| denotes. the number of true minterms of f,

n=35, and L = {1,2,3,4,5}.

Definition 3.2 The modified coordinate representation
of f, p(f) of a five-variable function consists of 32 in-

tegers, and is calculated from COR(f) as follows:
p(f) = (do; di1,d2,d3,dy,ds; dia,dis, ..

., dys; di23, diag,

-y d3455 di23a, d1235, di2as, d13ss, dasas; di2ass)-
dy = co, di(i € {1,2,3,4,5}) are obtained from c;
by deleting the sign and rearranging in ascending or-
der. dij, diji, and d;ji; are obtained in similar ways.

d12345 = |C12345].

Theorem 3.1 u(f) is invariant under the permutation

and/or complementation of the input variables.

(Proof) First, we will show that (dy, da, d3,dy, ds) is in-
variant. By the definition of COR(f), the permutation
of the input variable only permutes the values within
the group (c1, ¢z, ¢3,¢4,¢5). In p(f), the values of d; are
rearranged in ascending order. So, (di,ds,ds,ds,ds) is
invariant under the permutation of the input variables.

Note that,
c=2""—|f@a|=2"" = (|&:f| + |z f])
= (2" =z f]) ~ |&8:f| = |aif| - |7 £l

Thus, the complementation of the variable z; only
changes the sign of ¢;. But we discard the signs of ¢;’s.
Therefore,.(dy, dy, d3, d4,ds) is invariant under the com-
plementation of the input variable. For other groups in
u#(f), we can show that the values are invariant under
the permutation and complementation of the input vari-

ables.

(QED.)

According to Lemma 2.1, we can reduce the total
search space by considering g¢’s such that 7(SOP : g) is
in ascending order. For this purpose, we use the sorted
function table shown in Fig. 3.3. We found that for
five-variable functions, maximum value of 7(SOP : g)

Figure 3.2: Modified cost table for
the NP-representative functions. €.

Figure 3.3: Sorted function ta-
bl

is four. Thus, the sorted function table stores only those
NP-representative function g’s, such that 7(SOP : g) <
4. The table is sorted in ascending order of 7(SOP : g).
There are only 6,138 NP-representative functions whose
minimum SOPs require four, or fewer products.

3.2 Algorithm for Five-Variable EX-

SOP Minimization

Algorithm 3.2 (Minimization of EX-SOPs for five-
variable)

0.

£ 95 ky Grep, and hyep, represent logic functions, and

pyrep; Pezsop; Pbound; Plow; Pup, and Pnew TEpTESENL
the number of products.

. Read the cost table, the modified cost table, and

the sorted function table for the NP-representative
functions.

2. Read the function to be minimized. Let it be f

3. Pezsop denotes the minimum number of products in

EX-SOP ever found. pezsop — 10. poouna TEPTE-
sents the upper bounds on the number of products
in the SOP for g. pyouna — 4.

4. Take the first representative function Grep from the
sorted function table, and py,.., «— T(SOP : grep)
from the cost table.

5. Generate all the functions of the NP-representative
class grp. Take the first function of this class. Let
the function be g.

6. h— fedyg.

7. Calculate p(h).

10.

11.

Obtain the upper and the lower
bounds on T(SOP : h) from the modified cost table.
Let them be pyp, and pioy, respectively.

If (pg,ep + Plow) 2 Pezsop, then go to step 13. (Re-

duction in peygop 8 impossible using the current h.)

- If Plow = Pup, then ppew — Prow and go to step 11.

(Ezact value of T(SOP : h) is obtained from the
modified cost table.)

Prew — T(SOP : h). (Using breadth-first search,
obtain the NP-representative function h,., of h,
then obtain T(SOP : h,.p) from the cost table.)

If (Pgrep + Prew) = Pezsop; then go to step 13. (Re-
duction in peggop 15 impossible using the current h.)



12. (New solution is found.) Pezsop < Pgrep + Pnew-
Save g and h as the latest solution. piound —
[Pezsop/2]1—1. ([k] denotes the least integer greater
than or equal to k.) If pround < Pgrep, then go to
step 14.

