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Abstract

We will present a fault locator that is built almost entirely by software tools. The system speed has
increased tenfold compared to its predecessor even though the complexity of the LSI being analyzed has,
at minimum, quadrupled. The system can locate a single fault from a 250K gate circuit in a matter of
minutes. The fault can then be viewed in a schematic or layout diagram. Furthermore, particles

detected from the particle inspection unit can be viewed with the layout diagram to find correlations
between these particles and the fault locator results.
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An Automatic Fault Location System
for Complex Logic LSIs

M. Gotoh H. Odani . F. Shirotori
1. Introduction

The list of equipment that are used for fault analysis is staggering — AEM,
EPMA, EDX, WDX, ESCA, UPS, SAM, SEM, SIMS, TEM, XD, FIB, EBF, AES.
Each type has its own characteristics, it's own ups and downs. Millions of
dollars must be spent (initially) to locate a single fault within a device the size
of a fingernail. Yet without them, fault analysis would be impossible.

With the introduction of CAD tools, the many phases of LSI design have
been sped up, automated, and made more effident. Fault analysis, however,
has not been greatly affected by software tools. The algorithms are slow, the
data size is enormous, the results are inaccurate, and the models are unrealistic.
On the other hand, the hardware required for fault analysis has improved
drastically. In the past, software simply could not be trusted to locate and
analyze the faults.

The system developed at Hitachi, the Automatic Fault Location System, has
proven to be effective against all the above mentioned problems. The system
can quickly locate faults within 100+ k gate LSIs in a matter of minutes using
only CAD tools. The located fault is then analyzed using a combination of
software and hardware tools. Having been tested with actual data, the
accuracy of the system has been confirmed.

Furthermore, the system supporis not only DC function tests, but delay tests
as well. With LSIs running at speeds of over 100 MHz, DC function tests are
notsufficient to ascertain the reliability of the chip. To obtain the maximum
performance of the LS, delay faults must be a factor to consider.

Finally, the system also considi f-use, a factor imes neglected
in the design of CAD tools. While performance, functionality, and reliability
are of the utmost importance, the system must also be simple to operate from
the user's point of view. This system supports all the comforts of the X-
window system. With easy-to-use driven ¢ ds, sct ic and
layout diagrams can be opened to confirm the location of the fault. Also, data
obtained from the particle inspection unit can be read into the Jayout diagram
to determine the correlation between the possible faults and the detected

particles on the wafer. With this information, the user can begin the fault
analysis phase. )

. Bas

This system is based upon two key comp Fault Simulation and Fault
Location. Fault simulation is used to find the fault coverage of the test vectors
and tobuild the fault dictionary. Fault location compares the fault dictionary
with the actual pins that failed during testing. A fault candidacy list is created
by the fault Jocator with the possible faults listed in order of probability.

The creation of the fault dictionary is by far the most complicated and time-
consuming process of the entire system. However, the algorithm itself is quite
simple. Most circuit defects can be observed using a boolean model of the
defect (stuck-at model). Therefore, gate-level simulation is suffident to
observe faulty behavior,

First, the simulator maps the logic circuit into a series of boolean truth tables
for each gate or cell to be simulated. Hereafter, these gates or cells that make
up the basic building blocks of the circuit will be called logic primitives. The
simulator then feeds the test vectors into the input pins. The behavior of this
circuit is called the "good machine” (figure 1). The logic values traverse the
dircuit and the results are obtained from the output pins. Next, for every
possible fault point, or fault origin, the simulator inserts the fault into the circuit
and simul Finally, the si oT compares the behavior of this faulty
machine with that of the good machine (figure 2). If the differences in behavior
can be observed at the output edge pins, the fault is said to be detected.
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figure 1. good machine simulation figure 2. fault simulation

Often times, the faulty machines are simulated in parallel to obtain greater
speedup. By using a hardware fault simulator, not only does each simulation
complete faster, a concurrent simulation model not possible with sof'm‘lare

lators can be impl d to further enh speed. The concurrent
model simulates only those portions of the circuit affected by the inserted fault.
For example, if a fault is inserted into the last gate of a chain ‘of gates, only the
last gate need be resimulated (figure 3). Even greater speedup can be obtained
by combining the parallel and concurrent fault simulation models.
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concurrent fault simulation

serial or parallel fault simulation

figure 3. fault simulation methods. The gray line represents the area to be
simulated.

fester results dictionary fault lpcator
fault _ detected pin|) # of failed pin fauits detect ntradi
time 100] pin 1 faultA pin123 A
pin2 faultB pinl3 3 B
pin3 faultC pin1,23 C
time 200| pin 2 fault A pin23 ) A
pin3 faul = i L Bé
time 300} pin 1 fault A pin1
faultB pin1 1 B
c

figure 4. fault Jocation. Note the contradictory value for test 2, fault C.