18. Take the next function g in the class grep (computed
in step 5), and go to step 6. If there is no remaining
function in this class, then take the next represen-
tative function g,.p from the sorted function table
and pg,.., — T(SOP : grep) from the cost table. If
Pbound < Pgrep, then go to step 14, otherwise go to
step 5.

14. Print the latest solution saved at step 12, and pezg0p
as the final number of products.

4 Simplification of EX-SOPs
with Six or more Variables

In this section, we present a heuristic algorithm to
simplify EX-SOPs with six or more variables. The al-
gorithm is based on the Shannon decomposition and ta-
ble look-up of minimum EX-SOPs for the representative
functions of NP-equivalence classes of five variables.
4.1 A Naive Method

Let f be an n-variable (n > 6) function. Recursively
applying the Shannon decomposition to f, we have
f=%1% Zn¢Tn-591V 2132  Tn_6Tn-592 V 2132

Ty 6Ep-593V  VIITy  Tpn6Tn-59y- (41)

Here g;’s are functions of five variables and N = 2"~
(n > 6). All the product terms in (4.1) are disjoint. Let
gi = hi1 ® his (1 < i < N). Putting expressions for g;’s
into (4.1), we have
=818y Zn¢Zn-5(h11 ® h12) VZ1 T2+ Tno6Tn-s

(h21 @ ha2) V 132 - - Tn—6Zn—5(h31 ® h32)
V"'Vzlxg"'l‘ﬂ_s.’tn_s(hzvl @hNQ). (42)

Now using Lemma 2.3 recursively, we have the fol-

lowing EX-SOP F of f:
F= (%1% - Tn-6Tn—shi VI1Z2- - Tn-6Tn-5ha1 VT
Ty Tpo6Tn-sha1 V- VIT1Z2 - Tn_6Tn-shnN1)
D (Z1%2+ Tn-6Tn_sh12 VI1T2 -  Tn-6Tn-sh22
VZ1Z2 Tn-6Tn_shza V---
Vzll'g-":tn_'ﬁln_g,h;vg). (43)

The minimum EX-SOPs for g;’s i.e., h;;’s can be
found from the table of minimized EX-SOPs for the rep-
resentative functions of NP-equivalence classes of five
variables.

4.2 An Improved Method

Let us consider a realization of an eight-variable func-
tion f(z1,...,2s). The decompositions we have used to
produce (4.1) are shown in Fig. 4.1 by using a Shannon
decomposition tree for f. In this tree, each non-terminal

node is labeled by a variable z; (1 < ¢ < 3), and all the
edges are labeled by 0 or 1. The root node represents the

c=IA
A
S

y

Figure 4.1:

of a logic function by using a decomposition vari-
Shannon decompositions. able.

Representation  Figure 4.2: Choosing

function f, and all other nodes represent sub-functions
of f. Function represented by a non-terminal node (la-
beled z;) is restricted to z; = 0(1) and is represented
by its child node connected to its 0(1) labeled edge.

In Fig. 4.1, 1, 2 and z3 are chosen as the decom-
position variable at the first, second and third level of
the tree, respectively. But, we can choose any variable
(z1,-..,28) at any node of the tree. Suppose we are
given a set of cubes, which represent a simplified SOP
of a function f. If we choose decomposition variables
without considering the shape of the cubes, it often in-
creases the number of cubes. An increase in the number
of cubes tends to increase the number of products in the
EX-SOPs of the sub-functions. This results an increase
in the number of products in the EX-SOP for the func-
tion f. Thus, our strategy is to find the decomposition
variable at each node of the Shannon decomposition tree
for f that increases as few products as possible.

Choosing a Decomposition Variable

Suppose that we have the four-variable function f
shown in Fig. 4.2. We want to decompose it into two
sub-functions by using the Shannon decomposition. We
can do this in four different ways, corresponding to four
variables of f. If we decompose f with respect to either
z, y or w, then the number of products is increased by
one in each case. But, if we choose z as the decomposi-
tion variable, then the number of products remains the
same. It is shown in Fig. 4.2 by the thick line. The thick
line divides the Karnaugh map into two parts without
splitting any loop. The resulting expression for f is
zZ(yw V Iw) V z(ZY V zw).