‘The fault dictionary contains the output of the fault simulation. For every
fault, there is a record of the fault and its status (detected or undetected). If
detected, the dictionary shall contain the time of detection and where it was

detected (i.e, which output pin failed). These records are sorted in ascending
order by time (figure 4).

The fault locator compares the actual failed pins and the fault dictionary. In
figure 4, the test results show that pins 1, 2, and 3 failed during the first three
tests. The second table contains the data in the fault dictionary. The third
table lists the results of the comparison. In test 1, faults A and C can be
detected from the three failed pins. In test 2, faults A and C can be detected
from the two failed pins. However, if fault C is the actual fault, pin 1 should
also fail. Since it did not, this fault is said to contradict the actual results.
Finally, test 3 is compared. 'The fault candidacy list summarizes the results
(figure 5). Fault A is placed in the level 1 category. Level 1 indicates that the
faults in this set are the most probable faults. Both faults B and C are placed in
Jevel 2. The contradicting value in test 2 causes fault C to be set equivalent to
fault B even though it had been detected more times than fault B.

Total number of failed pins: 6
Level Fault Detected  Contradictions
1 A

6 0
2 B 4 0
C 5 1

figure 5. Fault locator results. In this case, fault A would be the most likely fault.
Faults B and C, being in the same set, are equally likely to be the actual fault.
These two procedures make up the core of the system. Several other factors
effect both fault simulation and fault location such as fault collapsing and
observability/controllability. These issues will not be discussed in this paper.

3. System Qverview
Figure 6 illustrates the basic system organization.
The system is divided into five phases. The first two phases are executed

after the designs are completed but before manufacturing. The final three
phases are executed after an LI fails during testing.

(a) Conversion Phase

This phase converts the different formats for test patterns, netlists, and
layout patterns to the system's predefined format (ZyCaD Input Record, EDIF
200, and GDST respectively). :
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figure 6. A simplified system flow diagram. The gray line represents the n = o
simulation/fault Jocation.

(b) Simulation Phase
. The fault simulator creates the fault dictionary using ZyCaD Corporation’s
Paradigm XP-2016 Hard Fault Simul During this phase, faults are

P ible to detect are removed from the fault list and
marked as such,  The simulator also supports three other states that a fault can
exist in other than detected, d, and impossible - possibly d d,
hyperactive, and oscillatory. These three types of faults are considered tobe
undetected by the system. The simulator is initially set such that if a fault is
detected, it is immediately deleted from the list (fault dropping or n=1 run).
Therefore, every fault can be located at most once. When the simulation is run
a second time using the reduced fault origin list (as explained in the next phase),
detected faults are never removed from the list (full fault simulation or n=co
run). Therefore, every fault can be located as many times as the test vectors
allow. This double simulation process was chosen to decrease simulation fme.

Some programs that do not directly pertain to simulation are also run during
this phase. These include the delay model netlist build, and the schematic
diag used for partitioning the schematic diagram. These
programs are run here because they can be executed in parallel with the
simulation.  Since fault simulation requires the most time, this would be an
ideal ime to run other programs that are not dependent on the simulation
results.

Also, this phase is used to evaluate data for uses other than fault analysis.
These include fault coverage calculations, toggle checking, design error
checking, and test vector error checking.

)\t d while faults imp
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(c) Locator Phase

Here the fault dictionary is compared with the tester results using the
algorithm described above.  As mentioned in the previous section, this phase
is run twice, once during the fault dropped simulation and once during the full
fault simulation.  After the first run, the fault candidacy list is greatly reduced,
often to the order of th ds or tens of th ds. Since the faults are

o

definable number of primitivés before and after the possible faults are
displayed. The fault candidacy list is also read into the diagrams.

Furthermore, the particle database is matched with the layout diagram to
represent correlations between the particles d d during facturing and
-the results of the fault locator. .

(e) Analysis Phase .

This phase is technically not part of this system. This is where the actual
LST analysis begins using the above mentioned tools such as FIB, SEM, and so
forth. Currently, only the EB tester is directly connected to this system.
During simulation, nodes to be probed are monitored and its waveform is
output. This waveform is then compared with the waveform probed with the
EB tester to isolate the fault. This procedure is executed when the fault Jocator

- can not isolate the fault to a single point.

4. _Improvin, f Functionali

Several have been implemented to improve per and
functionality in this system. The first three features helped to gain speedup
while the last two features provided new functions to assist in the analysis
phase.