It is not always possible to find a decomposition vari-
able which do not increase any product. However, we
can choose the decomposition variable that increases as
few products as possible.

Effect of REDUCE in Decomposition

A four-variable function f is shown in Fig. 4.3(a). EX-
PAND [3] operations have already been done on the
cubes of this figure. Suppose that we want to decom-
pose f into two sub-functions by using the Shannon de-
composition. There are four ways to decompose f. But,
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Figure 4.3: Effect of REDUCE in decomposition.
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Figure 4.4: Effect of RESHAPE in decomposition.

in all the cases the number of cubes would be increased
by one. We perform the REDUCE operation [3] on the
cubes of Fig. 4.3(a), and get Fig. 4.3(b). Now we can
decompose f into two sub-functions without increasing
the number of products. We choose z as the decomposi-
tion variable. The two sub-functions of f are separated
by the thick line on the Karnaugh map of Fig. 4.3(b).

Effect of RESHAPE in Decomposition

A four-variable function f is shown in Fig. 4.4(a). We
want to decompose f into two sub-functions by using
Shannon decomposition. But we cannot do this with-
out splitting a cube. By doing RESHAPE (3] operation
on the two cubes of Fig. 4.4(a), we have Fig. 4.4(b).
Now we can decompose f without splitting any cube.
Here, z is the decomposition variable. The thick line
on Fig. 4.4(b) shows this decomposition. RESHAPE is
very useful to find a good decomposition variable. On a
set of cubes we can do RESHAPE operation in different
ways until we find a variable which split as few cubes
as possible.

Effect of REDUCE in Decomposition of Sub-
Functions

A four-variable function f is shown in Fig. 4.5(a). RE-
DUCE and RESHAPE are inapplicable to the cubes
of this figure. In Fig. 4.5, ‘DECOMP’ indicates de-
composition. We decompose f into two sub-functions
by splitting one cube. The resulting sub-functions are
shown in Fig. 4.5(b). Now we want to decompose each
sub-function again. RESHAPE is inapplicable to the
cubes of the sub-functions. We REDUCE the cubes,
and obtain Fig. 4.5(c). Decomposing the sub-functions
in Fig. 4.5(c), we have Fig. 4.5(d). From Fig. 4.5(b) to
Fig. 4.5(d) the number of cubes remain same. But, if

B DECOMP | G [D

LLB“i] w T
‘ ) z D)

y @ REDUCEl y x‘b’
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oyt Y lamy”
z KEED) z Ul
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Figure 4.5: Effect of REDUCE in decomposition of sub-
functions.

we decompose the sub-functions in Fig. 4.5(b) without
performing REDUCE operation, the number of cubes
would increase. Thus, when a decomposition increase
the number of cubes, a REDUCE  operation on the
cubes of the sub-functions may help to find a good de-
composition variable of the sub-functions.

4.3 Combining the Sub-Solutions

To obtain (4.3) from (4.2), for each pair of
products correspond to g¢;’s, we can choose their
positions in two different ways. Such as, for
Z1Z2-  Tn—6Tn-shy1 and Z1ZF3 -+ Tp—¢Fn-shiz. We
can choose Z)Zg -+ Fp-gZn-5h11 in the first SOP and
Z1Z2+ -+ Tn_En—_s5hi2 in the second SOP (as shown
in (4.3)), or vice versa. There are N pair of products for
an n-variable function, where N = 2775 (n > 6). We
can form many different EX-SOPs from (4.2). Thus,
some heuristic algorithm is necessary to form an EX-
SOP of the given function from the EX-SOPs of the
sub-functions.

4.4 Further Improvement

Each of the SOP of the EX-SOP can be simplified
again. We can simplify two SOPs simultaneously, so
that they can share products between them. Further
simplification of the EX-SOP may possible by using
some heuristic algorithm [10].