(a) Reduction of Fault Origing and Gates

The time required for fault simulation is directly proportional to the number
of faults, the number of gates, and the length of the test vector. The length of
the test vector is a constant (without reducing the fault coverage). The
number of faults and gates, however, can be reduced using several common
methods such as collapsing, and memory primitive reductions.

) i

The format of the test vectors used by Hitachi could be adjusted to decrease
the test vector count without reducing the fault coverage. For DC function
tests, the test vectors created by the automatic test generation system is divided
into two "cycles” — 0-cydle and 1-cycle (figure 7). The O-cycle portion tests the
scan circuitry. More specifically, the test vectors pass through the scan
drcuitry into the scan latches. The contents of the latches are then scanned out
without passing through the main logic circuits. The I-cycle portion tests the
main logic dircuits using scan. The signals are scanned in, as above, but then
go through the main logic circuits and are clocked into the scan out latches,
The data in the output Jatches are then scanned out. While the 0O-cydle tests
have test vectors in the order of 104 ~ 105, the 1-cycle tests contain 106 ~ 108
vectors. Furthermore, since the simulator uses a concurrent fault algorithm
(only passes that differ with the good machine are simulated), the ber of
events, or primitive simulations, increases since the 0-cydle test simulates only
the scan drcuitry while the 1-cycle test simulates the entire chip. The reason
for the increase in test vectors for the 1-cycle test is that for each "test”, the
number of test vectors is at least the number of scan latches (103 +). Each “fest”
scans in data for the input scan latches and scans out data from the oufput scan
latches one test vector at a time while the actual "test" needs only one test vector.
In other words, each "test” Tequires at least 103 test vectors. Therefore, the
number of "tests" in the 1-cycle test is actually only 10(63=3) ~ 10 (€-3=5),
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i

removed from the list immediately after detection, every fault will be a
of the Level 1 set (with the number of detections equal to 1). These faults are
reset as undetected and rerun using full fault simulati This time, h "y
since the faults are not removed after detection, the number of times the fault
was detected will also be recorded in the fault dictionary. Therefore, a more
accurate fault candidacy list can be built.

(d) Isolation Phase

During this phase, user interaction becomes most important. The programs
themselves simply display the Jayout and schematic diagrams.

Although the entire layout diagram can be shown, the schematic diagram
must be partitioned if too many primitives exist in the dircuit. A user-

ELF J’
N
Combin.
l F/F Logic
Scan Circuil
O-cycle test: tests scan circuits direct scan test: tests combinational logic

figure 7. Direct scan simulation. By feeding the test vectors directly into the
scan latches, the number of test vectors and events decrease dramatically.



The method we use, calléd the direct scan approach, inserts and extracts data
directly into the scan latches simultaneously. In one test vector, the vectors
are inserted into the input latches, passes through the main drcuitry, and '
extracted from the output latches, Since the O-cycle test simulates the scan
dreuitry, there is no need-to resimulate during the 1-cycle test. Furthermore,
the number of events decreases since now the simulator tests only the main
drcuitry and not the entire circuit as before. The speedup gained using this
method is proportional to the number of scan latches used.

One problem with this method appears when a single scan latch is sed for
both input and output. ~Since data is directly scanned in, clocked, and sensed
out during the same test, the scanned in data may fight with the incoming
output data that is to be sensed out. Therefore, the functionality of the scan
latch must be carefully understood before deciding exactly where toscan in the
data (data pin, set/reset pin, inside latch loop, and so forth).

(c) Delay Faults '
The ZyCaD hardware simulator simulates only stuck-at faults. However,

with LS speeds easily exceeding 100 MHz, delay faults must be another factor
to consider. However, no hardware simulator currently exists that supports
delay faults. Furthermore, software simulators are too slow for large circuits.
Therefore, a method must be introduced that can convert stuck-at faults to
delay faults. v

First, a simple introduction of delay faults is inorder. There are two types
of delay faults — setup test faults and hold test faults (figure 8). Setup faults are
caused by delayed data into the output latch.  Signals that should have been
clocked inarenot. Hold faults are caused by a delay in the clock pulse. The
effective result is that signals that should not be clocked in, are.

If one looks closely at the behavior of setup time faults, itis clear that these
faults are equivalent to stuck-at faults during a certain period of time.
Therefore, using the delay test vectors in a stuck-at fault simulator, the results
can be used for fault analysis. However, hold time faults are not equivalent to
stuck-at faults. Sticking a clock node will cause more than just a delayed
signal. Therefore, a second method must be considered.