4.5 Heuristic Algorithm

Algorithm 4.1 (Simplification of EX-SOPs with n
(n > 6) variables)

1. Accept a simplified or minimized SOP of the given
function f (in the cube form).

2. Decompose f into 2"~° sub-functions, using the
procedure DecompFunc(f,YES) shown in Fig. 4.6.
Let the sub-functions be g; (1 <i < 2"7%).

3. For all g;’s obtain the minimum EX-SOPs (g; =
hi1 @ hia) using the procedure Find5varEX-SOP(g)
shown in Fig. 4.7.



DecompFunc( f,reduceFlag){

if reduceFlag = YES
REDUCE the cubes of f;

do RESHAPE until
a decomposition variable is found;

decompose f into sub-functions fy and f;

if # of cubes is increased in above decomposition
reduceFlag — YES;

else
reduceFlag — NO;

if fo and fi depend on more than five variables{
DecompFunc( fo,reduceFlag);
DecompFunc( f; reduceFlag

Figure 4.6: Procedure DecompFunc( f,reduceFlag).

Table 5.1: Number of four-variable functions requiring
t products.

t SOP | ESOP | EX-SOP
0 1 1 1
1 81 81 81
2 1804 2268 2316
3 | 13472 | 21744 22896
4128904 | 37530 37634
5 | 17032 3888 2608
6| 3704 24
7 512
8 26

av 4.13 3.66 3.62

av . average

4. Form an EX-SOP of f by combining the EX-SOPs
of gi’s.

5. Simultaneously minimize both SOPs of the EX-
SOP, so that they can share products between them.

6. Output the simplified EX-SOP.

5 Experimental Results

Using our EX-SOP minimization program, we mini-
mized all the 1,228,158 representative functions of NP-
equivalence classes of five variables. For five-variable
functions, when the number of products in the mini-
mum EX-SOP is 9 (worst case), we could minimize it
within 38.CPU seconds on a DEC ALPHASTATION 200.
When the number of products in the minimum EX-SOP

Find5varEX-SOP(g){
grep < NPrep(g);
// NPrep(g) returns NP-representative function of
// let revNPrep(g) is the reverse transform of NPrepfg)
i.e., g = revNPrep(g,.p)
(Prep1s Brepz) < minimum EX-SOP of Greps
// here Grep = hrepl D hrep2
// use the table of minimized EX-SOPs for
/ the representative functions of the
/ NP-equivaience classes of five variables
hy « revNPrep(hrep1 );
hy — revNPrep(hrepa )
return h; and hy;
// here g = h, @ hy

Figure 4.7: Procedure Find5varEX-SOP(g).

Table 5.2: Number of five-variable functions requiring ¢
products.

t SOP ESOP EX-SOP
0 1 1 1
1 243 243 243
2 20676 24948 25988
3 818080 "1351836 1511996
4 16049780 39365190 47838990
5 154729080 545193342 694830748
6 | 698983656 | 2398267764 | 2678055614
7 | 1397400512 { 1299295404 870943300
8 | 1254064246 11460744 1760384
9| 571481516 7824 32

10 160200992

11 34140992

12 6160176

13 827120

14 84800

15 5312

16 114

av 7.46 6.16 6.02

av : average

is 6 for the five-variable functions, the computation time
was less than 3 CPU seconds on the same machine. The
program can run within 25 megabytes of memory space.
Although the minimization program is not so time con-
suming for each function, we spent nearly two months
of computation time by using several workstations to
minimize over 1.2 million representative functions.

Table 5.1 and 5.2 show the number of four and five-
variable functions requiring ¢ products by different ex-
pressions, respectively.) In these tables, data for SOPs
and ESOPs are taken from [9]. EX-SOPs were mini-
mized by Algorithm 3.1 and 3.2, respectively. For five-
variable functions, on the average, EX-SOPs require
6.02 products while SOPs require 7.46 products. For the
same five-variable functions, on the average, EX-SOPs
require fewer products than ESOPs. We found that for
four and five-variable functions, the upper bounds on
the number of products in minimum EX-SOPs (when
two SOPs do not share products) are 5 and 9, re-
spectively. Thus, minimum EX-SOPs with n variables
(n > 6) require at most 9- 2”5 products (Lemma 2.4).

Table 5.3 compares the average number of products
required to realize randomly generated -functions. For
each value of n, 100 n-variable pseudo-random functions
with the specified number of minterms were generated
and minimized. In this experiment, SOPs were mini-
mized by the Quine-McCluskey method [9], and ESOPs
were simplified by EXMIN2 [8]. Data for the column
headed ‘Ref.[10]’ were generated by the program in [10).
Data for the rightmost column of this table were sim-
plified by Algorithm 4.1.

Table 5.4 compares the number of products required
by different expressions to realize some six-variable

'In Table 5.1 and 5.2, av = (Et(t X number of functions re-
quiring t products)) / total number of functions. For n variables,

total number of functions is 22" .



Table 5.3: Average number of products for randomly
generated functions.

% of true EX-SOP
minterms | " | SOP | ESOP oo
6 | 1013 | 868 | 871 8.96
o500 | 7 | 1900 | 1580 | 1633 | 17.88
: 8 | 36.02 | 2002 | 3096 | 33.22
9 | 6978 | 55.58 | 6212 | 66.60
6 | 1246 | 996 | 1043 | 1040
arso | 7 | 2298 | 1815 | 2025 | 20.35
: 8 | 4417 | 3375 | 4034 | 4013
9 | 8287 | 6474 | 7028 | 77.88
6 | 13.82 | 1092 | 11.86 | 11.79
soo0 | 7 | 2534 | 1938 | 2263 | 22.56
: 8 | 4696 | 3590 | 4456 | 4321
9 | 8876 | 6927 | 8566 | 82.67
6 | 1417 | 1076 | 1217 | 11.94
6250 | 7 | 2517 | 10924 | 2281 | 2265
: 8 | 46.90 | 35.88 | 4382 | 43.06
9 | 8663 | 6861 | 8282 | 81.00
6 | 1285 | 9.66 | 10.88 | 1L11
2500 | 7 | 2305 | 1664 | 1971 | 2084
: 8 | 4203 | 3010 | 3714 | 39.20
9 | 7715 | 5705 | 60.82 | 74.46

% of true minterms : (# of true minterms / 2") x 100
n : # of variables

Table 5.4: Number of products for some six-variable
functions.

Most Function truth Number of products
complex | table in hexadecimal | SOP | ESOP | EX-SOP
ESOP 6bbdbdd6bdd6d66b 27 15 14
7ee9e997e997977e 30 15 12
SOP 6996966996696996 32 6 8

functions. The first two functions are taken from [5].
Among all the six-variable functions, these functions
have the most complex ESOP representations. The last
function in this table is a parity function. Among all
the six-variable functions, it has the most complex SOP
representation.

6 Conclusions

In this paper, we presented minimization algorithms
for AND-OR-EXOR three-level networks (EX-SOPs)
for up to five-variable functions. A heuristic algorithm
is also presented to simplify EX-SOPs with six and
more variables. We minimized all the 1,228,158 rep-
resentative functions of NP-equivalence classes of five
variables. We have completed the table of minimum
EX-SOPs with up to five variables. We showed that for
five-variable functions, the upper bound on the number
of products in minimum EX-SOPs is 9, and that for
n-variable functions is at most 92”5 when n > 6.
Previously, this upper bound was known to be 5 - 2"~*
for n > 4 [1]. Again, this upper bound is smaller than
2"~1, the upper bound for the minimum SOPs. Also,
we found that for five-variable functions, on the aver-

age, EX-SOPs require 6.02 products while SOPs require
7.46 products. Our heuristic simplification algorithm is
based on function decomposition, and table look-up of
minimum EX-SOPs for the NP-representative functions
of five variables. For some functions, the algorithm pro-
duce comparable solutions to that of [10]. In our mini-
mization algorithms, we did not considered the sharing
of products between two SOPs of an EX-SOP. If we con-
sider sharing of products, we can realize EX-SOPs with
fewer products for many functions. Currently we are
developing programs to minimize EX-SOPs considering
product sharing.
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