A "delay cell" can be inserted where every fault origin is located. This delay
cell will fool the simulator into testing for delay faults while its algorithm is
simulating for stuck-at faults. Figure 9 represents the delay cell. The switch
Ais a 2-to-1 selector that chooses between the normal path and the buffered
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figure 8. Types of delay faults. The p d values rep intial
values in the latch. The dashed line represents the signal when a fault occurs.
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figure 9. Delay fault support. (2) A delay fault can be converted to a
stuck-at fault by inserting the delay cell where the delay fault is to be
simulated. (b) The delay fault itself is a delay primitive and a switch.

path. The bufferis a delay primitive with some delay & that will delay the
signal if chosen by the selector. 'The net B selects which path to take.
Normally, net B is held at logic-0. When simulating a stuck-at-1 on this net,
the signal will be delayed and a delay fault will occur. Therefore, a delay fault
at the input of gate C is equivalent to a stuck-at-1 fault on the selector net.
(d) Particle Database

‘When viewing the layout dlagfam, the faulis specified by the fault locator
will be visible. In addition to these faults, the particles detected during
particle inspection can also be viewed on top of the faults and the layout
diagram. In this way, the user can examine if a foreign particle is the cause of
the fault even before physically checking the circuit. )

5. Results
dreult | gates fault | test test logle fault fault
(FF) | origins vectors . (n=1) | coverage
A | 108K 85K | Orcydle 60K M3 m27s | 289% |
Q1K)
B 250K 255K
@.1K)
[ 208K 151K
(4.3K)
| ____|lcyde |
D 169K 120K | Ocycle |
(33K) Tcyde
E | 172K | 128K |Ogyde |
65K T-cyde |
F | 255K | 178K[gcyde [
{5.6K) 1<cyde | 4.2K(15,244K) 56.3%

note:
1) "Logic" refers to the good machine simulation time.
2) "Gates" refers to the number of ZyCaD primitives and not the actual number.
However, FF refers to the actual number of scan latches within the drcuit.
3) Both the conventional 1-cycle test and direct scan 1-cycle test were run for circuits A,
B, and C. However, the conventional 1-cydle fault simulation was run for circuit A only
since the time to run it for other circuits was too Jong.
4) The fault coverages represent the ratio of detectable faults for that test only. During
actual testing, a function test i run in addition to the 0- and I-cycle tests for a total fault
coverage of 99.99%.

table 1. Logic and fault simulation times for actual dircuits developed at Hitachi.

Table 1 represents simulation times for several dircuits.” One can see that v

. fault simulation takes up most of the time required by the system. Since this

phase is executed only once and before a failed dircuit is found, the actual time
required once a fault is located is the sum of the execution times of the fault
dropped fault location, the full fault simulation and location, and the diagr
display. Alsonote the speedup attained from using the direct scan approach
for the 1-cycle tests during fault dropped simulation.

sample | fault location | # of faults | fault sim | fault Jocation | # of faults »
(n=1) (=1}| (n=es) (n=oo) (n=se)
1 37mAls 142| 5m5ds 57s 2
2 33mlls 286 5mb5s 50 1
3 36m13s 62| 15m32s 3mi5s 3
4 Th08m22s 493| 20md4s 7m03s 2
5 1h07m06s 740{ 11m35s 5mb4s 1
6 47mlds 65] 10m22s 263 2
7 36mlls 17| 11m35s 258 6
8 32md0s 92| 10m24s 21s 1
9 31mi2s 27| 6mb5és 19s 1
10 30m4ss 25| 10m27s 16s 1
n 31m15s 122] 11m06s 1m09s 4

- 12 30m48s 51| 10m24s 21s 1 -
13 35m01s 111 32méts 22m13s 4
14 52m22s 39| 11m20s 27s 1
15 58mA9s 215| 19m04s 3m3is 1

note:

1) The execution times for fault location is dependent upon the CPU usage ratio
of the host. These values were obtaining using 30% of the CP'U resources.

2) " of faults” refers fo the number of Level 1 faults {the total number of faults
is equal to the Level 1 faults for the n=1 fault location).

table 2. Fault location execution times for several samples of Circuit B fram table

Table 2 shows the execution times for the fault dropped fault location, full
fault simulation, and full fault location (the time for diagram display is
negligible). One can see that, except for a few cases, a smgle fault origin could
be isolated even before viewing the circuit.

Tusi

Although the fault dictionary approach has been criticized as being too time-



and resource-consuming, the fault locator system has proven to be successful in
identifying faults very quickly. Although the system by itself can only
speculate the location of the faults, the system can speedup the analysis phase
of fault analysis by giving the user a highly probable location of the fault.
Furthermore, the system can simulate delay faults, a feature that is lacking in
many conventional fault analysis systems. The system has already provided
much speedup toward the c letion of the next generation mainframes and
workstations by Hitachi.
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